Conjugation of Doxorubicin and Carbon-based-nanostructures for Drug Delivery against HT-29 Colon Cancer Cells


Cite item

Full Text

Abstract

Background:A drug delivery system is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. Such systems release the drugs at specific amounts in a specific site. The carbon based-nanomaterials have been actively used as drug carriers to treat various cancer.

Objective:This study aimed to evaluate the cytotoxic effects of DOX-GO, DOX-OMC and DOX-CNT in colon cancer cells (HT29).

Methods:We reported platforms based on graphene oxide (GO), ordered mesoporous carbon (OMC) and carbon nanotubes (CNT) to conjugate with doxorubicin (DOX). The conjugation of DOX with carbon nanomaterial was investigated by UV-Vis spectroscopy, field emission scanning electron microscope (FE-SEM) and cyclic voltammetry (CV) methods.

Results:We showed that graphene oxide was a highly efficient matrix. Efficient loading of DOX, 89%, 78%, and 73.5% at pH 7.0 was seen onto GO, OMC and CNT, respectively. Upon pH 4. 0 after 15 h, 69%, 61% and 61% of DOX could be released from the DOX-GO, DOX-OMC and DOX-CNT, respectively, which illustrated the significant benefits of the developed approach for carbon nanomaterial applications. In vitro cytotoxicity analysis showed greater cytotoxicity of DOX/GO, DOX/OMC and DOX/CNT in comparison with GO, OMC and CNT against HT29 colon cancer cells with cell viability of 22%, 40% and 44% after 48 h for DOX-GO, DOX-OMC and DOX-CNT, respectively.

Conclusion:The nanohybrids based on DOX-carbon nanomaterial, because of their unique physical and chemical properties, will remarkably enhance the anti-cancer activity.

About the authors

Kaveh Aghdam

Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University

Email: info@benthamscience.net

Bahare Sabeti

Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University

Email: info@benthamscience.net

Fereshteh Chekin

Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University

Author for correspondence.
Email: info@benthamscience.net

Maral Mashreghi

Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University

Email: info@benthamscience.net

References

  1. Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell., 2020, 181(1), 151-167. doi: 10.1016/j.cell.2020.02.001 PMID: 32243788
  2. Amiri, M.; Khazaeli, P.; Salehabadi, A.; Salavati-Niasari, M. Hydrogel beads-based nanocomposites in novel drug delivery platforms: Recent trends and developments. Adv. Colloid. Interface. Sci., 2021, 288, 102316. doi: 10.1016/j.cis.2020.102316 PMID: 33387892
  3. Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; Chen, H.; Hu, H.; Zhang, Z.; Jin, Y. Recent progress in drug delivery. Acta Pharm. Sin. B., 2019, 9(6), 1145-1162. doi: 10.1016/j.apsb.2019.08.003 PMID: 31867161
  4. Rezaeifar, M.; Mahmoudvand, H.; Amiri, M. Formulation and evaluation of diphenhydramine gel using different gelling agents. Der. Pharma. Chem., 2016, 8, 243-249.
  5. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8 PMID: 33277608
  6. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
  7. Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater., 2020, 30(2), 1902634. doi: 10.1002/adfm.201902634
  8. Han, H.J.; Ekweremadu, C.; Patel, N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J. Drug Deliv. Sci. Technol., 2019, 52, 1051-1060. doi: 10.1016/j.jddst.2019.05.024
  9. Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials., 2020, 10(7), 1403. doi: 10.3390/nano10071403 PMID: 32707641
  10. Zhang, G.; Zeng, X.; Li, P. Nanomaterials in cancer-therapy drug delivery system. J. Biomed. Nanotechnol., 2013, 9(5), 741-750. doi: 10.1166/jbn.2013.1583 PMID: 23802404
  11. Debnath, S.K.; Srivastava, R. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: Progress and prospects. Front. Nanotechnol., 2021, 3, 644564. doi: 10.3389/fnano.2021.644564
  12. Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol., 2019, 9, 1401. doi: 10.3389/fphar.2018.01401 PMID: 30914959
  13. Sajjadi, M.; Nasrollahzadeh, M.; Jaleh, B.; Soufi, G.J.; Iravani, S. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. J. Drug. Target., 2021, 29(7), 716-741. doi: 10.1080/1061186X.2021.1886301 PMID: 33566719
  14. Jampilek, J.; Kralova, K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials., 2021, 14(5), 1059. doi: 10.3390/ma14051059 PMID: 33668271
  15. Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell. Physiol., 2019, 234(1), 298-319. doi: 10.1002/jcp.26899 PMID: 30078182
  16. Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558. doi: 10.1016/j.ijpharm.2018.07.027 PMID: 29997043
  17. Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience., 2012, 6, ed16. PMID: 24883085
  18. Lindley, C.; McCune, J.S.; Thomason, T.E.; Lauder, D.; Sauls, A.; Adkins, S.; Sawyer, W.T. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer. Pract., 1999, 7(2), 59-65. doi: 10.1046/j.1523-5394.1999.07205.x PMID: 10352062
  19. Zhao, N.; C Woodle, M.; Mixson, A.J. Advances in delivery systems for doxorubicin. J. Nanomed. Nanotechnol., 2018, 9(5), 519-526. doi: 10.4172/2157-7439.1000519 PMID: 30613436
  20. Christidi, E.; Brunham, L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell. Death. Dis., 2021, 12(4), 339. doi: 10.1038/s41419-021-03614-x PMID: 33795647
  21. Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother., 2021, 139, 111708. doi: 10.1016/j.biopha.2021.111708 PMID: 34243633
  22. Zareyy, B.; Chekin, F.; Fathi, S. NiO/porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction. Russ. J. Electrochem., 2019, 55(4), 333-338. doi: 10.1134/S102319351903011X
  23. Ladmakhi, H.B.; Chekin, F.; Fathi, S.; Raoof, J.B. Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples. Talanta, 2020, 211, 120759. doi: 10.1016/j.talanta.2020.120759 PMID: 32070564
  24. Hazhir, N.; Chekin, F.; Raoof, J.B.; Fathi, S. A porous reduced graphene oxide/chitosan-based nanocarrier as a delivery system of doxorubicin. RSC Adv., 2019, 9(53), 30729-30735. doi: 10.1039/C9RA04977K PMID: 35529364
  25. Tehrani, N.S.; Masoumi, M.; Chekin, F.; Baei, M.S. Nitrogen doped porous reduced graphene oxide hybrid as a nanocarrier of imatinib anti-cancer drug. Russ. J. Appl. Chem., 2020, 93(8), 1221-1228. doi: 10.1134/S1070427220080157
  26. Hazhir, N.; Chekin, F.; Raoof, J.B.; Fathi, Sh. Anticancer activity of doxorubicin conjugated to polymer/carbon based-nanohybrid against MCF-7 breast and HT-29 colon cancer cells. Int. J. Nanodimens., 2021, 12, 11-19.
  27. Kavinkumar, T.; Varunkumar, K.; Ravikumar, V.; Manivannan, S. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites. J. Colloid Interface Sci., 2017, 505, 1125-1133. doi: 10.1016/j.jcis.2017.07.002 PMID: 28704918

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers