Recent Advances in Pyrazole-based Protein Kinase Inhibitors as Emerging Therapeutic Targets
- Authors: Cetin A.1
-
Affiliations:
- Department of Chemistry, Faculty of Education, Van Yüzüncü Yil University
- Issue: Vol 27, No 19 (2024)
- Pages: 2791-2804
- Section: Chemistry
- URL: https://rjpbr.com/1386-2073/article/view/644484
- DOI: https://doi.org/10.2174/0113862073252211231024182817
- ID: 644484
Cite item
Full Text
Abstract
Background:Pyrazole-scaffold protein kinase inhibitors (PKIs) have emerged as promising therapeutic agents for the treatment of various diseases, such as cancer, inflammatory disorders, and neurological diseases. This review article provides an overview of the pharmacological properties of pyrazole-scaffold PKIs, including their mechanism of action, selectivity, potency, and toxicity. The article also summarizes the recent developments in the design and synthesis of pyrazole-scaffold PKIs, highlighting the structural features and modifications that contribute to their pharmacological activity. In addition, the article discusses the preclinical and clinical studies of pyrazole-scaffold PKIs, including their efficacy, safety, and pharmacokinetic properties.
Methods:A comprehensive search has been conducted on several online patent databases, including the United States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the World Intellectual Property Organization (WIPO). The search was conducted using pyrazole as the keyword. The search was limited to patents filed between 2015 and 2022. Patents were included if they involved articles in the fields of protein kinase inhibitors, and included literature on some pyrazoles and their pharmacological activities.
Results:Data were extracted from each included patent on the following variables: patent title, patent number, inventors, assignee, filing date, publication date, patent type, and field of invention. Data were extracted from each patent using a standardized form to ensure consistency and accuracy.
Conclusion:The design and pharmacological evaluation of organic compounds containing pyrazole structure as biologically active substances have been done, and the key structures from the pharmacological data obtained as protein kinase inhibitors have been addressed in detail. The review concludes with a discussion on the current challenges and future directions for the development of pyrazole-scaffold PKIs as therapeutic agents. Overall, this review article provides a comprehensive summary of the pharmacological properties of pyrazole-scaffold PKIs, which will be of interest to researchers and clinicians in the field of drug discovery and development.
About the authors
Adnan Cetin
Department of Chemistry, Faculty of Education, Van Yüzüncü Yil University
Author for correspondence.
Email: info@benthamscience.net
References
- Liu, Q.; Sabnis, Y.; Zhao, Z.; Zhang, T.; Buhrlage, S.J.; Jones, L.H.; Gray, N.S. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol., 2013, 20(2), 146-159. doi: 10.1016/j.chembiol.2012.12.006 PMID: 23438744
- Wang, J.; Maldonado, M.A. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell. Mol. Immunol., 2006, 3(4), 255-261. PMID: 16978533
- Brook, J.D.; McCurrach, M.E.; Harley, H.G.; Buckler, A.J.; Church, D.; Aburatani, H.; Hunter, K.; Stanton, V.P.; Thirion, J.P.; Hudson, T.; Sohn, R.; Zemelman, B.; Snell, R.G.; Rundle, S.A.; Crow, S.; Davies, J.; Shelbourne, P.; Buxton, J.; Jones, C.; Juvonen, V.; Johnson, K.; Harper, P.S.; Shaw, D.J.; Housman, D.E. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell, 1992, 68(4), 799-808. doi: 10.1016/0092-8674(92)90154-5 PMID: 1310900
- Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotypephenotype relationships. Nat. Rev. Genet., 2010, 11(1), 60-74. doi: 10.1038/nrg2707 PMID: 20019687
- Bhagirath, N.; Kennedy-Smith, J.; Lucas, M.C.; Padilla, F. 1 H-pyrazole and 4,5-disubstituted thiazole inhibitors of SYK. US Patent 9,988,378, 2018.
- Das, J. Novel N-pyrimidin-4-yl-3-amino-pyrrolo 3, 4-C pyrazole derivatives as PKC kinase inhibitors: A patent evaluation of US2015099743 (A1). Expert Opin. Ther. Pat., 2016, 26(4), 523-528. doi: 10.1517/13543776.2015.1124088 PMID: 26593678
- Lu, Z.; Hunter, T. Metabolic kinases moonlighting as protein kinases. Trends Biochem. Sci., 2018, 43(4), 301-310. doi: 10.1016/j.tibs.2018.01.006 PMID: 29463470
- Zhang, G.; Ren, B.; Wang, H.; Zhao, H.; Guo, Y.; Wang, Z.; Zhou, C. 5-Amino-4-carbamoyl-pyrazole Compounds as Selective and Irreversible t790m over wt-egfr Kinase Inhibitors and Use Thereof. US Patent 2016,008,411, 2016.
- Li, H.; Pei, F.; Taylor, D.L.; Bahar, I. QuartataWeb: Integrated chemical-protein-pathway mapping for polypharmacology and chemogenomics. Bioinformatics, 2020, 36(12), 3935-3937. doi: 10.1093/bioinformatics/btaa210 PMID: 32221612
- Kunos, G.; Iyer, M.; Cinar, R.; Rice, K.C. Pyrazole derivatives and their use as cannabinoid receptor mediators. US Patent 10,329,259, 2019.
- Lee, K.I.; Jung, Y.H.; Song, J.Y.; Jun, S.A. Pyrazole derivative as ALK5 inhibitor and uses thereof. US Patent 10,954,232, 2021.
- Roskoski, R., Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res., 2016, 103, 26-48. doi: 10.1016/j.phrs.2015.10.021 PMID: 26529477
- Bogoyevitch, M.; Fairlie, D. A new paradigm for protein kinase inhibition: Blocking phosphorylation without directly targeting ATP binding. Drug Discov. Today, 2007, 12(15-16), 622-633. doi: 10.1016/j.drudis.2007.06.008 PMID: 17706543
- Lu, X.; Smaill, J.B.; Ding, K. New promise and opportunities for allosteric kinase inhibitors. Angew. Chem. Int. Ed., 2020, 59(33), 13764-13776. doi: 10.1002/anie.201914525 PMID: 31889388
- Huang, S.; Armstrong, E.A.; Benavente, S.; Chinnaiyan, P.; Harari, P.M. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): Combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res., 2004, 64(15), 5355-5362. doi: 10.1158/0008-5472.CAN-04-0562 PMID: 15289342
- Thaimattam, R.; Banerjee, R.; Miglani, R.; Iqbal, J. Protein kinase inhibitors: Structural insights into selectivity. Curr. Pharm. Des., 2007, 13(27), 2751-2765. doi: 10.2174/138161207781757042 PMID: 17897021
- Shuttleworth, S.J.; Bailey, S.G.; Townsend, P.A. Histone Deacetylase inhibitors: New promise in the treatment of immune and inflammatory diseases. Curr. Drug Targets, 2010, 11(11), 1430-1438. doi: 10.2174/1389450111009011430 PMID: 20583972
- Mifflin, L.; Ofengeim, D.; Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov., 2020, 19(8), 553-571. doi: 10.1038/s41573-020-0071-y PMID: 32669658
- Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189. doi: 10.1016/j.ejmech.2016.09.023 PMID: 27662031
- Bawa, S.; Siddiqui, N. Andalip; Ali, R.; Afzal, O.; Akhtar, M.J.; Azad, B.; Kumar, R. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review. J. Pharm. Bioallied Sci., 2011, 3(2), 194-212. doi: 10.4103/0975-7406.80765 PMID: 21687347
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909. doi: 10.3390/molecules25081909 PMID: 32326131
- Wei, Z.Y.; Chi, K.Q.; Wang, K.S.; Wu, J.; Liu, L.P.; Piao, H.R. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2018, 28(10), 1797-1803. doi: 10.1016/j.bmcl.2018.04.021 PMID: 29678461
- Çetin, A.; Bildirici, İ. A study on synthesis and antimicrobial activity of 4-acyl-pyrazoles. J. Saudi Chem. Soc., 2018, 22(3), 279-296. doi: 10.1016/j.jscs.2016.05.008
- Fujimori, Y.; Katsuno, K.; Nakashima, I.; Ishikawa-Takemura, Y.; Fujikura, H.; Isaji, M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther., 2008, 327(1), 268-276. doi: 10.1124/jpet.108.140210 PMID: 18583547
- Marala, R.B.; Brown, J.A.; Kong, J.X.; Tracey, W.R.; Knight, D.R.; Wester, R.T.; Sun, D.; Kennedy, S.P.; Hamanaka, E.S.; Ruggeri, R.B.; Hill, R.J. Zoniporide: A potent and highly selective inhibitor of human Na+/H+ exchanger-1. Eur. J. Pharmacol., 2002, 451(1), 37-41. doi: 10.1016/S0014-2999(02)02193-3 PMID: 12223226
- Dooley, M.; Plosker, G.L. Zaleplon. Drugs, 2000, 60(2), 413-445. doi: 10.2165/00003495-200060020-00014 PMID: 10983740
- Armstrong, D. gastric pH-the most relevant predictor of benefit in reflux disease? Aliment. Pharmacol. Ther., 2004, 20, 19-26. doi: 10.1111/j.1365-2036.2004.02140.x PMID: 15456460
- Galiè, N.; Ghofrani, H.A.; Torbicki, A.; Barst, R.J.; Rubin, L.J.; Badesch, D.; Fleming, T.; Parpia, T.; Burgess, G.; Branzi, A.; Grimminger, F.; Kurzyna, M.; Simonneau, G. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med., 2005, 353(20), 2148-2157. doi: 10.1056/NEJMoa050010 PMID: 16291984
- Van Gaal, L.F.; Rissanen, A.M.; Scheen, A.J.; Ziegler, O.; Rössner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet, 2005, 365(9468), 1389-1397. doi: 10.1016/S0140-6736(05)66374-X PMID: 15836887
- Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; Wu, Y.L.; Thomas, M.; OByrne, K.J.; Moro-Sibilot, D.; Camidge, D.R.; Mok, T.; Hirsh, V.; Riely, G.J.; Iyer, S.; Tassell, V.; Polli, A.; Wilner, K.D.; Jänne, P.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med., 2013, 368(25), 2385-2394. doi: 10.1056/NEJMoa1214886 PMID: 23724913
- Castrén, E. Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol., 2004, 4(1), 58-64. doi: 10.1016/j.coph.2003.10.004 PMID: 15018840
- Schneider, H.; Panigel, M.; Dancis, J. Transfer across the perfused human placenta of antipyrine, sodium, and leucine. Am. J. Obstet. Gynecol., 1972, 114(6), 822-828. doi: 10.1016/0002-9378(72)90909-X PMID: 4676572
- Jasiecka, A.; Maślanka, T.; Jaroszewski, J.J. Pharmacological characteristics of metamizole. Pol. J. Vet. Sci., 2014, 17(1), 207-214. doi: 10.2478/pjvs-2014-0030 PMID: 24724493
- Raffa, D.; Maggio, B.; Raimondi, M.V.; Cascioferro, S.; Plescia, F.; Cancemi, G.; Daidone, G. Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle. Eur. J. Med. Chem., 2015, 97, 732-746. doi: 10.1016/j.ejmech.2014.12.023 PMID: 25549911
- Turkan, F.; Çetin, A.; Taslimi, P.; Karaman, M.; Gulçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 86, 420-427. doi: 10.1016/j.bioorg.2019.02.013 PMID: 30769267
- Ganguly, S.; Jacob, S.K. Therapeutic outlook of pyrazole analogs: A mini review. Mini Rev. Med. Chem., 2017, 17(11), 959-983. doi: 10.2174/1389557516666151120115302 PMID: 26586126
- Karati, D.; Mahadik, K.R.; Trivedi, P.; Kumar, D. A Molecular Insight into Pyrazole Congeners as Antimicrobial, Anticancer, and Antimalarial Agents. Med. Chem., 2022, 18(10), 1044-1059. doi: 10.2174/1573406418666220303150640 PMID: 35240964
- Siu, M.; Estrada, A.; Liu, W.; Lyssikatos, J.P.; Patel, S.; Liang, G.; Chen, K. Substituted pyrazoles and uses thereof. US Patent 9,365,583, 2016.
- Mor, S.; Khatri, M. punia, R.; Sindhu, S. Recent Progress in anticancer agents incorporating Pyrazole scaffold. Mini Rev. Med. Chem., 2022, 22(1), 115-163. doi: 10.2174/1389557521666210325115218 PMID: 33823764
- McDonald, E.; Jones, K.; Brough, P.; Drysdale, M.; Workman, P. Discovery and development of pyrazole-scaffold Hsp90 inhibitors. Curr. Top. Med. Chem., 2006, 6(11), 1193-1203. doi: 10.2174/156802606777812086 PMID: 16842156
- Meyer, M. What is special about patent citations? Differences between scientific and patent citations. Scientometrics, 2000, 49(1), 93-123. doi: 10.1023/A:1005613325648
- Marx, M.; Fuegi, A. Reliance on science: Worldwide front‐page patent citations to scientific articles. Strateg. Manage. J., 2020, 41(9), 1572-1594. doi: 10.1002/smj.3145
- Rotariu, D.; Babes, E.E.; Tit, D.M.; Moisi, M.; Bustea, C.; Stoicescu, M.; Radu, A.F.; Vesa, C.M.; Behl, T.; Bungau, A.F.; Bungau, S.G. Oxidative stress Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother., 2022, 152, 113238. doi: 10.1016/j.biopha.2022.113238 PMID: 35687909
- Kim, P.M.; Kornberg, M.D. Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr. Opin. Pharmacol., 2022, 62, 103-108. doi: 10.1016/j.coph.2021.11.008 PMID: 34965482
- Jubaidi, F.F.; Zainalabidin, S.; Taib, I.S.; Abdul Hamid, Z.; Mohamad Anuar, N.N.; Jalil, J.; Mohd Nor, N.A.; Budin, S.B. The role of PKC-MAPK signalling pathways in the development of hyperglycemia-induced cardiovascular complications. Int. J. Mol. Sci., 2022, 23(15), 8582. doi: 10.3390/ijms23158582 PMID: 35955714
- Miao, L.; Pan, D.; Shi, J.; Du, J.; Chen, P.; Gao, J.; Yu, Y.; Shi, D.Z.; Guo, M. Role and mechanism of PKC-δ for cardiovascular disease: Current status and perspective. Front. Cardiovasc. Med., 2022, 9, 816369. doi: 10.3389/fcvm.2022.816369 PMID: 35242825
- Hui, L.; Seiji, N.; Stephanie, A.S.; Min, T.; Chunfeng, T. Novel Npyrimidin- 4-yl-3-amino-pyrrolo3,4-cpyrazole derivatives as PKC kinase inhibitors. US Patent 0,997,743, 2015.
- An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene, 2018, 37(12), 1561-1575. doi: 10.1038/s41388-017-0045-7 PMID: 29321659
- Su, V.Y.F.; Yang, K.Y.; Huang, T.Y.; Hsu, C.C.; Chen, Y.M.; Yen, J.C.; Chou, Y.C.; Chang, Y.L.; He, C.H. The efficacy of first-line tyrosine kinase inhibitors combined with co-medications in Asian patients with EGFR mutation non-small cell lung cancer. Sci. Rep., 2020, 10(1), 14965. doi: 10.1038/s41598-020-71583-w PMID: 32917914
- Wheeler, D.L.; Dunn, E.F.; Harari, P.M. Understanding resistance to EGFR inhibitorsimpact on future treatment strategies. Nat. Rev. Clin. Oncol., 2010, 7(9), 493-507. doi: 10.1038/nrclinonc.2010.97 PMID: 20551942
- Zahorowska, B.; Crowe, P.J.; Yang, J.L. Combined therapies for cancer: A review of EGFR-targeted monotherapy and combination treatment with other drugs. J. Cancer Res. Clin. Oncol., 2009, 135(9), 1137-1148. doi: 10.1007/s00432-009-0622-4 PMID: 19533170
- Wang, Y.; Zhou, J.; Gao, Y.; Wang, D.; Hong, B.; Shen, X.; Wu, Y.; Li, C. Benzofuran Pyrazole Amine Protein Kinase Inhibitor. US Patent 18,001,251, 2018.
- Fan, J.; Fong, T.; Xia, Z.; Zhang, J.; Luo, P. The efficacy and safety of ALK inhibitors in the treatment of ALK-positive non-small cell lung cancer: A network meta-analysis. Cancer Med., 2018, 7(10), 4993-5005. doi: 10.1002/cam4.1768 PMID: 30230699
- Marsilje, T.H.; Pei, W.; Chen, B.; Lu, W.; Uno, T.; Jin, Y.; Jiang, T.; Kim, S.; Li, N.; Warmuth, M.; Sarkisova, Y.; Sun, F.; Steffy, A.; Pferdekamper, A.C.; Li, A.G.; Joseph, S.B.; Kim, Y.; Liu, B.; Tuntland, T.; Cui, X.; Gray, N.S.; Steensma, R.; Wan, Y.; Jiang, J.; Chopiuk, G.; Li, J.; Gordon, W.P.; Richmond, W.; Johnson, K.; Chang, J.; Groessl, T.; He, Y.Q.; Phimister, A.; Aycinena, A.; Lee, C.C.; Bursulaya, B.; Karanewsky, D.S.; Seidel, H.M.; Harris, J.L.; Michellys, P.Y. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J. Med. Chem., 2013, 56(14), 5675-5690. doi: 10.1021/jm400402q PMID: 23742252
- Park, C.H.; Choe, H.; Jang, I.Y.; Kwon, S.Y.; Latif, M.; Lee, H.K.; Lee, H.J.; Yang, E.H.; Yun, J.I.; Chae, C.H.; Cho, S.Y.; Choi, S.U.; Ha, J.D.; Jung, H.; Kim, H.R.; Kim, P.; Lee, C.O.; Yun, C.S.; Lee, K. Novel bis-ortho-alkoxy-para-piperazinesubstituted-2,4-dianilinopyrimidines (KRCA-0008) as potent and selective ALK inhibitors for anticancer treatment. Bioorg. Med. Chem. Lett., 2013, 23(22), 6192-6196. doi: 10.1016/j.bmcl.2013.08.090 PMID: 24095090
- Short, K.M.; Estiarte-Martınez, M.D.L.A.; Kita, D.B.; Shiau, T.P. Substituted Pyrazole Compounds As Serine Protease Inhibitors. US Patent 10,532,995, 2020.
- Mackman, N.; Bergmeier, W.; Stouffer, G.A.; Weitz, J.I. Therapeutic strategies for thrombosis: New targets and approaches. Nat. Rev. Drug Discov., 2020, 19(5), 333-352. doi: 10.1038/s41573-020-0061-0 PMID: 32132678
- Bekassy, Z.; Lopatko Fagerström, I.; Bader, M.; Karpman, D. Crosstalk between the reninangiotensin, complement and kallikreinkinin systems in inflammation. Nat. Rev. Immunol., 2022, 22(7), 411-428. doi: 10.1038/s41577-021-00634-8 PMID: 34759348
- Beaton, H.; Crowe, D.M.; Edwards, H.J.; Griffiths-Haynes, N.J. Polymorphs of N-(3-fluoro-4-methoxypyridin-2-yl)methyl-3- (methoxymethyl)-1-({4-2-oxopyridin-1-yl)methylphenyl} methyl) pyrazole-4-carboxamide as kallikrein inhibitors. US Patent 11,230,537, , 2022.
- Davie, R.L.; Edwards, H.J.; Evans, D.M.; Hodgson, S.T.; Pethen, S.J.; Rooker, D.P. Pyrazole Derivatives as Plasma Kallikrein Inhibitors. US Patent 11,180,484, 2021.
- Soualmia, F.; El Amri, C. Serine protease inhibitors to treat inflammation: A patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28(2), 93-110. doi: 10.1080/13543776.2018.1406478 PMID: 29171765
- Barzkar, N.; Khan, Z.; Tamadoni Jahromi, S.; Pourmozaffar, S.; Gozari, M.; Nahavandi, R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int. J. Biol. Macromol., 2021, 170, 674-687. doi: 10.1016/j.ijbiomac.2020.12.134 PMID: 33387547
- Abbas, A.A.; Abdellattif, M.H.; Dawood, K.M. Inhibitory activities of bipyrazoles: A patent review. Expert Opin. Ther. Pat., 2022, 32(1), 63-87. doi: 10.1080/13543776.2021.1953474 PMID: 34232805
- Findlay, A.; Turner, C.; Deodhar, M.; Foot, J.; Zhou, W.; Jarolımek, W.; Robertson, A. Haloallylamine pyrazole derivative inhibitors of Lysyl Oxidases and uses thereof. US Patent 16,490,220, 2020.
- Ayyoub, S.; Orriols, R.; Oliver, E.; Ceide, O.T. Thrombosis models: An overview of common in vivo and in vitro models of thrombosis. Int. J. Mol. Sci., 2023, 24(3), 2569. doi: 10.3390/ijms24032569 PMID: 36768891
- Shen, C.; Mackeigan, D.T.; Shoara, A.A.; Xu, R.; Bhoria, P.; Karakas, D.; Ma, W.; Cerenzia, E.; Chen, Z.; Hoard, B.; Lin, L.; Lei, X.; Zhu, G.; Chen, P.; Johnson, P.E.; Ni, H. Dual roles of fucoidan-GPIbα interaction in thrombosis and hemostasis: Implications for drug development targeting GPIbα. J. Thromb. Haemost., 2023, 21(5), 1274-1288. doi: 10.1016/j.jtha.2022.12.030 PMID: 36732162
- Tadesse, S.; Caldon, E.C.; Tilley, W.; Wang, S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update. J. Med. Chem., 2019, 62(9), 4233-4251. doi: 10.1021/acs.jmedchem.8b01469 PMID: 30543440
- Lu, T.; Wang, Y.; Chen, Y.; Lu, Y.; Wang, Z.; Jin, Q.; Yang, T.; Lin, G.; Guo, Q.; Zhao, L. Polycyclic Substituted Pyrazole Kinase Activity Inhibitors and Use Thereof. US Patent 9,550,792, 2017.
- Ford, D.J.; Horsley, H.T.; Reuberson, J.T. Fused Pyrazole Derivatives As Kinase Inhibitors. US Patent 15,762,670, 2018.
- Basinger, J.; Bookser, B.; Chen, M.; Chung, D.; Gupta, V.; Hudson, A.; Kaplan, A.; Na, J.; Renick, J.; Santora, V. Substituted 2,4,5,6-tetrahydropyrrolo3,4-c pyrazole and 4,5,6,7-tetrahydro- 2h-pyrazolo 4,3-c pyridine compounds as GLYT1 inhibitors. US Patent 9,708,334, 2017.
- Biagetti, M.; Capelli, A.M.; Retini, M. Pyrazole derivatives as phosphoinositide 3-kinases inhibitors. US Patent 10,189,844, 2019.
- Kuntz, K.W.; Mitchell, L.H.; Shapiro, G.; Chesworth, R.; Boriack-Sjodin, P.A. PRMT1 inhibitors and uses thereof. US Patent 9,023,883, 2015.
- Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res., 2005, 15(1), 11-18. doi: 10.1038/sj.cr.7290257 PMID: 15686620
- King-Underwood, J.; Hardy, G.; Murray, P.J.; Williams, J.G.; Onions, S.T. Pyrazole P38 map kinase inhibitors. US Patent 10,000,471, 2018.
- Hsiao, H.M.; Sapinoro, R.E.; Thatcher, T.H.; Croasdell, A.; Levy, E.P.; Fulton, R.A.; Olsen, K.C.; Pollock, S.J.; Serhan, C.N.; Phipps, R.P.; Sime, P.J. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS One, 2013, 8(3), e58258. doi: 10.1371/journal.pone.0058258 PMID: 23484005
- Pottoo, F.H.; Joseph, A.; Das, S.; Akbar, S.; Ahmed, B.; Dewangan, R.P.; Iqubal, M.K.; Iqubal, A.; Chawla, P. Recent advancement of Pyrazole Scaffold based neuroprotective agents: A review. CNS Neurol. Disord. Drug Targets, 2022, 21(10), 940-951. doi: 10.2174/1871527320666210602152308 PMID: 34080970
- Wang, T.; Yu, D.; Lamb, M.L. Trk kinase inhibitors as new treatments for cancer and pain. Expert Opin. Ther. Pat., 2009, 19(3), 305-319. doi: 10.1517/13543770902721261 PMID: 19441906
- Baker-Glenn, C.; Burdick, D.J.; Chambers, M.; Chen, H.; Estrada, A.; Sweeney, Z.K.; Chan, B. Pyrazole aminopyrimidine derivatives as LRRK2 modulators. US Patent 9,212,173, 2015.
- Jiang, T.; Wang, G.; Liu, Y.; Feng, L.; Wang, M.; Liu, J.; Chen, Y.; Ouyang, L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm. Sin. B, 2021, 11(2), 355-372. doi: 10.1016/j.apsb.2020.05.004 PMID: 33643817
- Barden, T.C.; Sheppeck, J.E.; Rennie, G.R.; Renhowe, P.A.; Perl, N.; Nakai, T.; Mermerian, A.; Lee, T.W.; Jung, J.; Jia, J.; Iyer, K.; Iyengar, R. Pyrazole derivatives as SGC stimulators. EP Patent 3,194,382, 2016.
- Bagal, S.K.; Cui, J.J.; Greasley, S.E.; Lunney, E.A.; Mcalpine, I.J.; Nagata, A.; Ninkovic, S.; Omoto, K.; Skerratt, S.E.; Storer, R.I.; Warmus, J.S. Tropomyosin-related kinase inhibitors containingboth a 1H-pyrazole and a pyrimidine moiety. US Patent 15,300,440, 2017.
- Jin, M.; Zhou, Z.; Zhang, L.; Chen, Y.; Liu, L.; Shen, H. Effects of excessive iodine on the BDNF-TrkB signaling pathway and related genes in offspring of EAT rats. Biol. Trace Elem. Res., 2023, 201(2), 776-785. doi: 10.1007/s12011-022-03187-6 PMID: 35322353
- Hacioglu, G.; Cirrik, S.; Tezcan Yavuz, B.; Tomruk, C.; Keskin, A.; Uzunoglu, E.; Takir, S. The BDNF-TrkB signaling pathway is partially involved in the neuroprotective effects of hydrogen sulfide in Parkinsons disease. Eur. J. Pharmacol., 2023, 944, 175595. doi: 10.1016/j.ejphar.2023.175595 PMID: 36804547
- Huff, J.; Uesugi, M.; Kincaid, J. Di-Substituted Pyrazole Compounds For The Treatment of Diseases. US Patent 17,190,086, 2017.
- Atkinson, S.J.; Demont, E.H.; Harrison, L.A.; Liwicki, G.M.; Lucas, S.C.C.; Preston, A.G.; Seal, J.; Wall, I.D.; Watson, R.J. Pyrazole Derivatives as Bromodomain Inhibitors. US Patent 10,996,961, 2021.
- Ponce-Polo, Á.; Hidalgo, A.R.; Martínez, A.A.; Guijarro, R.I.O. Use of Patent Information to Characterize Trends in the Therapeutic Applications of Extracellular Vesicles Derived from Mesenchymal Stem Cells (MSC-EVs). Recent Pat. Biotechnol., 2022, 16(3), 243-255. doi: 10.2174/1872208316666220303095217 PMID: 35240977
- Anwar, S.; Shahwan, M.; Hasan, G.M.; Islam, A.; Hassan, M.I. Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell. Signal., 2022, 99, 110434. doi: 10.1016/j.cellsig.2022.110434 PMID: 35961526
- Roskoski, R. Jr Deucravacitinib is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis. Pharmacol. Res., 2023, 189, 106642. doi: 10.1016/j.phrs.2022.106642 PMID: 36754102
- Halloran, D.; Pandit, V.; Nohe, A. The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J. Dev. Biol., 2022, 10(3), 31. doi: 10.3390/jdb10030031 PMID: 35997395
Supplementary files
