Downregulation of miR-4284 can Inhibit the Apoptosis of Human Arterial Smooth Muscle Cells (HASMCs) in Arteriosclerosis Obliterans (ASO)


Cite item

Full Text

Abstract

Introduction:The disease arteriosclerosis obliterans (ASO) affects the lower extremities. ASO's mechanism involves the proliferation and migration of vascular smooth muscle cells (VSMCs). The miR-4284 is involved in several biological processes of the cardiovascular system, including VSMC proliferation, migration, and death. However, it is unknown if the miR-4284 gene is involved in the control of ASO. Furthermore, the molecular processes behind the contribution of human arterial smooth muscle cells (HASMCs), one of the most significant components of the arterial wall, to arteriosclerosis obliterans (ASO) pathogenesis remain unknown. Previously, we explored the alterations of miRNAs in the blood of ASO patients, and now we wanted to test further whether these changes also take place in the HASMCs that are responsible for the pathogenesis of ASO.

Methods:The expression levels of miR-29a in arterial walls were analyzed via a real-time polymerase chain reaction. An ASO cell model was established to investigate the expression of miR- 4284 on HASMCs. The Transwell system and CCK-8 detection were used to assess the migration and proliferation of HASMCs. The proportion of apoptotic cells as well as the concentrations of apoptotic signal protein production were assessed using flow cytometry. A Western blot technique was used to identify B cell lymphoma-2 (Bcl2), Bcl2-associated X protein (BAX), as well as Xlinked inhibitors of apoptosis protein (XIAP).

Results:The results showed that PCR confirmed that the qualified production or expression of miR-4284 was significantly reduced in HASMCs after they were cultured without FBS and in an atmosphere of 1% O2 + 5% CO2 + 94% N2 and that glucose had no effect on its expression. MiR- 4284 has no effect on migration and proliferation, but downregulation of miR-4284 can decrease the apoptotic rate of HASMCs, as revealed by flow cytometry. Furthermore, western blot experiments showed that the expression of BAX was low, while the expression of the other two proteins, viz., Bcl2 and XIAP, was over-expressed.

Conclusion:We found that miR-4284 downregulation enhanced Bcl2, as well as XIAP, and decreased Bax. This shows that downregulated miR-4284 regulates apoptosis-related protein expression in HASMCs. The mechanism is not clear, and we need further study to confirm it.

About the authors

Fang Wang

Department of Breast and Thyroid Surgery, Guang'an People's Hospital,, Sichuan University

Email: info@benthamscience.net

Yinghong Yu

Department of Cardiovascular Surgery, Guang'an People's Hospital, Sichuan University

Email: info@benthamscience.net

Gongjian He

Department of Breast and Thyroid Surgery, Guang'an People's Hospital, Sichuan University

Email: info@benthamscience.net

Zhangxia Ren

Department of Breast and Thyroid Surgery, Guang'an People's Hospital, Sichuan University

Email: info@benthamscience.net

Sizhe Xu

Department of Breast and Thyroid Surgery, Guang'an People's Hospitalof Cardiovascular surgery, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wang, M.; Li, W.; Chang, G.Q.; Ye, C.S.; Ou, J.S.; Li, X.X.; Liu, Y.; Cheang, T.Y.; Huang, X.L.; Wang, S.M. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler. Thromb. Vasc. Biol., 2011, 31(9), 2044-2053. doi: 10.1161/ATVBAHA.111.229559 PMID: 21817107
  2. Ji, R.; Cheng, Y.; Yue, J.; Yang, J.; Liu, X.; Chen, H.; Dean, D.B.; Zhang, C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res., 2007, 100(11), 1579-1588. doi: 10.1161/CIRCRESAHA.106.141986 PMID: 17478730
  3. Moriya, J.; Minamino, T.; Tateno, K.; Shimizu, N.; Kuwabara, Y.; Sato, Y.; Saito, Y.; Komuro, I. Long-term outcome of therapeutic neovascularization using peripheral blood mononuclear cells for limb ischemia. Circ. Cardiovasc. Interv., 2009, 2(3), 245-254. doi: 10.1161/CIRCINTERVENTIONS.108.799361 PMID: 20031722
  4. Criqui, M.H.; Vargas, V.; Denenberg, J.O.; Ho, E.; Allison, M.; Langer, R.D.; Gamst, A.; Bundens, W.P.; Fronek, A. Ethnicity and peripheral arterial disease: The San Diego Population Study. Circulation, 2005, 112(17), 2703-2707. doi: 10.1161/CIRCULATIONAHA.105.546507 PMID: 16246968
  5. Liu, J.; Li, W.; Wang, S.; Wu, Y.; Li, Z.; Wang, W.; Liu, R.; Ou, J.; Zhang, C.; Wang, S. MiR-142-3p attenuates the migration of CD4+ T cells through regulating actin cytoskeleton via RAC1 and ROCK2 in arteriosclerosis obliterans. PLoS One, 2014, 9(4), e95514. doi: 10.1371/journal.pone.0095514 PMID: 24743945
  6. Loyer, X.; Mallat, Z.; Boulanger, C.M.; Tedgui, A. MicroRNAs as therapeutic targets in atherosclerosis. Expert Opin. Ther. Targets, 2015, 19(4), 489-496. doi: 10.1517/14728222.2014.989835 PMID: 25464904
  7. Hosin, A.A.; Prasad, A.; Viiri, L.E.; Davies, A.H.; Shalhoub, J. MicroRNAs in Atherosclerosis. J. Vasc. Res., 2014, 51(5), 338-349. doi: 10.1159/000368193 PMID: 25500818
  8. Huang, B.S.; Luo, Q.I.Z.H.I.; Han, Y.; Li, X.B.; Cao, L.I.J.U.N.; Wu, L.X. microRNA-223 promotes the growth and invasion of glioblastoma cells by targeting tumor suppressor PAX6. Oncol. Rep., 2013, 30(5), 2263-2269. doi: 10.3892/or.2013.2683 PMID: 23970099
  9. Li, T.; Cao, H.; Zhuang, J.; Wan, J.; Guan, M.; Yu, B.; Li, X.; Zhang, W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin. Chim. Acta, 2011, 412(1-2), 66-70. doi: 10.1016/j.cca.2010.09.029 PMID: 20888330
  10. Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Krüger, M.; Hein, L.; Braun, T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest., 2009, 119(9), 2634-2647. doi: 10.1172/JCI38864 PMID: 19690389
  11. He, X.; Zheng, Y.; Liu, S.; Liu, Y.; He, Y.; Zhou, X. Altered Plasma MicroRNAs as Novel Biomarkers for Arteriosclerosis Obliterans. J. Atheroscler. Thromb., 2016, 23(2), 196-206. doi: 10.5551/jat.30775 PMID: 26370316
  12. Schlenker, T.; Schwake, L.; Voss, A.; Stremmel, W.; Elsing, C. Oxidative stress activates membrane ion channels in human biliary epithelial cancer cells (Mz-Cha-1). Anticancer Res., 2015, 35(11), 5881-5888. PMID: 26504011
  13. Meloche, J.; Potus, F.; Vaillancourt, M.; Bourgeois, A.; Johnson, I.; Deschamps, L.; Chabot, S.; Ruffenach, G.; Henry, S.; Breuils-Bonnet, S.; Tremblay, È.; Nadeau, V.; Lambert, C.; Paradis, R.; Provencher, S.; Bonnet, S. Bromodomain-Containing Protein 4. Circ. Res., 2015, 117(6), 525-535. doi: 10.1161/CIRCRESAHA.115.307004 PMID: 26224795
  14. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408. doi: 10.1006/meth.2001.1262 PMID: 11846609
  15. Rajput, C.; Tauseef, M.; Farazuddin, M.; Yazbeck, P.; Amin, M.R.; Avin BR, V.; Sharma, T.; Mehta, D. MicroRNA-150 suppression of angiopoetin-2 generation and signaling is crucial for resolving vascular injury. Arterioscler. Thromb. Vasc. Biol., 2016, 36(2), 380-388. doi: 10.1161/ATVBAHA.115.306997 PMID: 26743170
  16. Liu, X.; Sun, J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways. Biomaterials, 2010, 31(32), 8198-8209. doi: 10.1016/j.biomaterials.2010.07.069 PMID: 20727582
  17. Wu, W.; Zhang, D.; Pan, D.; Zuo, G.; Ren, X.; Chen, S. Downregulation of vascular endothelial growth factor receptor-2 under oxidative stress conditions is mediated by β-transduction repeat-containing protein via glycogen synthase kinase-3β signaling. Int. J. Mol. Med., 2016, 37(4), 911-920. doi: 10.3892/ijmm.2016.2493 PMID: 26935904
  18. Chen, A.Y.; Lü, J.M.; Yao, Q.; Chen, C. Entacapone is an antioxidant more potent than vitamin c and vitamin e for scavenging of hypochlorous acid and peroxynitrite, and the inhibition of oxidative stress-induced cell death. Med. Sci. Monit., 2016, 22, 687-696. doi: 10.12659/MSM.896462 PMID: 26927838
  19. Zhang, H.B.; Wen, J.K.; Zhang, J.; Miao, S.B.; Ma, G.Y.; Wang, Y.Y.; Zheng, B.; Han, M. Flavonoids from Inula britannica reduces oxidative stress through inhibiting expression and phosphorylation of p47 phox in VSMCs. Pharm. Biol., 2011, 49(8), 815-820. doi: 10.3109/13880209.2010.550055 PMID: 21500971
  20. Fetahu, I.S.; Tennakoon, S.; Lines, K.E.; Gröschel, C.; Aggarwal, A.; Mesteri, I.; Baumgartner-Parzer, S.; Mader, R.M.; Thakker, R.V.; Kállay, E. miR-135b- and miR-146b-dependent silencing of calcium-sensing receptor expression in colorectal tumors. Int. J. Cancer, 2016, 138(1), 137-145. doi: 10.1002/ijc.29681 PMID: 26178670
  21. Lesniewska, M.A.; Dereziński, P.; Klupczyńska, A.; Kokot, Z.J.; Ostrowski, T.; Zeidler, J.; Muszalska, I. HPLC and HPLC/MS/MS Studies on Stress, Accelerated and Intermediate Degradation Tests of Antivirally Active Tricyclic Analog of Acyclovir. J. AOAC Int., 2015, 98(5), 1240-1247. doi: 10.5740/jaoacint.15-014 PMID: 26525242
  22. Li, X.; Yao, N.; Zhang, J.; Liu, Z. MicroRNA-125b is involved in atherosclerosis obliterans in vitro by targeting podocalyxin. Mol. Med. Rep., 2015, 12(1), 561-568. doi: 10.3892/mmr.2015.3384 PMID: 25738314
  23. Owens, G.K.; Kumar, M.S.; Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev., 2004, 84(3), 767-801. doi: 10.1152/physrev.00041.2003 PMID: 15269336
  24. Pyle, A.L.; Young, P.P. Atheromas feel the pressure: Biomechanical stress and atherosclerosis. Am. J. Pathol., 2010, 177(1), 4-9. doi: 10.2353/ajpath.2010.090615 PMID: 20558573
  25. Rudijanto, A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med. Indones., 2007, 39(2), 86-93. PMID: 17933075
  26. Mack, C.P. Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(7), 1495-1505. doi: 10.1161/ATVBAHA.110.221135 PMID: 21677292
  27. Garat, C.; Van Putten, V.; Refaat, Z.A.; Dessev, C.; Han, S.Y.; Nemenoff, R.A. Induction of smooth muscle alpha-actin in vascular smooth muscle cells by arginine vasopressin is mediated by c-Jun amino-terminal kinases and p38 mitogen-activated protein kinase. J. Biol. Chem., 2000, 275(29), 22537-22543. doi: 10.1074/jbc.M003000200 PMID: 10807920
  28. Hautmann, M.B.; Thompson, M.M.; Swartz, E.A.; Olson, E.N.; Owens, G.K. Angiotensin II-induced stimulation of smooth muscle alpha-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ. Res., 1997, 81(4), 600-610. doi: 10.1161/01.RES.81.4.600 PMID: 9314842
  29. Wang, L.; Zheng, J.; Du, Y.; Huang, Y.; Li, J.; Liu, B.; Liu, C.; Zhu, Y.; Gao, Y.; Xu, Q.; Kong, W.; Wang, X. Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin. Circ. Res., 2010, 106(3), 514-525. doi: 10.1161/CIRCRESAHA.109.202762 PMID: 20019333
  30. Ghosh, G.; Subramanian, I.V.; Adhikari, N.; Zhang, X.; Joshi, H.P.; Basi, D.; Chandrashekhar, Y.S.; Hall, J.L.; Roy, S.; Zeng, Y.; Ramakrishnan, S. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J. Clin. Invest., 2010, 120(11), 4141-4154. doi: 10.1172/JCI42980 PMID: 20972335
  31. Kuhnert, F.; Kuo, C.J. miR-17-92 angiogenesis micromanagement. Blood, 2010, 115(23), 4631-4632. doi: 10.1182/blood-2010-03-276428 PMID: 20538815
  32. Staszel, T.; Zapała, B.; Polus, A.; Sadakierska-Chudy, A.; Kieć-Wilk, B.; Stępień, E.; Wybrańska, I.; Chojnacka, M.; Dembińska-Kieć, A. Role of microRNAs in endothelial cell pathophysiology. Pol. Arch. Med. Wewn., 2011, 121(10), 361-367. doi: 10.20452/pamw.1093 PMID: 21946298
  33. Zheng, D.; Yu, Y.; Li, M.; Wang, G.; Chen, R.; Fan, G.C.; Martin, C.; Xiong, S.; Peng, T. Inhibition of miR-195 prevents apoptosis and multiple-organ injury in mouse models of sepsis. J. Infect. Dis., 2016, 213(10), 1661-1670. doi: 10.1093/infdis/jiv760 PMID: 26704614
  34. Koukos, G.; Polytarchou, C. A MicroRNA Signature in Pediatric Ulcerative Colitis: Deregulation of the miR-4284/CXCL5 pathway in the Intestinal Epithelium. Inflamm. Bowel Dis., 2015, 21(5), 996-1005.
  35. Tamaddon, G.; Geramizadeh, B.; Karimi, M.H.; Mowla, S.J.; Abroun, S. miR-4284 and miR-4484 as Putative Biomarkers for Diffuse Large B-Cell Lymphoma. Iran. J. Med. Sci., 2016, 41(4), 334-339. PMID: 27365556
  36. Yang, F.; Nam, S.; Brown, C.E.; Zhao, R.; Starr, R.; Horne, D.A.; Malkas, L.H.; Jove, R.; Hickey, R.J.; Jove, R.; Hickey, R.J. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling. PLoS One, 2014, 9(4), e94443. doi: 10.1371/journal.pone.0094443 PMID: 24732116
  37. Wang, J.; Paris, P.L.; Chen, J.; Ngo, V.; Yao, H.; Frazier, M.L.; Killary, A.M.; Liu, C.G.; Liang, H.; Mathy, C.; Bondada, S.; Kirkwood, K.; Sen, S. Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett., 2015, 356(2)(2 Pt B), 404-409. doi: 10.1016/j.canlet.2014.09.029 PMID: 25304377
  38. Villard, A.; Marchand, L.; Thivolet, C.; Rome, S. Diagnostic value of cell-free circulating micrornas for obesity and type 2 diabetes: A meta-analysis. J. Mol. Biomark. Diagn., 2015, 6(6), 251. doi: 10.4172/2155-9929.1000251 PMID: 27308097

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers