A Differential Protein Study on Bronchoalveolar Lavage Fluid at Different Stages of Silicosis
- 作者: Zhang X.1, Han K.1, Kan L.1, Zhang Z.2, Gong Y.1, Xiao S.3, Bai Y.1, Liu N.1, Meng C.1, Qi H.4, Shen F.1
-
隶属关系:
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, China University of Science and Technology
- , Tangshan Center of Disease Control and Prevention
- , Tangshan City workers' Hospital
- 期: 卷 27, 编号 16 (2024)
- 页面: 2366-2401
- 栏目: Chemistry
- URL: https://rjpbr.com/1386-2073/article/view/644304
- DOI: https://doi.org/10.2174/0113862073260760231023055036
- ID: 644304
如何引用文章
全文:
详细
Objectives:In this study, by comparing the difference in protein expression in bronchoalveolar lavage fluid between silicosis patients in different stages and healthy controls, the pathogenesis of pneumoconiosis was discussed, and a new idea for the prevention and treatment of pneumoconiosis was provided.
Methods:The lung lavage fluid was pretreated by 10 K ultrafiltration tube, Agilent 1100 conventional liquid phase separation, strong cation exchange column (SCX) HPLC pre-separation, and C18 reverse phase chromatography desalting purification, and protein was labeled with isotope. GO, KEGG pathway, and PPI analysis of differential proteins were conducted by bioinformatics, and protein types and corresponding signal pathways were obtained.
Results:Thermo Q-Exactive mass spectrometry identified 943 proteins. T-test analysis was used to evaluate the different significance of the results, and the different protein of each group was obtained by screening with the Ratio≥1.2 or Ratio≤0.83 and P(<0.05. We found that there are 16 kinds of protein throughout the process of silicosis. There are different expressions of protein in stages Ⅲ/control, stages Ⅱ/control, stage Ⅰ/control, stages Ⅲ/ stages Ⅱ, stages Ⅲ/ stage Ⅰ and stages Ⅱ/ stage Ⅰ groups. The results of ontology enrichment analysis of total differential protein genes show that KEGG pathway enrichment analysis of differential protein suggested that there were nine pathways related to silicosis.
Conclusion:The main biological changes in the early stage of silicosis are glycolysis or gluconeogenesis, autoimmunity, carbon metabolism, phagocytosis, etc., and microfibril-associated glycoprotein 4 may be involved in the early stage of silicosis. The main biological changes in the late stage of silicosis are autoimmunity, intercellular adhesion, etc. Calcium hippocampus binding protein may participate in the biological changes in the late stage of silicosis. It provides a new idea to understand the pathogenesis of silicosis and also raises new questions for follow-up research.
作者简介
Xiaoxuan Zhang
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
Email: info@benthamscience.net
Ke Han
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
Email: info@benthamscience.net
Linhui Kan
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
Email: info@benthamscience.net
Zheng Zhang
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, China University of Science and Technology
Email: info@benthamscience.net
Yihong Gong
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
Email: info@benthamscience.net
Shuyu Xiao
, Tangshan Center of Disease Control and Prevention
Email: info@benthamscience.net
Yuping Bai
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
Email: info@benthamscience.net
Nan Liu
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
Email: info@benthamscience.net
Chunyan Meng
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
Email: info@benthamscience.net
Huisheng Qi
, Tangshan City workers' Hospital
编辑信件的主要联系方式.
Email: info@benthamscience.net
Fuhai Shen
Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Leung, C.C.; Yu, I.T.S.; Chen, W. Silicosis. Lancet, 2012, 379(9830), 2008-2018. doi: 10.1016/S0140-6736(12)60235-9 PMID: 22534002
- Güngen, A.C.; Aydemir, Y.; Çoban, H.; Düzenli, H.; Tasdemir, C. Lung cancer in patients diagnosed with silicosis should be investigated. Respir. Med. Case Rep., 2016, 18, 93-95. doi: 10.1016/j.rmcr.2016.04.011 PMID: 27330963
- Poinen-Rughooputh, S.; Rughooputh, M.S.; Guo, Y.; Rong, Y.; Chen, W. Occupational exposure to silica dust and risk of lung cancer: an updated meta-analysis of epidemiological studies. BMC Public Health, 2016, 16(1), 1137. doi: 10.1186/s12889-016-3791-5 PMID: 27814719
- Jessop, F.; Hamilton, R.F.; Rhoderick, J.F.; Shaw, P.K.; Holian, A. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol. Appl. Pharmacol., 2016, 309, 101-110. doi: 10.1016/j.taap.2016.08.029 PMID: 27594529
- Kawasaki, H. A mechanistic review of silica-induced inhalation toxicity. Inhal. Toxicol., 2015, 27(8), 363-377. doi: 10.3109/08958378.2015.1066905 PMID: 26194035
- Lee, S.; Hayashi, H.; Mastuzaki, H.; Kumagai-Takei, N.; Otsuki, T. Silicosis and autoimmunity. Curr. Opin. Allergy Clin. Immunol., 2017, 17(2), 78-84. doi: 10.1097/ACI.0000000000000350 PMID: 28177948
- Luna-Gomes, T.; Santana, P.T.; Coutinho-Silva, R. Silica-induced inflammasome activation in macrophages: Role of ATP and P2X7 receptor. Immunobiology, 2015, 220(9), 1101-1106. doi: 10.1016/j.imbio.2015.05.004 PMID: 26024943
- Cordeiro, C.; Jones, J.; Alfaro, T.; Ferreira, A. Bronchoalveolar lavage in occupational lung diseases. Semin. Respir. Crit. Care Med., 2007, 28(5), 504-513. doi: 10.1055/s-2007-991523 PMID: 17975778
- Jacobs, J.A.; Stobberingh, E.E.; Cornelissen, E.I.M.; Drent, M. Detection of Streptococcus pneumoniae antigen in bronchoalveolar lavage fluid samples by a rapid immunochromatographic membrane assay. J. Clin. Microbiol., 2005, 43(8), 4037-4040. doi: 10.1128/JCM.43.8.4037-4040.2005 PMID: 16081947
- Wang, K.; Huang, C.; Nice, E. Recent advances in proteomics: Towards the human proteome. Biomed. Chromatogr., 2014, 28(6), 848-857. doi: 10.1002/bmc.3157 PMID: 24861753
- American Thoracic Society Committee of the Scientific Assembly on Environmental and Occupational Health. Adverse effects of crystalline silica exposure. Am. J. Respir. Crit. Care Med., 1997, 155(2), 761-768. doi: 10.1164/ajrccm.155.2.9032226 PMID: 9032226
- Forbess, L.J.; Rossides, M.; Weisman, M.H.; Simard, J.F. New-onset non-infectious pulmonary manifestations among patients with systemic lupus erythematosus in Sweden. Arthritis Res. Ther., 2019, 21(1), 48. doi: 10.1186/s13075-018-1804-8 PMID: 30728079
- Lucas, C.D.; Amft, N.; Reid, P.T. Systemic lupus erythematosus complicating simple silicosis. Occup. Med., 2014, 64(5), 387-390. doi: 10.1093/occmed/kqu060 PMID: 24919786
- Costallat, L.T.L.; De Capitani, E.M.; Zambon, L. Pulmonary silicosis and systemic lupus erythematosus in men: a report of two cases. Joint Bone Spine, 2002, 69(1), 68-71. doi: 10.1016/S1297-319X(01)00344-X PMID: 11858360
- Shtraichman, O.; Blanc, P.D.; Ollech, J.E.; Fridel, L.; Fuks, L.; Fireman, E.; Kramer, M.R. Outbreak of autoimmune disease in silicosis linked to artificial stone. Occup. Med., 2015, 65(6), 444-450. doi: 10.1093/occmed/kqv073 PMID: 26070814
- Ricklin, D.; Reis, E.S.; Mastellos, D.C.; Gros, P.; Lambris, J.D. Complement component C3 The "Swiss Army Knife" of innate immunity and host defense. Immunol. Rev., 2016, 274(1), 33-58. doi: 10.1111/imr.12500 PMID: 27782325
- Tralau, T.; Meyer-Hoffert, U.; Schröder, J.M.; Wiedow, O. Human leukocyte elastase and cathepsin G are specific inhibitors of C5a-dependent neutrophil enzyme release and chemotaxis. Exp. Dermatol., 2004, 13(5), 316-325. doi: 10.1111/j.0906-6705.2004.00145.x PMID: 15140022
- Yang, J.; Roe, S.M.; Cliff, M.J.; Williams, M.A.; Ladbury, J.E.; Cohen, P.T.W.; Barford, D. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J., 2005, 24(1), 1-10. doi: 10.1038/sj.emboj.7600496 PMID: 15577939
- Shang, Y.; Xu, X.; Duan, X.; Guo, J.; Wang, Y.; Ren, F.; He, D.; Chang, Z. Hsp70 and Hsp90 oppositely regulate TGF-β signaling through CHIP/Stub1. Biochem. Biophys. Res. Commun., 2014, 446(1), 387-392. doi: 10.1016/j.bbrc.2014.02.124 PMID: 24613385
- Dong, H.; Le, Y.; Wang, Y.; Zhao, H.; Huang, C.; Hu, Y.; Luo, L.; Wan, X.; Wei, Y.; Chu, Z.; Li, W.; Cai, S. Extracellular heat shock protein 90α mediates HDM-induced bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling. Respir. Res., 2017, 18(1), 111. doi: 10.1186/s12931-017-0593-y PMID: 28558721
- Hacker, S.; Lambers, C.; Hoetzenecker, K.; Pollreisz, A.; Aigner, C.; Lichtenauer, M.; Mangold, A.; Niederpold, T.; Zimmermann, M.; Taghavi, S.; Klepetko, W.; Ankersmit, H.J. Elevated HSP27, HSP70 and HSP90 alpha in chronic obstructive pulmonary disease: Markers for immune activation and tissue destruction. Clin. Lab., 2009, 55(1-2), 31-40. PMID: 19350847
- Low, R.B.; Adler, K.B.; Woodcock-Mitchell, J.; Giancola, M.S.; Vacek, P.M. Bronchoalveolar lavage lipids during development of bleomycin-induced fibrosis in rats. Relationship to altered epithelial cell morphology. Am. Rev. Respir. Dis., 1988, 138(3), 709-713. doi: 10.1164/ajrccm/138.3.709 PMID: 2462382
- Goldmann, T.; Zissel, G.; Watz, H.; Drömann, D.; Reck, M.; Kugler, C.; Rabe, K.F.; Marwitz, S. Human alveolar epithelial cells type II are capable of TGFβ-dependent epithelial-mesenchymal-transition and collagen-synthesis. Respir. Res., 2018, 19(1), 138. doi: 10.1186/s12931-018-0841-9 PMID: 30041633
- Hao, C.F.; Li, X.F.; Yao, W. Protein expression in silica dust-induced transdifferentiated rats lung fibroblasts. Biomed. Environ. Sci., 2013, 26(9), 750-758. PMID: 24099609
- Zuo, W.; Zhang, T.; Wu, D.Z.A.; Guan, S.P.; Liew, A.A.; Yamamoto, Y.; Wang, X.; Lim, S.J.; Vincent, M.; Lessard, M.; Crum, C.P.; Xian, W.; McKeon, F. p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature, 2015, 517(7536), 616-620. doi: 10.1038/nature13903 PMID: 25383540
- Ma, J.; Bishoff, B.; Mercer, R.R.; Barger, M.; Schwegler-Berry, D.; Castranova, V. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis. Toxicol. Appl. Pharmacol., 2017, 323, 16-25. doi: 10.1016/j.taap.2017.03.015 PMID: 28315692
- Nica, I.; Stan, M.; Popa, M.; Chifiriuc, M.; Lazar, V.; Pircalabioru, G.; Dumitrescu, I.; Ignat, M.; Feder, M.; Tanase, L.; Mercioniu, I.; Diamandescu, L.; Dinischiotu, A. Interaction of new-developed TiO2-based photocatalytic nanoparticles with pathogenic microorganisms and human dermal and pulmonary fibroblasts. Int. J. Mol. Sci., 2017, 18(2), 249. doi: 10.3390/ijms18020249 PMID: 28125053
- Maselli, A.; Conti, F.; Alessandri, C.; Colasanti, T.; Barbati, C.; Vomero, M.; Ciarlo, L.; Patrizio, M.; Spinelli, F.R.; Ortona, E.; Valesini, G.; Pierdominici, M. Low expression of estrogen receptor β in T lymphocytes and high serum levels of anti-estrogen receptor α antibodies impact disease activity in female patients with systemic lupus erythematosus. Biol. Sex Differ., 2016, 7(1), 3. doi: 10.1186/s13293-016-0057-y PMID: 26759713
- Khawaja, A.A.; Pericleous, C.; Ripoll, V.M.; Porter, J.C.; Giles, I.P. Autoimmune rheumatic disease IgG has differential effects upon neutrophil integrin activation that is modulated by the endothelium. Sci. Rep., 2019, 9(1), 1283. doi: 10.1038/s41598-018-37852-5 PMID: 30718722
- Brown, J.M.; Archer, A.J.; Pfau, J.C.; Holian, A. Silica accelerated systemic autoimmune disease in lupus-prone New Zealand mixed mice. Clin. Exp. Immunol., 2003, 131(3), 415-421. doi: 10.1046/j.1365-2249.2003.02094.x PMID: 12605693
- Peng, B.; Huang, X.; Nakayasu, E.S.; Petersen, J.R.; Qiu, S.; Almeida, I.C.; Zhang, J.Y. Using immunoproteomics to identify alpha-enolase as an autoantigen in liver fibrosis. J. Proteome Res., 2013, 12(4), 1789-1796. doi: 10.1021/pr3011342 PMID: 23458688
- Bogdanos, D.P.; Gilbert, D.; Bianchi, I.; Leoni, S.; Mitry, R.R.; Ma, Y.; Mieli-Vergani, G.; Vergani, D. Antibodies to soluble liver antigen and alpha-enolase in patients with autoimmune hepatitis. J. Autoimmune Dis., 2004, 1(1), 4. doi: 10.1186/1740-2557-1-4 PMID: 15679947
- de Vries, J.J.V.; Chang, A.B.; Marchant, J.M. Comparison of bronchoscopy and bronchoalveolar lavage findings in three types of suppurative lung disease. Pediatr. Pulmonol., 2018, 53(4), 467-474. doi: 10.1002/ppul.23952 PMID: 29405664
- Yip, Y.L.; Lin, W.; Deng, W.; Jia, L.; Lo, K.W.; Busson, P.; Vérillaud, B.; Liu, X.; Tsang, C.M.; Lung, M.L.; Tsao, S.W. Establishment of a nasopharyngeal carcinoma cell line capable of undergoing lytic EpsteinBarr virus reactivation. Lab. Invest., 2018, 98(8), 1093-1104. doi: 10.1038/s41374-018-0034-7 PMID: 29769697
- Manipadam, M.T.; Sigamani, E.; Chandramohan, J.; Nair, S.; Chacko, G.; Thomas, M.; Mathew, L.G.; Pulimood, S. Lymphomatoid granulomatosis: A case series from South India. Indian J. Pathol. Microbiol., 2018, 61(2), 228-232. doi: 10.4103/IJPM.IJPM_471_17 PMID: 29676363
- Liu, H.; Cheng, Y.; Yang, J.; Wang, W.; Fang, S.; Zhang, W.; Han, B.; Zhou, Z.; Yao, H.; Chao, J.; Liao, H. BBC3 in macrophages promoted pulmonary fibrosis development through inducing autophagy during silicosis. Cell Death Dis., 2017, 8(3), e2657. doi: 10.1038/cddis.2017.78 PMID: 28277537
- Hidvegi, T.; Ewing, M.; Hale, P.; Dippold, C.; Beckett, C.; Kemp, C.; Maurice, N.; Mukherjee, A.; Goldbach, C.; Watkins, S.; Michalopoulos, G.; Perlmutter, D.H. An autophagy-enhancingdrug promotes degradation of mutant alpha1-antitrypsin Z and reduceshepatic fibrosis. Science, 2010, 329(5988), 229-232. doi: 10.1126/science.1190354
- Semren, N.; Welk, V.; Korfei, M.; Keller, I.E.; Fernandez, I.E.; Adler, H.; Günther, A.; Eickelberg, O.; Meiners, S. Regulation of 26S proteasome activity in pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2015, 192(9), 1089-1101. doi: 10.1164/rccm.201412-2270OC PMID: 26207697
- Majetschak, M.; Sorell, L.T.; Patricelli, T.; Seitz, D.H.; Knöferl, M.W. Detection and possible role of proteasomes in the bronchoalveolar space of the injured lung. Physiol. Res., 2009, 58(3), 363-372. doi: 10.33549/physiolres.931526 PMID: 18637707
- Sato, S.; Fujita, N.; Tsuruo, T. Regulation of kinase activity of 3-phosphoinositide-dependent protein kinase-1 by binding to 14-3-3. J. Biol. Chem., 2002, 277(42), 39360-39367. doi: 10.1074/jbc.M205141200 PMID: 12177059
- Yaffe, M.B.; Rittinger, K.; Volinia, S.; Caron, P.R.; Aitken, A.; Leffers, H.; Gamblin, S.J.; Smerdon, S.J.; Cantley, L.C. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell, 1997, 91(7), 961-971. doi: 10.1016/S0092-8674(00)80487-0 PMID: 9428519
- Khorrami, A.; Sharif Bagheri, M.; Tavallaei, M.; Gharechahi, J. The functional significance of 14-3-3 proteins in cancer: Focus on lung cancer. Horm. Mol. Biol. Clin. Investig., 2017, 32(3) doi: 10.1515/hmbci-2017-0032 PMID: 28779564
- Hartert, M.; Senbaklavacin, O.; Gohrbandt, B.; Fischer, B.M.; Buhl, R.; Vahld, C.F. Lung transplantation: A treatment option in end-stage lung disease. Dtsch. Arztebl. Int., 2014, 111(7), 107-116. PMID: 24622680
- Rosengarten, D.; Fox, B.D.; Fireman, E.; Blanc, P.D.; Rusanov, V.; Fruchter, O.; Raviv, Y.; Shtraichman, O.; Saute, M.; Kramer, M.R. Survival following lung transplantation for artificial stone silicosis relative to idiopathic pulmonary fibrosis. Am. J. Ind. Med., 2017, 60(3), 248-254. doi: 10.1002/ajim.22687 PMID: 28145560
- Hayes, D., Jr; Hayes, K.T.; Hayes, H.C.; Tobias, J.D. Long-term survival after lung transplantation in patients with silicosis and other occupational lung disease. Lung, 2015, 193(6), 927-931. doi: 10.1007/s00408-015-9781-z PMID: 26267595
- Joubert, K.D.; Awori Hayanga, J.; Strollo, D.C.; Lendermon, E.A.; Yousem, S.A.; Luketich, J.D.; Ensor, C.R.; Shigemura, N. Outcomes after lung transplantation for patients with occupational lung diseases. Clin. Transplant., 2019, 33(1), e13460. doi: 10.1111/ctr.13460 PMID: 30506808
- Lalmanach, G.; Saidi, A.; Marchand-Adam, S.; Lecaille, F.; Kasabova, M. Cysteine cathepsins and cystatins: From ancillary tasks to prominent status in lung diseases. Biol. Chem., 2015, 396(2), 111-130. doi: 10.1515/hsz-2014-0210 PMID: 25178906
- Yoshioka, S.; Mukae, H.; Ishii, H.; Kakugawa, T.; Ishimoto, H.; Sakamoto, N.; Fujii, T.; Urata, Y.; Kondo, T.; Kubota, H.; Nagata, K.; Kohno, S. Alpha-defensin enhances expression of HSP47 and collagen-1 in human lung fibroblasts. Life Sci., 2007, 80(20), 1839-1845. doi: 10.1016/j.lfs.2007.02.014 PMID: 17367817
- Müller, H.; Nagel, C.; Weiss, C.; Mollenhauer, J.; Poeschl, J. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells. BMC Pulm. Med., 2015, 15(1), 32. doi: 10.1186/s12890-015-0027-x PMID: 25885541
- Lee, C.Y.; Hong, J.Y.; Lee, M.G.; Suh, I.B. Identification of 10 candidate biomarkers distinguishing tuberculous and malignant pleural fluid by proteomic methods. Yonsei Med. J., 2017, 58(6), 1144-1151. doi: 10.3349/ymj.2017.58.6.1144 PMID: 29047238
- Zhou, X.J.; Cheng, F.J.; Zhu, L.; Lv, J.C.; Qi, Y.Y.; Hou, P.; Zhang, H. Association of systemic lupus erythematosus susceptibility genes with IgA nephropathy in a Chinese cohort. Clin. J. Am. Soc. Nephrol., 2014, 9(4), 788-797. doi: 10.2215/CJN.01860213 PMID: 24458077
- Seto, S.; Tsujimura, K.; Koide, Y. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell. Microbiol., 2012, 14(5), 710-727. doi: 10.1111/j.1462-5822.2012.01754.x PMID: 22256790
- BoseDasgupta, S.; Pieters, J. Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett., 2014, 588(21), 3898-3905. doi: 10.1016/j.febslet.2014.08.036 PMID: 25217836
- Yang, J.; Goetz, D.; Li, J.Y.; Wang, W.; Mori, K.; Setlik, D.; Du, T.; Erdjument-Bromage, H.; Tempst, P.; Strong, R.; Barasch, J. An iron delivery pathway mediated by a lipocalin. Mol. Cell, 2002, 10(5), 1045-1056. doi: 10.1016/S1097-2765(02)00710-4 PMID: 12453413
- Shields-Cutler, R.R.; Crowley, J.R.; Miller, C.D.; Stapleton, A.E.; Cui, W.; Henderson, J.P. Human metabolome-derived cofactors are required for the antibacterial activity of siderocalin in urine. J. Biol. Chem., 2016, 291(50), 25901-25910. doi: 10.1074/jbc.M116.759183 PMID: 27780864
- Bao, G.; Clifton, M.; Hoette, T.M.; Mori, K.; Deng, S.X.; Qiu, A.; Viltard, M.; Williams, D.; Paragas, N.; Leete, T.; Kulkarni, R.; Li, X.; Lee, B.; Kalandadze, A.; Ratner, A.J.; Pizarro, J.C.; Schmidt-Ott, K.M.; Landry, D.W.; Raymond, K.N.; Strong, R.K.; Barasch, J. Iron traffics in circulation bound to a siderocalin (Ngal)catechol complex. Nat. Chem. Biol., 2010, 6(8), 602-609. doi: 10.1038/nchembio.402 PMID: 20581821
- Holmes, M.A.; Paulsene, W.; Jide, X.; Ratledge, C.; Strong, R.K. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure, 2005, 13(1), 29-41. doi: 10.1016/j.str.2004.10.009 PMID: 15642259
- Hoette, T.M.; Clifton, M.C.; Zawadzka, A.M.; Holmes, M.A.; Strong, R.K.; Raymond, K.N. Immune interference in Mycobacterium tuberculosis intracellular iron acquisition through siderocalin recognition of carboxymycobactins. ACS Chem. Biol., 2011, 6(12), 1327-1331. doi: 10.1021/cb200331g PMID: 21978368
- Michels, K.; Nemeth, E.; Ganz, T.; Mehrad, B. Hepcidin and host defense against infectious diseases. PLoS Pathog., 2015, 11(8), e1004998. doi: 10.1371/journal.ppat.1004998 PMID: 26291319
- Wilson, B.R.; Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Siderophores in iron metabolism: From mechanism to therapy potential. Trends Mol. Med., 2016, 22(12), 1077-1090. doi: 10.1016/j.molmed.2016.10.005 PMID: 27825668
- Jindal, H.K.; Vishwanatha, J.K. Functional identity of a primer recognition protein as phosphoglycerate kinase. J. Biol. Chem., 1990, 265(12), 6540-6543. doi: 10.1016/S0021-9258(19)39179-3 PMID: 2324090
- Balamurugan, K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int. J. Cancer, 2016, 138(5), 1058-1066. doi: 10.1002/ijc.29519 PMID: 25784597
- Lokmic, Z.; Musyoka, J.; Hewitson, T.D.; Darby, I.A. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int. Rev. Cell Mol. Biol., 2012, 296, 139-185. doi: 10.1016/B978-0-12-394307-1.00003-5 PMID: 22559939
- Zhang, J.; Guo, H.; Zhu, J.S.; Yang, Y.C.; Chen, W.X.; Chen, N.W. Inhibition of phosphoinositide 3-kinase/Akt pathway decreases hypoxia inducible factor-1α expression and increases therapeutic efficacy of paclitaxel in human hypoxic gastric cancer cells. Oncol. Lett., 2014, 7(5), 1401-1408. doi: 10.3892/ol.2014.1963 PMID: 24765145
- Erdely, A.; Liston, A.; Salmen-Muniz, R.; Hulderman, T.; Young, S.H.; Zeidler-Erdely, P.C.; Castranova, V.; Simeonova, P.P. Identification of systemic markers from a pulmonary carbon nanotube exposure. J. Occup. Environ. Med., 2011, 53(6), S80-S86. doi: 10.1097/JOM.0b013e31821ad724 PMID: 21654424
- Chan, D.C.; Chen, M.M.; Ooi, E.M.M.; Watts, G.F. An ABC of apolipoprotein C-III: A clinically useful new cardiovascular risk factor? Int. J. Clin. Pract., 2008, 62(5), 799-809. doi: 10.1111/j.1742-1241.2007.01678.x PMID: 18201179
- Yao, Z.; Wang, Y. Apolipoprotein C-III and hepatic triglyceride-rich lipoprotein production. Curr. Opin. Lipidol., 2012, 23(3), 206-212. doi: 10.1097/MOL.0b013e328352dc70 PMID: 22510806
- Royle, S.J.; Bright, N.A.; Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature, 2005, 434(7037), 1152-1157. doi: 10.1038/nature03502 PMID: 15858577
- Booth, D.G.; Hood, F.E.; Prior, I.A.; Royle, S.J.A. TACC3/ch-TOG/clathrin complex stabilises kinetochore fibres by inter-microtubule bridging. EMBO J., 2011, 30(5), 906-919. doi: 10.1038/emboj.2011.15 PMID: 21297582
- Cheeseman, L.P.; Harry, E.F.; McAinsh, A.D.; Prior, I.A.; Royle, S.J. Specific removal of TACC3/ch-TOG/clathrin at metaphase deregulates kinetochore fiber tension. J. Cell Sci., 2013, 126(Pt 9), jcs.124834. doi: 10.1242/jcs.124834 PMID: 23532825
- Vergés, M.; Luton, F.; Gruber, C.; Tiemann, F.; Reinders, L.G.; Huang, L.; Burlingame, A.L.; Haft, C.R.; Mostov, K.E. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol., 2004, 6(8), 763-769. doi: 10.1038/ncb1153 PMID: 15247922
- Tabuchi, M.; Yanatori, I.; Kawai, Y.; Kishi, F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J. Cell Sci., 2010, 123(5), 756-766. doi: 10.1242/jcs.060574 PMID: 20164305
- Mölleken, C.; Poschmann, G.; Bonella, F.; Costabel, U.; Sitek, B.; Stühler, K.; Meyer, H.E.; Schmiegel, W.H.; Marcussen, N.; Helmer, M.; Nielsen, O.; Hansen, S.; Schlosser, A.; Holmskov, U.; Sorensen, G.L. MFAP4: A candidate biomarker for hepatic and pulmonary fibrosis? Sarcoidosis Vasc. Diffuse Lung Dis., 2016, 33(1), 41-50. PMID: 27055835
- Holm, A.T.; Wulf-Johansson, H.; Hvidsten, S.; Jorgensen, P.T.; Schlosser, A.; Pilecki, B.; Ormhøj, M.; Moeller, J.B.; Johannsen, C.; Baun, C.; Andersen, T.; Schneider, J.P.; Hegermann, J.; Ochs, M.; Götz, A.A.; Schulz, H.; de Angelis, M.H.; Vestbo, J.; Holmskov, U.; Sorensen, G.L. Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308(11), L1114-L1124. doi: 10.1152/ajplung.00351.2014 PMID: 26033354
- Johansson, S.L.; Roberts, N.B.; Schlosser, A.; Andersen, C.B.; Carlsen, J.; Wulf-Johansson, H.; Sækmose, S.G.; Titlestad, I.L.; Tornoe, I.; Miller, B.; Tal-Singer, R.; Holmskov, U.; Vestbo, J.; Sorensen, G.L. Microfibrillar-associated protein 4: A potential biomarker of chronic obstructive pulmonary disease. Respir. Med., 2014, 108(9), 1336-1344. doi: 10.1016/j.rmed.2014.06.003 PMID: 25022422
- Pilecki, B.; Schlosser, A.; Wulf-Johansson, H.; Trian, T.; Moeller, J.B.; Marcussen, N.; Aguilar-Pimentel, J.A.; de Angelis, M.H.; Vestbo, J.; Berger, P.; Holmskov, U.; Sorensen, G.L. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma. Thorax, 2015, 70(9), 862-872. doi: 10.1136/thoraxjnl-2014-206609 PMID: 26038533
- Schlosser, A.; Pilecki, B.; Hemstra, L.E.; Kejling, K.; Kristmannsdottir, G.B.; Wulf-Johansson, H.; Moeller, J.B.; Füchtbauer, E.M.; Nielsen, O.; Kirketerp-Møller, K.; Dubey, L.K.; Hansen, P.B.L.; Stubbe, J.; Wrede, C.; Hegermann, J.; Ochs, M.; Rathkolb, B.; Schrewe, A.; Bekeredjian, R.; Wolf, E.; Gailus-Durner, V.; Fuchs, H.; Hrabě de Angelis, M.; Lindholt, J.S.; Holmskov, U.; Sorensen, G.L. MFAP4 promotes vascular smooth muscle migration, proliferation and accelerates neointima formation. Arterioscler. Thromb. Vasc. Biol., 2016, 36(1), 122-133. doi: 10.1161/ATVBAHA.115.306672 PMID: 26564819
- Schlosser, A.; Thomsen, T.; Shipley, J.M.; Hein, P.W.; Brasch, F.; Tornøe, I.; Nielsen, O.; Skjødt, K.; Palaniyar, N.; Steinhilber, W.; McCormack, F.X.; Holmskov, U. Microfibril-associated protein 4 binds to surfactant protein A (SP-A) and colocalizes with SP-A in the extracellular matrix of the lung. Scand. J. Immunol., 2006, 64(2), 104-116. doi: 10.1111/j.1365-3083.2006.01778.x PMID: 16867155
- Tang, W.; Morey, L.M.; Cheung, Y.Y.; Birch, L.; Prins, G.S.; Ho, S. Neonatal exposure to estradiol/bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life. Endocrinology, 2012, 153(1), 42-55. doi: 10.1210/en.2011-1308 PMID: 22109888
- Wang, W.; Zhong, Q.; Teng, L.; Bhatnagar, N.; Sharma, B.; Zhang, X.; Luther, W., II; Haynes, L.P.; Burgoyne, R.D.; Vidal, M.; Volchenboum, S.; Hill, D.E.; George, R.E. Mutations that disrupt PHOXB interaction with the neuronal calcium sensor HPCAL1 impede cellular differentiation in neuroblastoma. Oncogene, 2014, 33(25), 3316-3324. doi: 10.1038/onc.2013.290 PMID: 23873030
- Zhang, D.; Liu, X.; Xu, X.; Xu, J.; Yi, Z.; Shan, B.; Liu, B. HPCAL 1 promotes glioblastoma proliferation via activation of Wnt/β‐catenin signalling pathway. J. Cell. Mol. Med., 2019, 23(5), 3108-3117. doi: 10.1111/jcmm.14083 PMID: 30843345
补充文件
