Gegen Qinlian Decoction Modulates Atherosclerosis and Lipid Metabolism Through Cellular Interplay and Signaling Pathways


Cite item

Full Text

Abstract

Objective:The objective of this study is to investigate Gegen Qinlian decoction (GQD) effects on lipid metabolism and explore its mechanism for preventing and treating atherosclerosis.

Methods:An atherosclerotic rat model was established;, and after an 8-week high-fat diet, atherosclerosis and non-alcoholic fatty liver disease were assessed. Subsequently, GQD was administered at low and high doses. Histopathological aortic wall changes, hepatic lipid deposition, and blood lipid changes were evaluated. ELISA indicated the influence of TNF-α and IL-13, and Western blotting revealed MerTK, ABCA1, and LXR-α expression. A foam macrophage model was established, and Cell activity was detected by the MTT method. ELISA indicated the influence of PPAR-γ. The expression of ABCA1, ABCA7, ABCG1, GAS6, MerTK, SCARB1, LXR- α and LXR-β mRNA were detected by qPCR, and Western blotting revealed MerTK and LXR-α expression. The impact of drug-containing serum of GQD on efferocytosis-related factors was studied.

Results:GQD improved atherosclerosis and non-alcoholic fatty liver disease and reduced serum low-density lipoprotein levels in the high-dose group. The high- and low-dose groups showed upregulated ABCA1, MerTK, and LXR-α expression in blood vessels and the liver, respectively. GQD decreased serum TNF-α and increased IL-13 levels. PPAR-γ expression was elevated in the high-, and low-dose groups. In the high-and low-dose groups, ABCA7, GAS6, SCARB1, and LXR-α, ABCA1 and MerTK, and ABCG1 gene expression were upregulated, respectively. Both low- and high-dose serum-containing drugs promoted LXR-β gene expression, and LXR-α protein expression was improved in the high-dose group.

Conclusion:GQD improves rat atherosclerosis and hepatic lipid metabolism by regulating PPAR-γ, LXR-α, LXR-β, ABCA1, ABCA7, and ABCG1 expression and augmenting cellular intercalation through the GAS6/TAM pathway

About the authors

Zhiwei Zhang

Department of Digestive Endocrinology, Beijing Fengtai Hospital of Integrated traditional and Western Medicine

Email: info@benthamscience.net

Yu Zhou

Department of Nephrology Endocrinology, Beijing Hospital of Integrated traditional and Western Medicine

Email: info@benthamscience.net

Qin Lv

Department of Digestive Endocrinology, Beijing Fengtai Hospital of Integrated traditional and Western Medicine

Email: info@benthamscience.net

Kun Gao

Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences

Email: info@benthamscience.net

Zhiguo Li

Department of Digestive Endocrinology, Beijing Fengtai Hospital of Integrated traditional and Western Medicine

Email: info@benthamscience.net

Qing Miao

Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences

Email: info@benthamscience.net

Li Shen

Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Martinet, W.; Coornaert, I.; Puylaert, P.; De Meyer, G.R.Y. Macrophage death as a pharmacological target in atherosclerosis. Front. Pharmacol., 2019, 10, 306. doi: 10.3389/fphar.2019.00306 PMID: 31019462
  2. Arandjelovic, S.; Ravichandran, K.S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol., 2015, 16(9), 907-917. doi: 10.1038/ni.3253 PMID: 26287597
  3. Gheibi Hayat, S.M.; Bianconi, V.; Pirro, M.; Sahebkar, A. Efferocytosis: Molecular mechanisms and pathophysiological perspectives. Immunol. Cell Biol., 2019, 97(2), 124-133. doi: 10.1111/imcb.12206 PMID: 30230022
  4. Abdolmaleki, F.; Farahani, N.; Gheibi Hayat, S.M.; Pirro, M.; Bianconi, V.; Barreto, G.E.; Sahebkar, A. The role of efferocytosis in autoimmune diseases. Front. Immunol., 2018, 9, 1645. doi: 10.3389/fimmu.2018.01645 PMID: 30083153
  5. Tajbakhsh, A.; Rezaee, M.; Kovanen, P.T.; Sahebkar, A. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol. Ther., 2018, 188, 12-25. doi: 10.1016/j.pharmthera.2018.02.003 PMID: 29444453
  6. Henson, P.M. Cell removal: Efferocytosis. Annu. Rev. Cell Dev. Biol., 2017, 33(1), 127-144. doi: 10.1146/annurev-cellbio-111315-125315 PMID: 28613937
  7. Lin, H.C.; Lii, C.K.; Chen, H.C.; Lin, A.H.; Yang, Y.C.; Chen, H.W. Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages. Am. J. Chin. Med., 2018, 46(1), 87-106. doi: 10.1142/S0192415X18500052 PMID: 29298513
  8. Jiang, T.; Ren, K.; Chen, Q.; Li, H.; Yao, R.; Hu, H.; Lv, Y.C.; Zhao, G.J. Leonurine prevents atherosclerosis via promoting the expression of ABCA1 and ABCG1 in a pparγ/lxrα signaling pathway-dependent manner. Cell. Physiol. Biochem., 2017, 43(4), 1703-1717. doi: 10.1159/000484031 PMID: 29045950
  9. Ren, K.; Jiang, T.; Zhou, H.F.; Liang, Y.; Zhao, G.J. Apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell. Physiol. Biochem., 2018, 47(5), 2170-2184. doi: 10.1159/000491528 PMID: 29975943
  10. Chen, J.; Qian, Z.; Zhu, M.; Lin, X.; Ge, Y. Hypoglycemic mechanism of gegen qinliantang: An exploration based on GPR119/cAMP/GLP-l pathway. Zhongguo Shiyan Fangjixue Zazhi, 2022, 28(03), 25-30.
  11. Ma, J.; Wang, F.; Zhang, J.; Xu, L.; Wang, Y.; Liu, Z. Gegen qinliantang alleviates ulcerative colitis via cell signaling pathways: A review. Zhongguo Shiyan Fangjixue Zazhi, 2021, 27(17), 186-192.
  12. Zheng, G.; Ma, C.; Fan, G. Research progress on pharmacological basis of Gegen Qinlian Decoction in the treatment of atherosclerosis. J. Tianjin Uni. Trad. Chin. Med., 2022, 41(05), 668-674.
  13. Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest., 2005, 115(5), 1343-1351. doi: 10.1172/JCI23621 PMID: 15864352
  14. Zhang, C; Fei, N; Hao, P; Gao, L; Pang, G Effects of gegen qinlian decoction on PERK-eIF2α pathway in rats with nonalcoholic steatohepatitis based on endoplasmic reticulum stress. Chin. J. Hos. Pharma., 2023, 1-11.
  15. Peng, C.; Xu, Q.; Zhu, N.; Jiang, L.; Li, B.; Zhang, Q. Analysis of the relevant components of Gegen Qinlian Decoction for decoction of Pueraria lobata root and then decoction of various medicines. Lishizhen Med. Mat. Med. Res., 2021, 32(06), 1357-1360.
  16. Shami, A.; Atzler, D.; Bosmans, L.A.; Winkels, H.; Meiler, S.; Lacy, M.; van Tiel, C.; Ta Megens, R.; Nitz, K.; Baardman, J.; Kusters, P.; Seijkens, T.; Buerger, C.; Janjic, A.; Riccardi, C.; Edsfeldt, A.; Monaco, C.; Daemen, M.; de Winther, M.P.J.; Nilsson, J.; Weber, C.; Gerdes, N.; Gonçalves, I.; Lutgens, E. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur. Heart J., 2020, 41(31), 2938-2948. doi: 10.1093/eurheartj/ehaa484 PMID: 32728688
  17. Hamaguchi, M.; Kojima, T.; Takeda, N.; Nagata, C.; Takeda, J.; Sarui, H.; Kawahito, Y.; Yoshida, N.; Suetsugu, A.; Kato, T.; Okuda, J.; Ida, K.; Yoshikawa, T. Nonalcoholic fatty liver disease is a novel predictor of cardiovascular disease. World J. Gastroenterol., 2007, 13(10), 1579-1584. doi: 10.3748/wjg.v13.i10.1579 PMID: 17461452
  18. Choi, D.H.; Lee, S.J.; Kang, C.D.; Park, M.O.; Choi, D.W.; Kim, T.S.; Lee, W.; Cho, B.R.; Kim, Y.H.; Lee, B.K.; Ryu, D.R.; Lee, J.W. Nonalcoholic fatty liver disease is associated with coronary artery disease in Koreans. World J. Gastroenterol., 2013, 19(38), 6453-6457. doi: 10.3748/wjg.v19.i38.6453 PMID: 24151364
  19. Perera, N.; Indrakumar, J.; Abeysinghe, W.V.; Fernando, V.; Samaraweera, W.M.C.K.; Lawrence, J.S. Non alcoholic fatty liver disease increases the mortality from acute coronary syndrome: An observational study from Sri Lanka. BMC Cardiovasc. Disord., 2016, 16(1), 37. doi: 10.1186/s12872-016-0212-8 PMID: 26869052
  20. Nakagawa, K.; Nakashima, Y. Pathologic intimal thickening in human atherosclerosis is formed by extracellular accumulation of plasma-derived lipids and dispersion of intimal smooth muscle cells. Atherosclerosis, 2018, 274, 235-242. doi: 10.1016/j.atherosclerosis.2018.03.039 PMID: 29622338
  21. Kojima, Y.; Weissman, I.L.; Leeper, N.J. The role of efferocytosis in atherosclerosis. Circulation, 2017, 135(5), 476-489. doi: 10.1161/CIRCULATIONAHA.116.025684 PMID: 28137963
  22. Linton, M.F.; Babaev, V.R.; Huang, J.; Linton, E.F.; Tao, H.; Yancey, P.G. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis. Circ. J., 2016, 80(11), 2259-2268. doi: 10.1253/circj.CJ-16-0924 PMID: 27725526
  23. Hu, H.; Wang, X.; Zhou, Y. Theoretical analysis of the treatment of atherosclerosis from the blood turbid. Zhongguo Zhongyiyao Xiandai Yuancheng Jiaoyu, 2015, 13(11), 1-2.
  24. Liu, Y.; Liu, Z. Treatment of atherosclerosis based on turbidity-evil theory. Chin. J. Integ. Med. Cardio-Cerebr. Dis., 2018, 16(21), 3216-3217.
  25. Chen, X.; Chen, Z. Study on the treatment of coronary heart disease by clearing heat and detoxifying based on the formation mechanism of AS. Lishizhen Med. and Mat. Med. Res., 2019, 30(01), 153-155.
  26. Jia, X.; Iwanowycz, S.; Wang, J.; Saaoud, F.; Yu, F.; Wang, Y.; Hu, J.; Chatterjee, S.; Wang, Q.; Fan, D. Emodin attenuates systemic and liver inflammation in hyperlipidemic mice administrated with lipopolysaccharides. Exp. Biol. Med., 2014, 239(8), 1025-1035. doi: 10.1177/1535370214530247 PMID: 24740873
  27. Zhang, B.; Xu, D.; She, L.; Wang, Z.; Yang, N.; Sun, R.; Zhang, Y.; Yan, C.; Wei, Q.; Aa, J.; Liu, B.; Wang, G.; Xie, Y. Silybin inhibits NLRP3 inflammasome assembly through the NAD +/SIRT2 pathway in mice with nonalcoholic fatty liver disease. FASEB J., 2018, 32(2), 757-767. doi: 10.1096/fj.201700602R PMID: 28970254
  28. Zhao, Y.; Zheng, H.X.; Xu, Y.; Lin, N. Research progress in phytoestrogens of traditional Chinese medicine. Zhongguo Zhongyao Zazhi, 2017, 42(18), 3474-3487. PMID: 29218931
  29. Surgucheva, I.; Surguchov, A. Gamma-synuclein: Cell-type-specific promoter activity and binding to transcription factors. J. Mol. Neurosci., 2008, 35(3), 267-271. doi: 10.1007/s12031-008-9074-6 PMID: 18498014
  30. Tang, H.; Zeng, Q.; Tang, T.; Wei, Y.; Pu, P. Kaempferide improves glycolipid metabolism disorder by activating PPARγ in high-fat-diet-fed mice. Life Sci., 2021, 270, 119133. doi: 10.1016/j.lfs.2021.119133 PMID: 33508298
  31. Fu, X.; Xu, A.; Yao, M.; Guo, L.; Zhao, L. Emodin enhances cholesterol efflux by activating peroxisome proliferator‐activated receptor‐γ in oxidized low density lipoprotein‐loaded THP 1 macrophages. Clin. Exp. Pharmacol. Physiol., 2014, 41(9), 679-684. doi: 10.1111/1440-1681.12262 PMID: 24837536
  32. He, X.W.; Yu, D.; Li, W.L.; Zheng, Z.; Lv, C.L.; Li, C.; Liu, P.; Xu, C.Q.; Hu, X.F.; Jin, X.P. Anti-atherosclerotic potential of baicalin mediated by promoting cholesterol efflux from macrophages via the PPARγ-LXRα-ABCA1/ABCG1 pathway. Biomed. Pharmacother., 2016, 83, 257-264. doi: 10.1016/j.biopha.2016.06.046 PMID: 27389392
  33. Zhao, X.; Han, X.; Deng, Q.; Yang, J.; Zhou, Z.; Liu, D. Effects of PPARγ/CD36 pathway on lipid metabolism in mice infected with Mycobacterium tuberculosis. Chin. J. Pathophy., 2021, 37(05), 849-856.
  34. Zeng, Y.; Peng, Y.; Tang, K.; Wang, Y.Q.; Zhao, Z.Y.; Wei, X.Y.; Xu, X.L. Dihydromyricetin ameliorates foam cell formation via LXRα-ABCA1/ABCG1-dependent cholesterol efflux in macrophages. Biomed. Pharmacother., 2018, 101, 543-552. doi: 10.1016/j.biopha.2018.02.124 PMID: 29505925
  35. Ikhlef, S.; Berrougui, H.; Kamtchueng Simo, O.; Khalil, A. Paraoxonase 1‐treated ox LDL promotes cholesterol efflux from macrophages by stimulating the PPAR γ– LXR α– ABCA 1 pathway. FEBS Lett., 2016, 590(11), 1614-1629. doi: 10.1002/1873-3468.12198 PMID: 27148853
  36. Khovidhunkit, W.; Moser, A.H.; Shigenaga, J.K.; Grunfeld, C.; Feingold, K.R. Endotoxin down-regulates ABCG5 and ABCG8 in mouse liver and ABCA1 and ABCG1 in J774 murine macrophages. J. Lipid Res., 2003, 44(9), 1728-1736. doi: 10.1194/jlr.M300100-JLR200 PMID: 12777468
  37. Wang, K.; Li, Y.; Chang, L.; Yin, Y.; Zhu, Y.; Wu, C. Rules of syndrome and treatment of unstable angina pectoris guided by vessel-collateral theory and mechanism analysis basedon network pharmacology. Zhongguo Shiyan Fangjixue Zazhi, 2021, 27(16), 167-176.
  38. Wu, C.; Zhao, D.; Wang, N. Effect of ATP bingding cassette transporter a7 on lipid release. J. Cardio. Pul. Dis., 2010, 29(02), 142-144.
  39. Alciato, F.; Sainaghi, P.P.; Sola, D.; Castello, L.; Avanzi, G.C. TNF-α, IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. J. Leukoc. Biol., 2010, 87(5), 869-875. doi: 10.1189/jlb.0909610 PMID: 20103767
  40. Meilhac, O.; Bièche, I.; Raynal, P.; Bruneval, P.; Michel, J-B.; Borgel, D.; Clauser, S. Increased secretion of Gas6 by smooth muscle cells in human atherosclerotic carotid plaques. Thromb. Haemost., 2012, 107(1), 140-149. doi: 10.1160/TH11-05-0368 PMID: 22072012
  41. Giangola, M.D.; Yang, W.L.; Rajayer, S.R.; Nicastro, J.; Coppa, G.F.; Wang, P. Growth arrest-specific protein 6 attenuates neutrophil migration and acute lung injury in sepsis. Shock, 2013, 40(6), 485-491. doi: 10.1097/SHK.0b013e3182a588c1 PMID: 23881260
  42. Laurance, S.; Lemarié, C.A.; Blostein, M.D. Growth arrest-specific gene 6 (gas6) and vascular hemostasis. Adv. Nutr., 2012, 3(2), 196-203. doi: 10.3945/an.111.001826 PMID: 22516727
  43. Rothlin, C.V.; Ghosh, S.; Zuniga, E.I.; Oldstone, M.B.A.; Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell, 2007, 131(6), 1124-1136. doi: 10.1016/j.cell.2007.10.034 PMID: 18083102
  44. Evans, A.L.; Blackburn, J.W.D.; Taruc, K.; Kipp, A.; Dirk, B.S.; Hunt, N.R.; Barr, S.D.; Dikeakos, J.D.; Heit, B. Antagonistic coevolution of MER tyrosine kinase expression and function. Mol. Biol. Evol., 2017, 34(7), 1613-1628. doi: 10.1093/molbev/msx102 PMID: 28369510
  45. Malawista, A.; Wang, X.; Trentalange, M.; Allore, H.G.; Montgomery, R.R. Coordinated expression of tyro3, axl, and mer receptors in macrophage ontogeny. Macrophage, 2016, 3, 3. PMID: 27695708
  46. Brodeur, M.R.; Luangrath, V.; Bourret, G.; Falstrault, L.; Brissette, L. Physiological importance of SR-BI in the in vivo metabolism of human HDL and LDL in male and female mice. J. Lipid Res., 2005, 46(4), 687-696. doi: 10.1194/jlr.M400165-JLR200 PMID: 15654132
  47. Van Eck, M.; Hoekstra, M.; Out, R.; Bos, I.S.T.; Kruijt, J.K.; Hildebrand, R.B.; Van Berkel, T.J.C. Scavenger receptor BI facilitates the metabolism of VLDL lipoproteins in vivo. J. Lipid Res., 2008, 49(1), 136-146. doi: 10.1194/jlr.M700355-JLR200 PMID: 17954936
  48. Liao, D.; Wang, X.; Li, M.; Lin, P.H.; Yao, Q.; Chen, C. Human protein S inhibits the uptake of AcLDL and expression of SR-A through Mer receptor tyrosine kinase in human macrophages. Blood, 2009, 113(1), 165-174. doi: 10.1182/blood-2008-05-158048 PMID: 18922854
  49. Ait-Oufella, H.; Pouresmail, V.; Simon, T.; Blanc-Brude, O.; Kinugawa, K.; Merval, R.; Offenstadt, G.; Lesèche, G.; Cohen, P.L.; Tedgui, A.; Mallat, Z. Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2008, 28(8), 1429-1431. doi: 10.1161/ATVBAHA.108.169078 PMID: 18467644
  50. Cai, B.; Thorp, E.B.; Doran, A.C.; Sansbury, B.E.; Daemen, M.J.A.P.; Dorweiler, B.; Spite, M.; Fredman, G.; Tabas, I. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Invest., 2017, 127(2), 564-568. doi: 10.1172/JCI90520 PMID: 28067670
  51. Thorp, E.; Cui, D.; Schrijvers, D.M.; Kuriakose, G.; Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arterioscler. Thromb. Vasc. Biol., 2008, 28(8), 1421-1428. doi: 10.1161/ATVBAHA.108.167197 PMID: 18451332

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers