Transcriptomic Analysis of THP-1 Cells Exposed by Monosodium Urate Reveals Key Genes Involved in Gout


Cite item

Full Text

Abstract

Background:Gout is a common inflammatory arthritis, which is mainly caused by the deposition of monosodium urate (MSU) in tissues. Transcriptomics was used to explore the pathogenesis and treatment of gout in our work.

Objective:The objective of the study was to analyze and validate potential therapeutic targets and biomarkers in THP-1 cells that were exposed to MSU.

Methods:THP-1 cells were exposed to MSU. The inflammatory effect was characterized, and RNA-Seq analysis was then carried out. The differential genes obtained by RNA-Seq were analyzed with gene expression omnibus (GEO) series 160170 (GSE160170) gout-related clinical samples in the GEO database and gout-related genes in the GeneCards database. From the three analysis approaches, the genes with significant differences were verified by the differential genes’ transcription levels. The interaction relationship of long non-coding RNA (lncRNA) was proposed by ceRNA network analysis.

Results:MSU significantly promoted the release of IL-1β and IL-18 in THP-1 cells, which aggravated their inflammatory effect. Through RNA-Seq, 698 differential genes were obtained, including 606 differential mRNA and 92 differential `LncRNA. Cross-analysis of the RNA-Seq differential genes, the GSE160170 differential genes, and the gout-related genes in GeneCards revealed a total of 17 genes coexisting in the tripartite data. Furthermore, seven differential genes—C-X-C motif chemokine ligand 8 (CXCL8), C-X-C motif chemokine ligand 2 (CXCL2), tumor necrosis factor (TNF), C-C motif chemokine ligand 3 (CCL3), suppressor of cytokine signaling 3 (SOCS3), oncostatin M (OSM), and MIR22 host gene (MIR22HG)—were verified as key genes that analyzed the weight of genes in pathways, the enrichment of inflammationrelated pathways, and protein-protein interaction (PPI)nodes combined with the expression of genes in RNA-Seq and GSE160170. It is suggested that MIR22HG may regulate OSM and SOCS3 through microRNA 4271 (miR-4271), OSM, and SOCS3m; CCL3 through microRNA 149-3p (miR-149-3p); and CXCL2 through microRNA 4652-3p (miR-4652-3p).

Conclusion:The potential of CXCL8, CXCL2, TNF, CCL3, SOCS3, and OSM as gout biomarkers and MIR22HG as a therapeutic target for gout are proposed, which provide new insights into the mechanisms of gout biomarkers and therapeutic methods.

About the authors

Guozhen Wang

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Zijia Liu

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Yuchen Zheng

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Chao Sheng

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Xiaonan Hou

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Mengfei Yao

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Qi Zong

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Duo Tang

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Zhixiang Zhou

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Author for correspondence.
Email: info@benthamscience.net

Tie Zhang

Department of Clinical Laboratory, China-Japan Friendship Hospital

Author for correspondence.
Email: info@benthamscience.net

Yishu Yang

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

References

  1. Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective - A review. J. Adv. Res., 2017, 8(5), 495-511. doi: 10.1016/j.jare.2017.04.008 PMID: 28748116
  2. Weaver, J.S.; Vina, E.R.; Munk, P.L.; Klauser, A.S.; Elifritz, J.M.; Taljanovic, M.S. Gouty arthropathy: Review of clinical manifestations and treatment, with emphasis on imaging. J. Clin. Med., 2021, 11(1), 166. doi: 10.3390/jcm11010166 PMID: 35011907
  3. Wu, Z.D.; Yang, X.K.; He, Y.S.; Ni, J.; Wang, J.; Yin, K.J.; Huang, J.X.; Chen, Y.; Feng, Y.T.; Wang, P.; Pan, H.F. Environmental factors and risk of gout. Environ. Res., 2022, 212(Pt C), 113377. doi: 10.1016/j.envres.2022.113377 PMID: 35500858
  4. Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Alcohol intake and risk of incident gout in men: A prospective study. Lancet, 2004, 363(9417), 1277-1281. doi: 10.1016/S0140-6736(04)16000-5 PMID: 15094272
  5. Singh, J.A.; Gaffo, A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum., 2020, 50(3), S11-S16. doi: 10.1016/j.semarthrit.2020.04.008 PMID: 32620196
  6. Lee, Y.W.M.; Kok, S.X.S.; Wong, L.W.; Wong, S.B.S. Clinics in diagnostic imaging (200). Singapore Med. J., 2019, 60(10), 502-507. doi: 10.11622/smedj.2019129 PMID: 31663097
  7. Peng, Z.; Ding, Y.M.; Pei, L.; Yao, H.H.; Zhang, X.W.; Tang, S.M. Clinical characteristics of crystal deposits in joints and tendons in patients with gout. Beijing Da Xue Xue Bao, 2021, 53(6), 1067-1071. PMID: 34916683
  8. So, A.K.; Martinon, F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol., 2017, 13(11), 639-647. doi: 10.1038/nrrheum.2017.155 PMID: 28959043
  9. Nakayama, M. Macrophage recognition of crystals and nanoparticles. Front. Immunol., 2018, 9, 103. doi: 10.3389/fimmu.2018.00103 PMID: 29434606
  10. Zhao, J.; Wei, K.; Jiang, P.; Chang, C.; Xu, L.; Xu, L.; Shi, Y.; Guo, S.; Xue, Y.; He, D. Inflammatory response to regulated cell death in gout and its functional implications. Front. Immunol., 2022, 13, 888306. doi: 10.3389/fimmu.2022.888306 PMID: 35464445
  11. Dalbeth, N.; Merriman, T.R.; Stamp, L.K. Gout. Lancet, 2016, 388(10055), 2039-2052. doi: 10.1016/S0140-6736(16)00346-9 PMID: 27112094
  12. Franco-Trepat, E.; Alonso-Pérez, A.; Guillán-Fresco, M.; Jorge-Mora, A.; Crespo-Golmar, A.; López-Fagúndez, M.; Pazos-Pérez, A.; Gualillo, O.; Belén Bravo, S.; Gómez Bahamonde, R. Amitriptyline blocks innate immune responses mediated by toll‐like receptor 4 and IL‐1 receptor: Preclinical and clinical evidence in osteoarthritis and gout. Br. J. Pharmacol., 2022, 179(2), 270-286. doi: 10.1111/bph.15707 PMID: 34643941
  13. Sun, X.; Li, P.; Qu, X.; Liu, W. Isovitexin alleviates acute gouty arthritis in rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway. Pharm. Biol., 2021, 59(1), 1324-1331. doi: 10.1080/13880209.2021.1979595 PMID: 34582722
  14. Xu, W.; Li, F.; Zhang, X.; Wu, C.; Wang, Y.; Yao, Y.; Xia, D. The protective effects of neoastilbin on monosodium urate stimulated THP-1-Derived macrophages and gouty arthritis in mice through NF-κB and NLRP3 inflammasome pathways. Molecules, 2022, 27(11), 3477. doi: 10.3390/molecules27113477 PMID: 35684415
  15. Campion, E.W.; Glynn, R.J.; Delabry, L.O. Asymptomatic hyperuricemia. Risks and consequences in the normative aging study. Am. J. Med., 1987, 82(3), 421-426. doi: 10.1016/0002-9343(87)90441-4 PMID: 3826098
  16. Zhang, W.Z. Why does hyperuricemia not necessarily induce gout? Biomolecules, 2021, 11(2), 280. doi: 10.3390/biom11020280 PMID: 33672821
  17. Galozzi, P.; Bindoli, S.; Doria, A.; Oliviero, F.; Sfriso, P. Autoinflammatory features in gouty arthritis. J. Clin. Med., 2021, 10(9), 1880. doi: 10.3390/jcm10091880 PMID: 33926105
  18. Tausche, A.K.; Aringer, M. Gicht. Z. Rheumatol., 2016, 75(9), 885-898. doi: 10.1007/s00393-016-0206-z PMID: 27730304
  19. Pillinger, M.H.; Mandell, B.F. Therapeutic approaches in the treatment of gout. Semin. Arthritis Rheum., 2020, 50(3), S24-S30. doi: 10.1016/j.semarthrit.2020.04.010 PMID: 32620199
  20. Whelton, A.; Hamilton, C.W. Nonsteroidal anti-inflammatory drugs: Effects on kidney function. J. Clin. Pharmacol., 1991, 31(7), 588-598. doi: 10.1002/j.1552-4604.1991.tb03743.x PMID: 1894754
  21. Slobodnick, A.; Shah, B.; Krasnokutsky, S.; Pillinger, M.H. Update on colchicine, 2017. Rheumatology, 2018, 57(Suppl. 1), i4-i11. doi: 10.1093/rheumatology/kex453 PMID: 29272515
  22. Crittenden, D.B.; Pillinger, M.H. New therapies for gout. Annu. Rev. Med., 2013, 64(1), 325-337. doi: 10.1146/annurev-med-080911-105830 PMID: 23327525
  23. Li, Y.; Huang, C.; Yang, Z.; Wang, L.; Luo, D.; Qi, L.; Li, Z.; Huang, Y. Identification of potential biomarkers of gout through competitive endogenous RNA network analysis. Eur. J. Pharm. Sci., 2022, 173, 106180. doi: 10.1016/j.ejps.2022.106180 PMID: 35378210
  24. Shu, J.; Chen, M.; Ya, C.; Yang, R.; Li, F. Regulatory Role of miRNAs and lncRNAs in Gout. Comput. Math. Methods Med., 2022, 2022, 1-11. doi: 10.1155/2022/6513565 PMID: 35813414
  25. Liu, X.; Fan, Z.; Li, Y.; Li, Z.; Zhou, Z.; Yu, X.; Wan, J.; Min, Z.; Yang, L.; Li, D. microRNA‐196a‐5p inhibits testicular germ cell tumor progression via NR6A1/E‐cadherin axis. Cancer Med., 2020, 9(23), 9107-9122. doi: 10.1002/cam4.3498 PMID: 33034957
  26. Wang, C.; Li, H.; Wang, X.; Li, W.; Su, Q.; Xiao, X.; Hao, T.; Chen, W.; Zhang, Y.; Zhang, H.; Wu, W.; Hu, Z.; Zhao, G.; Huo, M.; He, Y.; Zhang, C. Ailanthus altissima-derived ailanthone enhances gastric cancer cell apoptosis by inducing the repression of base excision repair by downregulating p23 expression. Int. J. Biol. Sci., 2021, 17(11), 2811-2825. doi: 10.7150/ijbs.60674 PMID: 34345209
  27. Qing, Y.F.; Zheng, J.X.; Tang, Y.P.; Dai, F.; Dong, Z.R.; Zhang, Q.B. LncRNAs Landscape in the patients of primary gout by microarray analysis. PLoS One, 2021, 16(2), e0232918. doi: 10.1371/journal.pone.0232918 PMID: 33600466
  28. Tang, D.; Wang, G.; Liu, Z.; Wang, B.; Yao, M.; Wang, Q.; Hou, X.; Zheng, Y.; Sheng, C.; Zhou, Z. Transcriptomic analysis of the effects of the HPV18 E6E7 gene on the cell death mode in esophageal squamous cell carcinoma. Oncol. Lett., 2023, 25(4), 167. doi: 10.3892/ol.2023.13753 PMID: 36960186
  29. Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant, 2020, 13(8), 1194-1202. doi: 10.1016/j.molp.2020.06.009 PMID: 32585190
  30. Tay, Y.; Rinn, J.; Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505(7483), 344-352. doi: 10.1038/nature12986 PMID: 24429633
  31. Richette, P.; Bardin, T. Gout. Lancet, 2010, 375(9711), 318-328. doi: 10.1016/S0140-6736(09)60883-7 PMID: 19692116
  32. Masseoud, D.; Rott, K.; Liu-Bryan, R.; Agudelo, C. Overview of hyperuricaemia and gout. Curr. Pharm. Des., 2005, 11(32), 4117-4124. doi: 10.2174/138161205774913318 PMID: 16375732
  33. Steiger, S.; Harper, J.L. Mechanisms of spontaneous resolution of acute gouty inflammation. Curr. Rheumatol. Rep., 2014, 16(1), 392. doi: 10.1007/s11926-013-0392-5 PMID: 24343224
  34. Zhao, L.; Ye, W.; Zhu, Y.; Chen, F.; Wang, Q.; Lv, X.; Hua, Y.; Du, Z.; Zhu, X.; Yu, Y.; Zou, H.; Liu, L.; Xue, Y. Distinct macrophage polarization in acute and chronic gout. Lab. Invest., 2022, 102(10), 1054-1063. doi: 10.1038/s41374-022-00798-4 PMID: 35614340
  35. Goldberg, E.L.; Asher, J.L.; Molony, R.D.; Shaw, A.C.; Zeiss, C.J.; Wang, C.; Morozova-Roche, L.A.; Herzog, R.I.; Iwasaki, A.; Dixit, V.D. β-hydroxybutyrate deactivates neutrophil nlrp3 inflammasome to relieve gout flares. Cell Rep., 2017, 18(9), 2077-2087. doi: 10.1016/j.celrep.2017.02.004 PMID: 28249154
  36. Liu, L.; Zhu, L.; Liu, M.; Zhao, L.; Yu, Y.; Xue, Y.; Shan, L. Recent insights into the role of macrophages in acute gout. Front. Immunol., 2022, 13, 955806. doi: 10.3389/fimmu.2022.955806 PMID: 35874765
  37. Liu, Y.; Wang, J.; Li, J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front. Immunol., 2023, 14, 1137822. doi: 10.3389/fimmu.2023.1137822 PMID: 37051231
  38. Landis, R.C.; Yagnik, D.R.; Florey, O.; Philippidis, P.; Emons, V.; Mason, J.C.; Haskard, D.O. Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum., 2002, 46(11), 3026-3033. doi: 10.1002/art.10614 PMID: 12428246
  39. Daigneault, M.; Preston, J.A.; Marriott, H.M.; Whyte, M.K.B.; Dockrell, D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010, 5(1), e8668. doi: 10.1371/journal.pone.0008668 PMID: 20084270
  40. Maeß, M.B.; Wittig, B.; Cignarella, A.; Lorkowski, S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J. Immunol. Methods, 2014, 402(1-2), 76-81. doi: 10.1016/j.jim.2013.11.006 PMID: 24269601
  41. Mohd Yasin, Z.N.; Mohd Idrus, F.N.; Hoe, C.H.; Yvonne-Tee, G.B. Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation, 2022, 128, 67-82. doi: 10.1016/j.diff.2022.10.001 PMID: 36370526
  42. Tedesco, S.; De Majo, F.; Kim, J.; Trenti, A.; Trevisi, L.; Fadini, G.P.; Bolego, C.; Zandstra, P.W.; Cignarella, A.; Vitiello, L. Convenience versus biological significance: Are PMA-Differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol., 2018, 9, 71. doi: 10.3389/fphar.2018.00071 PMID: 29520230
  43. Chen, B.; Li, H.; Ou, G.; Ren, L.; Yang, X.; Zeng, M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res. Ther., 2019, 21(1), 193. doi: 10.1186/s13075-019-1974-z PMID: 31455356
  44. Cheng, J.J.; Ma, X.D.; Ai, G.X.; Yu, Q.X.; Chen, X.Y.; Yan, F.; Li, Y.C.; Xie, J.H.; Su, Z.R.; Xie, Q.F. Palmatine protects against MSU-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2 pathways. Drug Des. Devel. Ther., 2022, 16, 2119-2132. doi: 10.2147/DDDT.S356307 PMID: 35812134
  45. Hao, K.; Jiang, W.; Zhou, M.; Li, H.; Chen, Y.; Jiang, F.; Hu, Q. Targeting BRD4 prevents acute gouty arthritis by regulating pyroptosis. Int. J. Biol. Sci., 2020, 16(16), 3163-3173. doi: 10.7150/ijbs.46153 PMID: 33162822
  46. Liu, Y.F.; Xing, G.L.; Chen, Z.; Tu, S.H. Long non-coding RNA HOTAIR knockdown alleviates gouty arthritis through miR-20b upregulation and NLRP3 downregulation. Cell Cycle, 2021, 20(3), 332-344. doi: 10.1080/15384101.2021.1874696 PMID: 33467979
  47. Meng, Q.; Meng, W.; Bian, H.; Zheng, F.; Gu, H.; Zuo, R.; Miao, X.; Zhou, Z.; Wang, L.; Wen, Z.; Ma, J.; Su, X. Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis. Biomed. Pharmacother., 2021, 138, 111413. doi: 10.1016/j.biopha.2021.111413 PMID: 33677310
  48. Qin, Q.; Liu, H.; Shou, J.; Jiang, Y.; Yu, H.; Wang, X. The inhibitor effect of RKIP on inflammasome activation and inflammasome-dependent diseases. Cell. Mol. Immunol., 2021, 18(4), 992-1004. doi: 10.1038/s41423-020-00525-3 PMID: 32901127
  49. Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; Amaral, F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol., 2014, 10(5), 593-619. doi: 10.1586/1744666X.2014.894886 PMID: 24678812
  50. Kienhorst, L.B.E.; van Lochem, E.; Kievit, W.; Dalbeth, N.; Merriman, M.E.; Phipps-Green, A.; Loof, A.; van Heerde, W.; Vermeulen, S.; Stamp, L.K.; van Koolwijk, E.; de Graaf, J.; Holzinger, D.; Roth, J.; Janssens, H.J.E.M.; Merriman, T.R.; Broen, J.C.A.; Janssen, M.; Radstake, T.R.D.J. Gout is a chronic inflammatory disease in which high levels of interleukin‐8 (CXCL8), myeloid‐related protein 8/myeloid‐related protein 14 complex, and an altered proteome are associated with diabetes mellitus and cardiovascular disease. Arthritis Rheumatol., 2015, 67(12), 3303-3313. doi: 10.1002/art.39318 PMID: 26248007
  51. Kienhorst, L.; Janssens, H.; Radstake, T.; van Riel, P.; Jacobs, J.; van Koolwijk, E.; van Lochem, E.; Janssen, M. A pilot study of CXCL8 levels in crystal proven gout patients during allopurinol treatment and their association with cardiovascular disease. Joint Bone Spine, 2017, 84(6), 709-713. doi: 10.1016/j.jbspin.2016.10.013 PMID: 27894951
  52. Nabieva, D.A.; Aripov, A.N. The detection of proteomic markers and immunologic profile and their relationship with metabolic parameters in patients with gout.. Klin. Lab. Diagn., 2017, 62(8), 485-489. PMID: 30802396
  53. Qin, C.C.; Liu, Y.N.; Hu, Y.; Yang, Y.; Chen, Z. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J. Gastroenterol., 2017, 23(17), 3043-3052. doi: 10.3748/wjg.v23.i17.3043 PMID: 28533661
  54. Moilanen, L.J.; Hämäläinen, M.; Lehtimäki, L.; Nieminen, R.M.; Moilanen, E. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice--potential role for transient receptor potential ankyrin 1 in gout. PLoS One, 2015, 10(2), e0117770. doi: 10.1371/journal.pone.0117770 PMID: 25658427
  55. Ye, Y.; Zhang, Y.; Wang, B.; Walana, W.; Wei, J.; Gordon, J.R.; Li, F. CXCR1/CXCR2 antagonist G31P inhibits nephritis in a mouse model of uric acid nephropathy. Biomed. Pharmacother., 2018, 107, 1142-1150. doi: 10.1016/j.biopha.2018.07.077 PMID: 30257327
  56. Pesce, B.; Ribeiro, C.H.; Larrondo, M.; Ramos, V.; Soto, L.; Catalán, D.; Aguillón, J.C. TNF-α affects signature cytokines of th1 and th17 T cell subsets through differential actions on TNFR1 and TNFR2. Int. J. Mol. Sci., 2022, 23(16), 9306. doi: 10.3390/ijms23169306 PMID: 36012570
  57. Kim, S.W.; Lee, J.H.; Kim, H.; Lee, S.H.; Jeong, D.; Kim, H.S.; Lee, C.J.; Kim, D.Y.; Yook, T.H.; Yang, G. Improvement effect of soyeom pharmacopuncture on gout via NLRP3 inflammasome regulation. J. Pharmacopuncture, 2022, 25(4), 396-403. doi: 10.3831/KPI.2022.25.4.396 PMID: 36628347
  58. Yokose, K.; Sato, S.; Asano, T.; Yashiro, M.; Kobayashi, H.; Watanabe, H.; Suzuki, E.; Sato, C.; Kozuru, H.; Yatsuhashi, H.; Migita, K. TNF- α potentiates uric acid-induced interleukin-1 β (IL-1 β) secretion in human neutrophils. Mod. Rheumatol., 2018, 28(3), 513-517. doi: 10.1080/14397595.2017.1369924 PMID: 28880687
  59. Sheng, D.; Ma, W.; Zhang, R.; Zhou, L.; Deng, Q.; Tu, J.; Chen, W.; Zhang, F.; Gao, N.; Dong, M.; Wang, D.; Li, F.; Liu, Y.; He, X.; Duan, S.; Zhang, L.; Liu, T.; Liu, S. Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization. J. Immunother. Cancer, 2022, 10(5), e003793. doi: 10.1136/jitc-2021-003793 PMID: 35613826
  60. Dapunt, U.; Maurer, S.; Giese, T.; Gaida, M.M.; Hänsch, G.M. The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: Linking inflammation to bone degradation. Mediators Inflamm., 2014, 2014, 728619. doi: 10.1155/2014/728619 PMID: 24795505
  61. Carow, B.; Rottenberg, M.E. SOCS3, a major regulator of infection and inflammation. Front. Immunol., 2014, 5, 58. doi: 10.3389/fimmu.2014.00058 PMID: 24600449
  62. Orji, O.C.; López-Domínguez, M.B.; Sandoval-Plata, G.; Guetta-Baranes, T.; Valdes, A.M.; Doherty, M.; Morgan, K.; Abhishek, A. Upregulated expression of FFAR2 and SOC3 genes is associated with gout. Rheumatology, 2023, 62(2), 977-983. doi: 10.1093/rheumatology/keac360 PMID: 35731142
  63. Masjedi, A.; Hajizadeh, F.; Beigi Dargani, F.; Beyzai, B.; Aksoun, M.; Hojjat-Farsangi, M.; Zekiy, A.; Jadidi-Niaragh, F.; Oncostatin, M. Oncostatin M: A mysterious cytokine in cancers. Int. Immunopharmacol., 2021, 90, 107158. doi: 10.1016/j.intimp.2020.107158 PMID: 33187910
  64. Du, Q.; Qian, Y.; Xue, W. Molecular simulation of oncostatin M and receptor (OSM–OSMR) interaction as a potential therapeutic target for inflammatory bowel disease. Front. Mol. Biosci., 2020, 7, 29. doi: 10.3389/fmolb.2020.00029 PMID: 32195265
  65. Garcia, J.P.; Utomo, L.; Rudnik-Jansen, I.; Du, J.; Zuithoff, N.P.A.; Krouwels, A.; van Osch, G.J.V.M.; Creemers, L.B. Association between oncostatin M expression and inflammatory phenotype in experimental arthritis models and osteoarthritis patients. Cells, 2021, 10(3), 508. doi: 10.3390/cells10030508 PMID: 33673583
  66. Hermans, D.; Houben, E.; Baeten, P.; Slaets, H.; Janssens, K.; Hoeks, C.; Hosseinkhani, B.; Duran, G.; Bormans, S.; Gowing, E.; Hoornaert, C.; Beckers, L.; Fung, W.K.; Schroten, H.; Ishikawa, H.; Fraussen, J.; Thoelen, R.; de Vries, H.E.; Kooij, G.; Zandee, S.; Prat, A.; Hellings, N.; Broux, B. Oncostatin M triggers brain inflammation by compromising blood–brain barrier integrity. Acta Neuropathol., 2022, 144(2), 259-281. doi: 10.1007/s00401-022-02445-0 PMID: 35666306
  67. Zhang, L.; Li, C.; Su, X. Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J. Exp. Clin. Cancer Res., 2020, 39(1), 271. doi: 10.1186/s13046-020-01784-8 PMID: 33267888
  68. Long, H.; Li, Q.; Xiao, Z.; Yang, B. LncRNA MIR22HG promotes osteoarthritis progression via regulating miR-9-3p/ADAMTS5 pathway. Bioengineered, 2021, 12(1), 3148-3158. doi: 10.1080/21655979.2021.1945362 PMID: 34187303
  69. Wen, J.; Liu, J.; Jiang, H.; Wan, L.; Xin, L.; Sun, Y.; Zhang, P.; Sun, Y.; Zhang, Y.; Du, X.; Wang, X.; Wang, J. lncRNA expression profiles related to apoptosis and autophagy in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FEBS Open Bio, 2020, 10(8), 1642-1654. doi: 10.1002/2211-5463.12913 PMID: 32569434
  70. Gao, L.; Xiong, D.; He, R.; Yang, X.; Lai, Z.; Liu, L.; Huang, Z.; Wu, H.; Yang, L.; Ma, J.; Li, S.; Lin, P.; Yang, H.; Luo, D.; Dang, Y.; Chen, G. MIR22HG as a tumor suppressive lncRNA In HCC: a comprehensive analysis integrating RT-qPCR, mRNA-Seq, and microarrays. OncoTargets Ther., 2019, 12, 9827-9848. doi: 10.2147/OTT.S227541 PMID: 31819482

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers