A Recent Advance on Phytochemicals, Nutraceutical and Pharmacological Activities of Buckwheat


Cite item

Full Text

Abstract

:Buckwheat, a member of the Fagopyrum genus in the Polygonaceae family, is an ancient pseudocereal with noteworthy nutraceutical properties that have been relatively less explored. This crop holds great promise for the future due to its gluten-free protein, wellbalanced amino acid profile, and the presence of bioactive flavonoids that promote good health. With its gluten-free nature and a combination of beneficial nutritional components, buckwheat shows significant potential for a variety of health benefits. The objective of the present review aims to explore various nutritional and pharmacological properties of buckwheat. With the help of various search engines Pubmed, Google and Semantic Scholar, research and review papers. Data were analyzed and summarized in a comprehensive review. A fascinating spectrum of nutritional and pharmacological activities of common buckwheat and Tartary buckwheat were explored such as antidiabetic, anti-inflammatory, neurological disorders, antiobesity, anticancer, cardiovascular agents and many more. This review provides a concise overview of the current understanding of the chemical composition of both common buckwheat and Tartary buckwheat and the captivating spectrum of pharmacological activity and also underscoring their immense potential for future advancements.

About the authors

Shweta Sharma

School of Pharmacy, National Forensic Sciences University

Email: info@benthamscience.net

Sahil Kumar

Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research

Email: info@benthamscience.net

Rajesh Singh

Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kumar, N.; Wani, Z.A.; Dhyani, S. Ethanobotanical study of the plants used by local people of Gulmarg and its allied areas, Jammu & Kashmir, India. Int. J. Curr. Res. Biosci. Plant Biol., 2015, 2(9), 16-23.
  2. Shakhya, A.K. Medicinal plants: future source of new drugs. Int. J. Hebrs Med., 2016, 4(4), 59-64.
  3. Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(Suppl 1), 69-75. doi: 10.1289/ehp.01109s169 PMID: 11250806
  4. Hajiagahee, R.; Akhondzadeh, S. Herbal Medicine in treatment of Alzehimer’s disease. J. Med. Plant., 2012, 11(41), 1-7.
  5. Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995. doi: 10.2174/1389557521666210401090028 PMID: 33797375
  6. Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577. doi: 10.2174/1389557521666210315162354 PMID: 33719961
  7. Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of Andrographis paniculata: An update. Phytomedicine Plus, 2021, 1(4), 100085.
  8. Mehta, S.; Sharma, A.K.; Singh, R.K. Development and validation of HPTLC method for simultaneous estimation of bioactive components in combined extracts of three hepatoprotective plants. J. Liq. Chromatogr. Relat. Technol., 2021, 44(7-8), 375-381. doi: 10.1080/10826076.2021.1939046
  9. Bodeker, C.; Bodeker, G.; Ong, C.K.; Grundy, C.K.; Burford, G.; Shein, K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; World Health Organisation: Geneva, Switzerland, 2005.
  10. Peng, L.; Zhang, Q.; Zhang, Y.; Yao, Z.; Song, P.; Wei, L.; Zhao, G.; Yan, Z. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Sci. Nutr., 2020, 8(1), 199-213. doi: 10.1002/fsn3.1291 PMID: 31993146
  11. Han, L.; Wang, H.; Cao, J.; Li, Y.; Jin, X.; He, C.; Wang, M. Inhibition mechanism of α-glucosidase inhibitors screened from Tartary buckwheat and synergistic effect with acarbose. Food Chem., 2023, 420, 136102. doi: 10.1016/j.foodchem.2023.136102 PMID: 37060666
  12. Kumar, A.; Metwal, M.; Kaur, S.; Gupta, A.K.; Puranik, S.; Singh, S.; Singh, M.; Gupta, S.; Babu, B.K.; Sood, S.; Yadav, R. Nutraceutical value of finger millet Eleusine coracana (L.) Gaertn., and their improvement using Omics approaches. Front. Plant Sci., 2016, 7, 934. doi: 10.3389/fpls.2016.00934 PMID: 27446162
  13. Li, W.; Zhang, X.; He, X.; Li, F.; Zhao, J.; Yin, R.; Ming, J. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics. Food Funct., 2020, 11(5), 4648-4658. doi: 10.1039/D0FO00493F PMID: 32401260
  14. Lee, C.C.; Shen, S.R.; Lai, Y.J.; Wu, S.C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct., 2013, 4(5), 794-802. doi: 10.1039/c3fo30389f PMID: 23584161
  15. Wang, H.; Liu, S.; Cui, Y.; Wang, Y.; Guo, Y.; Wang, X.; Liu, J.; Piao, C. Hepatoprotective effects of flavonoids from common buckwheat hulls in type 2 diabetic rats and HepG2 cells. Food Sci. Nutr., 2021, 9(9), 4793-4802. doi: 10.1002/fsn3.2390 PMID: 34531992
  16. Ohsako, T.; Ohnishi, O. Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA. Am. J. Bot., 2000, 87(4), 573-582. doi: 10.2307/2656601 PMID: 10766729
  17. Sharma, S.; Rehman Ansari, M.H.; Sharma, K.; Singh, R.K.; Ali, S.; Alam, M.M.; Zaman, M.S.; Alam, P.; Akhter, M. Pyrazoline scaffold: hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med. Chem., 2023, 15(1), 9-24. doi: 10.4155/fmc-2022-0141 PMID: 36655571
  18. Sharma, S.; Srivastava, S.; Shrivastava, A.; Malik, R.; Almalki, F.; Saifullah, K.; Alam, M.M.; Shaqiquzzaman, M.; Ali, S.; Akhter, M. Mining of potential dipeptidyl peptidase-IV inhibitors as anti-diabetic agents using integrated in silico approaches. J. Biomol. Struct. Dyn., 2020, 38(18), 5349-5361. doi: 10.1080/07391102.2019.1701553 PMID: 31813365
  19. Facts & Figures. Available from: https://worlddiabetesday.org/about/facts (Accessed on 20th June 2023).
  20. Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119. doi: 10.1016/j.diabres.2021.109119 PMID: 34879977
  21. Skrabanja, V.; Liljeberg Elmståhl, H.G.M.; Kreft, I.; Björck, I.M.E. Nutritional properties of starch in buckwheat products: studies in vitro and in vivo. J. Agric. Food Chem., 2001, 49(1), 490-496. doi: 10.1021/jf000779w PMID: 11170616
  22. Curran, J.M.; Stringer, D.M.; Wright, B.; Taylor, C.G.; Przybylski, R.; Zahradka, P. Biological response of hepatomas to an extract of Fagopyrum esculentum M. (buckwheat) is not mediated by inositols or rutin. J. Agric. Food Chem., 2010, 58(5), 3197-3204. doi: 10.1021/jf903890c PMID: 20128593
  23. Han, G.; Yao, G.; Lin, Q.; Zhai, G.; Fan, Y. Effect of extracts of buckwheat seed on blood glucose in type 2 diabetes mellitus rat. Mod. Prev. Med., 2008, 35, 4677-4678. doi: 10.17221/1602-CJFS
  24. Lee, C.C.; Lee, B.H.; Lai, Y.J. Antioxidation and antiglycation of Fagopyrum tataricum ethanol extract. J. Food Sci. Technol., 2015, 52(2), 1110-1116. doi: 10.1007/s13197-013-1098-4 PMID: 25694726
  25. Lee, C.C.; Hsu, W.H.; Shen, S.R.; Cheng, Y.H.; Wu, S.C. Fagopyrum tataricum (buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice. Exp. Diabetes Res., 2012, 2012, 1-10. doi: 10.1155/2012/375673 PMID: 22548048
  26. Cai, E.P.; Lin, J.K. Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic beta cells. J. Agric. Food Chem., 2009, 57(20), 9817-9827. doi: 10.1021/jf902618v PMID: 19803520
  27. Hosaka, T.; Nii, Y.; Tomotake, H.; Ito, T.; Tamanaha, A.; Yamasaka, Y.; Sasaga, S.; Edazawa, K.; Tsutsumi, R.; Shuto, E.; Okahisa, N.; Iwata, S.; Sakai, T. Extracts of common buckwheat bran prevent sucrose digestion. J. Nutr. Sci. Vitaminol. (Tokyo), 2011, 57(6), 441-445. doi: 10.3177/jnsv.57.441 PMID: 22472288
  28. Bao, T.; Wang, Y.; Li, Y.; Gowd, V.; Niu, X.; Yang, H.; Chen, L.; Chen, W.; Sun, C. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. J. Zhejiang Univ. Sci. B, 2016, 17(12), 941-951. doi: 10.1631/jzus.B1600243 PMID: 27921399
  29. Wu, W.; Wang, L.; Qiu, J.; Li, Z. The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells. J. Funct. Foods, 2018, 50, 137-146. doi: 10.1016/j.jff.2018.09.032
  30. Steadman, K.J.; Burgoon, M.S.; Schuster, R.L.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. J. Agric. Food Chem., 2000, 48(7), 2843-2847. doi: 10.1021/jf990709t PMID: 10898633
  31. Obendorf, R.L.; Horbowicz, M.; Ueda, T.; Steadman, K.J. Fagopyritols occurrence, biosynthesis, analyses and possible role. Eur. J. Plant Sci. Biotechnol., 2012, 62, 27-36.
  32. World Obesity Day 2022 – Accelerating action to stop obesity. 2022. Available from: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity#:~:text=WHO%20estimates%20that%20by%202025,predictable%20and%20preventable%20health%20crisis
  33. Đurendić - Brenesel, M.; Popović, T.; Pilija, V.; Arsić, A.; Milić, M.; Kojić, D.; Jojić, N.; Milić, N. Hypolipidemic and antioxidant effects of buckwheat leaf and flower mixture in hyperlipidemic rats. Bosn. J. Basic Med. Sci., 2013, 13(2), 100-108. doi: 10.17305/bjbms.2013.2389 PMID: 23725506
  34. Nishimura, M.; Ohkawara, T.; Sato, Y.; Satoh, H.; Suzuki, T.; Ishiguro, K.; Noda, T.; Morishita, T.; Nishihira, J. Effectiveness of rutin-rich Tartary buckwheat ( Fagopyrum tataricum Gaertn.) ‘Manten-Kirari’ in body weight reduction related to its antioxidant properties: A randomised, double-blind, placebo-controlled study. J. Funct. Foods, 2016, 26, 460-469. doi: 10.1016/j.jff.2016.08.004
  35. Zhou, Y.; Zhao, S.; Jiang, Y.; Wei, Y.; Zhou, X. Regulatory function of buckwheat-resistant starch supplementation on lipid profile and gut microbiota in mice fed with a high-fat diet. J. Food Sci., 2019, 84(9), 2674-2681. doi: 10.1111/1750-3841.14747 PMID: 31441507
  36. Lee, M.S.; Shin, Y.; Jung, S.; Kim, S.Y.; Jo, Y.H.; Kim, C.T.; Yun, M.K.; Lee, S.J.; Sohn, J.; Yu, H.J.; Kim, Y. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response. Molecules, 2017, 22(7), 1160. doi: 10.3390/molecules22071160 PMID: 28704952
  37. Kim, S.Y.; Lee, M.S.; Chang, E.; Jung, S.; Ko, H.; Lee, E.; Lee, S.; Kim, C.T.; Kim, I.H.; Kim, Y. Tartary buckwheat extract attenuated the obesity-induced inflammation and increased muscle PGC-1a/SIRT1 expression in high fat diet-induced obese rats. Nutrients, 2019, 11(3), 654. doi: 10.3390/nu11030654 PMID: 30889894
  38. Bae, H.G.; Kim, M.J. Antioxidant and anti-obesity effects of in vitro digesta of germinated buckwheat. Food Sci. Biotechnol., 2022, 31(7), 879-892. doi: 10.1007/s10068-022-01086-z PMID: 35720456
  39. Wu, S.C.; Lee, B.H. Buckwheat polysaccharide exerts antiproliferative effects in THP-1 human leukemia cells by inducing differentiation. J. Med. Food, 2011, 14(1-2), 26-33. doi: 10.1089/jmf.2010.1252 PMID: 21138372
  40. Bai, C.Z.; Feng, M.A.L.I.; Hao, X.L.; Zhao, Z.J.; Li, Y.Y.; Wang, Z.H. Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo. Mol. Med. Rep., 2015, 12(2), 1777-1782. b doi: 10.3892/mmr.2015.3649 PMID: 25901645
  41. Liu, W.; Li, S.; Huang, X.; Cui, J.; Zhao, T.; Zhang, H. Inhibition of tumor growth in vitro by a combination of extracts from Rosa ruxburghii Tratt and Fagopyrum cymosum. Asian. Pac. J. Cancer. Prev., 2012, 13(5), 2409-2414. doi: 10.7314/apjcp.2012.13.5.2409
  42. Zheng, C.; Hu, C.; Ma, X.; Peng, C.; Zhang, H.; Qin, L. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn. Food Chem., 2012, 132(1), 433-438. doi: 10.1016/j.foodchem.2011.11.017 PMID: 26434312
  43. Sun, G.J.; Cui, T.H.; Jin, Q.K.; Li, X.D.; Li, S.J.; Cui, C.B. Cytotoxicity of different extract parts of buckwheat sprout. Food Sci. Technol. Int., 2012, 10, 200-203.
  44. Sytar, O.; Brestic, M.; Zivcak, M.; Tran, L.S. Plant natural compounds with anticancer activity: a review. Zeitschrift fur Naturforschung C, 2015, 70(7-8), 185-194.
  45. Zheng, S.; Chenghua, H.; Kaifeng, H. Research on Se content of different tartary buckwheat genotypes. Agric. Sci. Technol. Hunan., 2011, 12, 102-156.
  46. Giménez-Bastida, J.A.; Zieliński, H. Buckwheat as a functional food and its effects on health. J. Agric. Food Chem., 2015, 63(36), 7896-7913. doi: 10.1021/acs.jafc.5b02498 PMID: 26270637
  47. Jing, R.; Li, H.Q.; Hu, C.L.; Jiang, Y.P.; Qin, L.P.; Zheng, C.J. Phytochemical and pharmacological profiles of three Fagopyrum buckwheats. Int. J. Mol. Sci., 2016, 17(4), 589. doi: 10.3390/ijms17040589 PMID: 27104519
  48. Dzah, C.S.; Duan, Y.; Zhang, H.; Authur, D.A.; Ma, H. Ultrasound-, subcritical water- and ultrasound assisted subcritical water-derived Tartary buckwheat polyphenols show superior antioxidant activity and cytotoxicity in human liver carcinoma cells. Food Res. Int., 2020, 137, 109598. doi: 10.1016/j.foodres.2020.109598 PMID: 33233198
  49. Li, F.; Zhang, X.; Li, Y.; Lu, K.; Yin, R.; Ming, J. Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food Funct., 2017, 8(1), 177-188. doi: 10.1039/C6FO01230B PMID: 27942664
  50. Zhou, X.L.; Chen, Z.D.; Zhou, Y.M.; Shi, R.H.; Li, Z.J. The effect of tartary buckwheat flavonoids in inhibiting the proliferation of MGC80-3 cells during seed germination. Molecules, 2019, 24(17), 3092. doi: 10.3390/molecules24173092 PMID: 31454945
  51. World Health Organization Cardiovascular diseases (CVDs) Fact Sheet 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Accessed on 5 September 2021).
  52. Andriantsitohaina, R.; Auger, C.; Chataigneau, T.; Étienne-Selloum, N.; Li, H.; Martínez, M.C.; Schini-Kerth, V.B.; Laher, I. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br. J. Nutr., 2012, 108(9), 1532-1549. doi: 10.1017/S0007114512003406 PMID: 22935143
  53. Rodrigo, R.; Gil, D.; Miranda-Merchak, A.; Kalantzidis, G. Antihypertensive role of polyphenols. Adv. Clin. Chem., 2012, 58, 225-254. doi: 10.1016/B978-0-12-394383-5.00014-X PMID: 22950347
  54. Tomotake, H.; Yamamoto, N.; Kitabayashi, H.; Kawakami, A.; Kayashita, J.; Ohinata, H.; Karasawa, H.; Kato, N. Preparation of tartary buckwheat protein product and its improving effect on cholesterol metabolism in rats and mice fed cholesterol-enriched diet. J. Food Sci., 2007, 72(7), S528-S533. doi: 10.1111/j.1750-3841.2007.00474.x PMID: 17995668
  55. Mellen, P. B.; Walsh, T. F.; Herrington, D. M. Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis, 2008, 18(4), 283-90. doi: 10.1016/j.numecd.2006.12.008
  56. He, J.; Klag, M.J.; Whelton, P.K.; Mo, J.P.; Chen, J.Y.; Qian, M.C.; Mo, P.S.; He, G.Q. Oats and buckwheat intakes and cardiovascular disease risk factors in an ethnic minority of China. Am. J. Clin. Nutr., 1995, 61(2), 366-372. doi: 10.1093/ajcn/61.2.366 PMID: 7840076
  57. Zhang, Y.; Li, S.; Wu, X. Pressurized liquid extraction of flavonoids from Houttuynia cordata Thunb. Separ. Purif. Tech., 2008, 58(3), 305-310. doi: 10.1016/j.seppur.2007.04.010
  58. Wang, M.; Liu, J.R.; Gao, J.M.; Parry, J.W.; Wei, Y.M. Antioxidant activity of Tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats. J. Agric. Food Chem., 2009, 57(11), 5106-5112. doi: 10.1021/jf900194s PMID: 19419146
  59. Merendino, N.; Molinari, R.; Costantini, L.; Mazzucato, A.; Pucci, A.; Bonafaccia, F.; Esti, M.; Ceccantoni, B.; Papeschi, C.; Bonafaccia, G. A new "functional" pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats. Food Funct., 2014, 5(5), 1017-1026. doi: 10.1039/C3FO60683J PMID: 24658587
  60. Li, L.; Lietz, G.; Seal, C. Buckwheat and CVD Risk Markers: A systematic review and meta-analysis. Nutrients, 2018, 10(5), 619. doi: 10.3390/nu10050619 PMID: 29762481
  61. Ushida, Y.; Matsui, T.; Tanaka, M.; Matsumoto, K.; Hosoyama, H.; Mitomi, A.; Sagesaka, Y.; Takami Kakuda, T. Endothelium-dependent vasorelaxation effect of rutin-free tartary buckwheat extract in isolated rat thoracic aorta. J Nutr Biochem, 2008, 19(10), 700-7. doi: 10.1016/j.jnutbio.2007.09.005
  62. Chu, J.X.; Li, G.M.; Gao, X.J.; Wang, J.X.; Han, S.Y. Buckwheat rutin inhibits AngII-induced cardiomyocyte hypertrophy via blockade of CaN-dependent signal pathway. Iran. J. Pharm. Res., 2014, 13(4), 1347-1355. PMID: 25587324
  63. Kayashita, J.; Shimaoka, I.; Nakajoh, M.; Yamazaki, M.; Kato, N. Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-Fed rats because of its low digestibility. J. Nutr., 1997, 127(7), 1395-1400. doi: 10.1093/jn/127.7.1395 PMID: 9202097
  64. Zhang, C.; Zhang, R.; Li, Y.M.; Liang, N.; Zhao, Y.; Zhu, H.; He, Z.; Liu, J.; Hao, W.; Jiao, R.; Ma, K.Y.; Chen, Z.Y. Cholesterol-Lowering Activity of Tartary Buckwheat Protein. J. Agric. Food Chem., 2017, 65(9), 1900-1906. doi: 10.1021/acs.jafc.7b00066 PMID: 28199789
  65. Zou, L.; Jia, K.; Li, R.; Wang, P.; Lin, J.Z.; Chen, H.J.; Zhao, G.; Peng, L.X. Pharmacokinetic study of eplerenone in rats after long-term coadministration with buckwheat tea. Kaohsiung J. Med. Sci., 2016, 32(4), 177-184. doi: 10.1016/j.kjms.2016.03.004 PMID: 27185599
  66. Stokić, E.; Mandić, A.; Sakač, M.; Mišan, A.; Pestorić, M.; Šimurina, O.; Jambrec, D.; Jovanov, P.; Nedeljković, N.; Milovanović, I.; Sedej, I. Quality of buckwheat-enriched wheat bread and its antihyperlipidemic effect in statin treated patients. Lebensm. Wiss. Technol., 2015, 63(1), 556-561. doi: 10.1016/j.lwt.2015.03.023
  67. Yu, H.; Liu, S.; Li, M.; Wu, B. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity. Environ. Geochem. Health, 2016, 38(2), 339-351. doi: 10.1007/s10653-015-9742-8 PMID: 26169729
  68. Dinu, M.; Ghiselli, L.; Whittaker, A.; Pagliai, G.; Cesari, F.; Fiorillo, C.; Becatti, M.; Marcucci, R.; Benedettelli, S.; Sofi, F. Consumption of buckwheat products and cardiovascular risk profile: A randomized, single-blinded crossover trial. Nutr. Metab. Cardiovasc. Dis., 2017, 27(1), e20-e21. doi: 10.1016/j.numecd.2016.11.054
  69. Hu, Y.; Hou, Z.; Liu, D.; Yang, X. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways. Food Funct., 2016, 7(3), 1523-1536. doi: 10.1039/C5FO01467K PMID: 26899161
  70. Choi, I.; Seog, H.; Park, Y.; Kim, Y.; Choi, H. Suppressive effects of germinated buckwheat on development of fatty liver in mice fed with high-fat diet. Phytomedicine, 2007, 14(7-8), 563-567. doi: 10.1016/j.phymed.2007.05.002 PMID: 17601714
  71. Wojcicki, J.; Skowron, J.; Rozewicka, L.; Samochowiec, L.; Juzwiak, S. Hepatoprotective effects of buckwheat extract in rabbits fed on a high -fat diet. Acta Med. Biol. (Niigata), 1996, 44, 147-151.
  72. Cheng, N.; Wu, L.; Zheng, J.; Cao, W. Buckwheat honey attenuates carbon tetrachloride -induced liver and DNA damage in mice. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-10. doi: 10.1155/2015/987385 PMID: 26508989
  73. Yang, Q.; Luo, C.; Zhang, X.; Liu, Y.; Wang, Z.; Cacciamani, P.; Shi, J.; Cui, Y.; Wang, C.; Sinha, B.; Peng, B.; Tong, G.; Das, G.; Shah, E.; Gao, Y.; Li, W.; Tu, Y.; Qian, D.; Shah, K.; Akbar, M.; Zhou, S.; Song, B.J.; Wang, X. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. Am. J. Transl. Res., 2020, 12(1), 70-89. PMID: 32051738
  74. Hu, Y.; Zhao, Y.; Ren, D.; Guo, J.; Luo, Y.; Yang, X. Hypoglycemic and hepatoprotective effects of D -chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice. Food Funct., 2015, 6(12), 3760-3769. doi: 10.1039/C5FO00612K PMID: 26412138
  75. Zhou, X.; Wang, Q.; Yang, Y.; Zhou, Y.; Tang, W.; Li, Z. Anti -infection effects of buckwheat flavonoid extracts (BWFEs) from germinated sprouts. J. Med. Plants Res., 2012, 6, 24-29.
  76. Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem., 2018, 252, 243-249. doi: 10.1016/j.foodchem.2018.01.115 PMID: 29478537
  77. Dong, L.Y.; Wang, C.Y.; Wu, C.Q.; Jiang, Q.; Zhang, Z.F. Protection and mechanism of Fagopyrum cymosum on lung injury in rats with Klebsiella pneumonia.. Zhong Yao Cai, 2012, 35(4), 603-607. PMID: 23019909
  78. Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm. (Weinheim), 2019, 352(7), 1800339. doi: 10.1002/ardp.201800339 PMID: 31231875
  79. Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol., 2000, 72(1-2), 35-42. doi: 10.1016/S0378-8741(00)00196-3 PMID: 10967451
  80. Hęś, M.; Górecka, D.; Dziedzic, K. Antioxidant properties of extracts from buckwheat by-products. Acta Sci. Pol. Technol. Aliment., 2012, 11(2), 167-174. PMID: 22493158
  81. Kim, J.Y.; Son, B.K.; Lee, S.S. Effects of adlay, buckwheat, and barley on transit time and the antioxidative system in obesity induced rats. Nutr. Res. Pract., 2012, 6(3), 208-212. doi: 10.4162/nrp.2012.6.3.208 PMID: 22808344
  82. Zhou, Q.; Lu, W.; Niu, Y.; Liu, J.; Zhang, X.; Gao, B.; Akoh, C.C.; Shi, H.; Yu, L.L. Identification and quantification of phytochemical composition and anti-inflammatory, cellular antioxidant, and radical scavenging activities of 12 Plantago species. J. Agric. Food Chem., 2013, 61(27), 6693-6702. doi: 10.1021/jf401191q PMID: 23767948
  83. Krupa-Kozak, U.; Świątecka, D.; Bączek, N.; Brzóska, M.M. Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread. Food Funct., 2016, 7(4), 1950-1958. doi: 10.1039/C6FO00140H PMID: 26965706
  84. Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr., 2016, 35(6), 1236-1241. doi: 10.1016/j.clnu.2016.05.002 PMID: 27211234
  85. Choi, J.Y.; Lee, J.M.; Lee, D.G.; Cho, S.; Yoon, Y.H.; Cho, E.J.; Lee, S. The n-butanol fraction and rutin from Tartary buckwheat improve cognition and memory in an in vivo model of amyloid-β-induced Alzheimer’s disease. J. Med. Food, 2015, 18(6), 631-641. doi: 10.1089/jmf.2014.3292 PMID: 25785882
  86. Song, K.; Kim, S.; Na, J.Y.; Park, J.H.; Kim, J.K.; Kim, J.H.; Kwon, J. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2. Food Chem. Toxicol., 2014, 72, 228-233. doi: 10.1016/j.fct.2014.07.028 PMID: 25084483
  87. Bishnoi, M.; Chopra, K.; Kulkarni, S.K. Protective effect of rutin, a polyphenolic flavonoid against haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes. Fundam. Clin. Pharmacol., 2007, 21(5), 521-529. doi: 10.1111/j.1472-8206.2007.00512.x PMID: 17868205
  88. Álvarez, P.; Alvarado, C.; Puerto, M.; Schlumberger, A.; Jiménez, L.; De la Fuente, M. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition, 2006, 22(9), 913-921. doi: 10.1016/j.nut.2005.12.012 PMID: 16809023
  89. Garrett, R.; Romanos, M.T.V.; Borges, R.M.; Santos, M.G.; Rocha, L.; Silva, A.J.R. Antiherpetic activity of a flavonoid fraction from Ocotea notata leaves. Rev. Bras. Farmacogn., 2012, 22(2), 306-313. doi: 10.1590/S0102-695X2012005000003
  90. Paul, I.M.; Beiler, J.; McMonagle, A.; Shaffer, M.L.; Duda, L.; Berlin, C.M., Jr Effect of honey, dextromethorphan, and no treatment on nocturnal cough and sleep quality for coughing children and their parents. Arch. Pediatr. Adolesc. Med., 2007, 161(12), 1140-1146. doi: 10.1001/archpedi.161.12.1140 PMID: 18056558
  91. Ihme, N.; Kiesewetter, H.; Jung, F.; Hoffmann, K.H.; Birk, A.; Müller, A.; Grützner, K.I. Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo-controlled clinical trial. Eur. J. Clin. Pharmacol., 1996, 50(6), 443-447. doi: 10.1007/s002280050138 PMID: 8858269
  92. Ku, S.K.; Lee, I.C.; Han, M.S.; Bae, J.S. Inhibitory effects of rutin on the endothelial protein C receptor shedding in vitro and in vivo. Inflammation, 2014, 37(5), 1424-1431. doi: 10.1007/s10753-014-9866-5 PMID: 24622777
  93. Karki, R.; Park, C. H.; Kim, D. W. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). J Integr Med, 2013, 11(4), 246-52. doi: 10.3736/jintegrmed2013036
  94. Kayashita, J.; Shimaoka, I.; Nakajoh, M.; Kondoh, M.; Hayashi, K.; Kato, N. Muscle hypertrophy in rats fed on a buckwheat protein extract. Biosci. Biotechnol. Biochem., 1999, 63(7), 1242-1245. doi: 10.1271/bbb.63.1242 PMID: 10478451
  95. Wieslander, G.; Fabjan, N.; Vogrincic, M.; Kreft, I.; Vombergar, B.; Norback, D. Effects of common and Tartary buckwheat consumption on mucosal symptoms, headache and tiredness: A double-blind crossover intervention study. J. Food Agric. Environ., 2012, 10, 107-110.
  96. Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem., 2006, 98(3), 508-512. doi: 10.1016/j.foodchem.2005.05.081
  97. Gheldof, N.; Wang, X.H.; Engeseth, N.J. Buckwheat honey increases serum antioxidant capacity in humans. J. Agric. Food Chem., 2003, 51(5), 1500-1505. doi: 10.1021/jf025897t PMID: 12590505
  98. Przybylski, R.; Gruczynska, E. A review of nutritional and nutraceutical components of buckwheat. Eur. J. Plant Sci. Biotechnol, 2009, 3(Special issue 1), 10-22.
  99. Goel, C.; Semwal, A.D.; Anantham, P.; Sharma, G.K. Development and storage stability of buckwheat chips using response surface methodology (RSM). J. Food Sci. Technol., 2018, 55(12), 5064-5074. https://doi.orh/10.1007/s13197-018-3445-y

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers