Proteomic Analysis Based on TMT Regarding the Therapeutic Action of Rhizoma Drynariae on Rats in an Osteoporosis Model
- 作者: Su H.1, Yan B.1, Wang R.2, Li Z.1, Xu Z.1, Xue H.3, Tan G.1
-
隶属关系:
- , Shandong University of Traditional Chinese Medicine
- -, Beijing University of Traditional Chinese Medicine
- , Affiliated Hospital of Shandong University of Traditional Chinese Medicine
- 期: 卷 27, 编号 15 (2024)
- 页面: 2223-2238
- 栏目: Chemistry
- URL: https://rjpbr.com/1386-2073/article/view/644226
- DOI: https://doi.org/10.2174/0113862073261905231110061401
- ID: 644226
如何引用文章
全文:
详细
Background::Primary osteoporosis has increasingly become one of the risk factors affecting human health, and the clinical effect and action mechanism of traditional Chinese medicine in the treatment of primary osteoporosis have been widely studied. Previous studies have confirmed that in traditional Chinese medicine (TCM), Drynaria rhizome has a role in improving bone density. In this study, a tandem mass tag (TMT)-based proteomic analysis was conducted to derive potential targets for Drynaria rhizome treatment in postmenopausal osteoporosis.
Methods::The model group (OVX) and experimental group (OVXDF) for menopausal osteoporosis were established using the universally acknowledged ovariectomy method, and the OVXDF group was given 0.48g/kg Rhizoma Drynariae solution by gavage for 12 weeks. After 12 weeks, femurs of rats selected for this study were examined with a bone mineral density (BMD) test, Micro-CT, ELISABiochemical testing, hematoxylin and eosin (HE) staining, and immunohistochemistry. A certain portion of the bone tissue was studied with a TMT-based proteomic analysis and functional and pathway enrichment analysis. Finally, key target genes were selected for Western blotting for validation.
Results::The comparison of the OVXDF and OVX groups indicated that Drynaria rhizome could improve bone density. In the TMT-based proteomic analysis, the comparison of these two groups revealed a total of 126 differentially expressed proteins (DEPs), of which 62 were upregulated and 64 were downregulated. Further, by comparing the differential genes between the OVXDF and OVX groups and between the OVX and SHAM groups, we concluded that the 27 differential genes were significantly changed in the rats selected for the osteoporosis model after Drynaria rhizome intragastric administration. The gene ontology (GO) enrichment analysis of DEPs showed that molecular function was mainly involved in biological processes, such as glucose metabolism, carbohydrate metabolism, immune responses, and aging. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEPs revealed that multiple differential genes were enriched in the estrogen and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Relationships with nitrogen metabolism, glycerophospholipid metabolism, secretion systems, and tumor diseases were also observed. Western blotting was consistent with the analysis.
Conclusions::We used TMT-based proteomics to analyze the positive effects of TCM Drynaria rhizome, which can regulate related proteins through the unique roles of multiple mechanisms, targets, and pathways. This treatment approach can regulate oxidative stress, improve lipid metabolism, reduce the inflammatory response mechanism, and improve bone density. These benefits highlight the unique advantages of TCM in the treatment of primary osteoporosis.
作者简介
Hui Su
, Shandong University of Traditional Chinese Medicine
Email: info@benthamscience.net
Binghan Yan
, Shandong University of Traditional Chinese Medicine
Email: info@benthamscience.net
Ruochong Wang
-, Beijing University of Traditional Chinese Medicine
Email: info@benthamscience.net
Zhichao Li
, Shandong University of Traditional Chinese Medicine
Email: info@benthamscience.net
Zhanwang Xu
, Shandong University of Traditional Chinese Medicine
Email: info@benthamscience.net
Haipeng Xue
, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
编辑信件的主要联系方式.
Email: info@benthamscience.net
Guoqing Tan
, Shandong University of Traditional Chinese Medicine
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Lane, J.M.; Russell, L.; Khan, S.N. Osteoporosis. Clin. Orthop. Relat. Res., 2000, 372(372), 139-150. doi: 10.1097/00003086-200003000-00016 PMID: 10738423
- Coughlan, T.; Dockery, F. Osteoporosis and fracture risk in older people. Clin. Med. (Lond.), 2014, 14(2), 187-191. doi: 10.7861/clinmedicine.14-2-187 PMID: 24715132
- Lamichhane, A.P. Osteoporosis-an update. JNMA J. Nepal Med. Assoc., 2005, 44(158), 60-66. doi: 10.31729/jnma.404 PMID: 16568580
- Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ. Tech. Rep. Ser., 1994, 843, 1-129. PMID: 7941614
- Gambacciani, M.; Levancini, M. Management of postmenopausal osteoporosis and the prevention of fractures. Panminerva Med., 2014, 56(2), 115-131. doi: 10.2165/11587570-000000000-00000
- Eastell, R.; Walsh, J.S.; Watts, N.B.; Siris, E. Bisphosphonates for postmenopausal osteoporosis. Bone, 2011, 49(1), 82-88. doi: 10.1016/j.bone.2011.02.011 PMID: 21349354
- Hurley, D.L.; Khosla, S. Update on primary osteoporosis. Mayo Clin. Proc., 1997, 72(10), 943-949. doi: 10.1016/S0025-6196(11)63367-3 PMID: 9379699
- Chen, S.Q.; Liang, W.; Zhang, X.M.; Li, X.; Zhan, Z.L.; Guo, L.P.; Huang, L.Q.; Zhang, X.M.; Gao, W.Y. Research progress on chemical compositions and pharmacological action of Drynariae Rhizoma. Zhongguo Zhongyao Zazhi, 2021, 46(11), 2737-2745.
- Hu, Y.; Mu, P.; Ma, X.; Shi, J.; Zhong, Z.; Huang, L. Rhizoma drynariae total flavonoids combined with calcium carbonate ameliorates bone loss in experimentally induced Osteoporosis in rats via the regulation of Wnt3a/β-catenin pathway. J. Orthop. Surg. Res., 2021, 16(1), 702. doi: 10.1186/s13018-021-02842-3 PMID: 34863225
- Mu, P.; Hu, Y.; Ma, X.; Shi, J.; Zhong, Z.; Huang, L. Total flavonoids of Rhizoma Drynariae combined with calcium attenuate osteoporosis by reducing reactive oxygen species generation. Exp. Ther. Med., 2021, 21(6), 618. doi: 10.3892/etm.2021.10050 PMID: 33936275
- Yang, L.; Zhu, X.F.; Wang, P.P.; Zhang, R.H. Effects of drynariae rhizoma water-extraction on the ability of osteogenic differentiation and its mechanism Zhong Yao Cai, 2013, 36(8), 1287-1292.
- Mendes, M.L.; Dittmar, G. Targeted proteomics on its way to discovery. Proteomics, 2022, 22(15-16), 2100330. doi: 10.1002/pmic.202100330 PMID: 35816345
- Cifani, P.; Kentsis, A. 2017, Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics, 2017, 17(1-2), 201600079. doi: 10.1002/pmic.201600079
- Cheung, C.H.Y.; Juan, H.F. Quantitative proteomics in lung cancer. J. Biomed. Sci., 2017, 24(1), 37. doi: 10.1186/s12929-017-0343-y PMID: 28615068
- Blanchard, O.L.; Smoliga, J.M. Translating dosages from animal models to human clinical trialsrevisiting body surface area scaling. FASEB J., 2015, 29(5), 1629-1634. doi: 10.1096/fj.14-269043 PMID: 25657112
- Niamh, Clancy The Veterinary Nurses Practical Guide to Small Animal Anaesthesia; John Wiley & Sons: Hoboken, New Jersey, 2023.
- Reid, I.R.; Billington, E.O. Drug therapy for osteoporosis in older adults. Lancet, 2022, 399(10329), 1080-1092. doi: 10.1016/S0140-6736(21)02646-5 PMID: 35279261
- LeBoff, M.S.; Greenspan, S.L.; Insogna, K.L.; Lewiecki, E.M.; Saag, K.G.; Singer, A.J.; Siris, E.S. The clinicians guide to prevention and treatment of osteoporosis. Osteoporos. Int., 2022, 33(10), 2049-2102. doi: 10.1007/s00198-021-05900-y PMID: 35478046
- Yan, L.I. Effects of bone fragmentation hydration decoction on lipid differentiation of bone medullary stem cells in osteoporotic rats with osteoporosis removal by Wnt/β-catenin pathway. Chin. J. Trad. Chin. Med. Pharm., 2019, 37(2), 279-520.
- Haas, M.J.; Raheja, P.; Jaimungal, S.; Sheikh-Ali, M.; Mooradian, A.D. Estrogen-dependent inhibition of dextrose-induced endoplasmic reticulum stress and superoxide generation in endothelial cells. Free Radic. Biol. Med., 2012, 52(11-12), 2161-2167. doi: 10.1016/j.freeradbiomed.2012.04.009 PMID: 22569410
- Bolognese, M.A. SERMs and SERMs with estrogen for postmenopausal osteoporosis. Rev. Endocr. Metab. Disord., 2010, 11(4), 253-259. doi: 10.1007/s11154-010-9137-1 PMID: 20446043
- Kalervo Väänänen, H.; Härkönen, P.L. Estrogen and bone metabolism. Maturitas, 1996, 23(Suppl.), S65-S69. doi: 10.1016/0378-5122(96)01015-8 PMID: 8865143
- Levine, J.P. Long-term estrogen and hormone replacement therapy for the prevention and treatment of osteoporosis. Curr. Womens Health Rep., 2003, 3(3), 181-186. PMID: 12734027
- Wang, X.; Zhen, L.; Zhang, G.; Wong, M.S.; Qin, L.; Yao, X. Osteogenic effects of flavonoid aglycones from an osteoprotective fraction of Drynaria fortuneiAn in vitro efficacy study. Phytomedicine, 2011, 18(10), 868-872. doi: 10.1016/j.phymed.2011.01.022 PMID: 21377852
- Cui, J.; Shen, Y.; Li, R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol. Med., 2013, 19(3), 197-209. doi: 10.1016/j.molmed.2012.12.007 PMID: 23348042
- Xu, W.; Ni, C.; Wang, Y.; Zheng, G.; Zhang, J.; Xu, Y. Age-related trabecular bone loss is associated with a decline in serum Galectin-1 level. BMC Musculoskelet. Disord., 2021, 22(1), 394. doi: 10.1186/s12891-021-04272-y
- Hopwood, B.; Tsykin, A.; Findlay, D.M.; Fazzalari, N.L. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone, 2009, 44(1), 87-101. doi: 10.1016/j.bone.2008.08.120 PMID: 18840552
- Shi, S.; Lu, C.; Tian, H.; Ren, Y.; Chen, T. Primary Aldosteronism and Bone Metabolism: A Systematic Review and Meta-Analysis. Front. Endocrinol. (Lausanne), 2020, 11, 574151. doi: 10.3389/fendo.2020.574151
- Li, Y.; Jin, D.; Xie, W.; Wen, L.; Chen, W.; Xu, J.; Ding, J.; Ren, D. PPAR-γ and Wnt Regulate the Differentiation of MSCs into Adipocytes and Osteoblasts Respectively. Curr. Stem Cell Res. Ther., 2018, 13(3), 185-192. doi: 10.2174/1574888X12666171012141908 PMID: 29034841
- Qadir, A.; Liang, S.; Wu, Z.; Chen, Z.; Hu, L.; Qian, A. Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells. Int. J. Mol. Sci., 2020, 21(1), 349. doi: 10.3390/ijms21010349
- Giaginis, C.; Tsantili-Kakoulidou, A.; Theocharis, S. Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism. Fundam. Clin. Pharmacol., 2007, 21(3), 231-244. doi: 10.1111/j.1472-8206.2007.00486.x PMID: 17521292
- Vundavilli, H.; Tripathi, L.P.; Datta, A.; Mizuguchi, K. Network modeling and inference of peroxisome proliferator-activated receptor pathway in high fat diet-linked obesity. J. Theor. Biol., 2021, 519, 110647. doi: 10.1016/j.jtbi.2021.110647 PMID: 33640449
- Li, A.C.; Glass, C.K. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J. Lipid Res., 2004, 45(12), 2161-2173. doi: 10.1194/jlr.R400010-JLR200 PMID: 15489539
- Li, C.J.; Cheng, P.; Liang, M.K.; Chen, Y.S.; Lu, Q.; Wang, J.Y.; Xia, Z.Y.; Zhou, H.D.; Cao, X.; Xie, H.; Liao, E.Y.; Luo, X.H. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J. Clin. Invest., 2015, 125(4), 1509-1522. doi: 10.1172/JCI77716 PMID: 25751060
- Nuttall, M.; Gimble, J.M. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr. Opin. Pharmacol., 2004, 4(3), 290-294. doi: 10.1016/j.coph.2004.03.002 PMID: 15140422
- Han, L.; Zheng, F.; Zhang, Y.; Liu, E.; Li, W.; Xia, M.; Wang, T.; Gao, X. Triglyceride accumulation inhibitory effects of new chromone glycosides from Drynaria fortunei. Nat. Prod. Res., 2015, 29(18), 1703-1710. doi: 10.1080/14786419.2014.998216 PMID: 25571786
- Toptaş, B.; Kurt, Ö.; Aydoğan, H.Y.; Yaylim, I.; Zeybek, Ü.; Can, A.; Agachan, B.; Uyar, M.; Özyavuz, M.K.; İsbir, T. Investigation of the common paraoxonase 1 variants with paraoxonase activity on bone fragility in Turkish patients. Mol. Biol. Rep., 2013, 40(11), 6519-6524. doi: 10.1007/s11033-013-2770-5 PMID: 24057271
- Yilmaz, N.; Simsek, N.; Aydin, O.; Yardan, E.; Aslan, S.; Eren, E.; Yegin, A.; Buyukbas, S. Decreased paraoxonase 1, arylesterase enzyme activity, and enhanced oxidative stress in patients with mitral and aortic valve insufficiency. Clin. Lab., 2013, 59(05+06/2013), 597-604. doi: 10.7754/Clin.Lab.2012.120629 PMID: 23865359
- Yılmaz, N.; Eren, E. Homocysteine oxidative stress and relation to bone mineral density in post-menopausal osteoporosis. Aging Clin. Exp. Res., 2009, 21(4-5), 353-357. doi: 10.1007/BF03324927 PMID: 19959926
- Mazière, C.; Salle, V.; Gomila, C.; Mazière, J.C. Oxidized low density lipoprotein enhanced RANKL expression in human osteoblast-like cells. Involvement of ERK, NFkappaB and NFAT. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(10), 1756-1764. doi: 10.1016/j.bbadis.2013.05.033 PMID: 23756197
- Eren, E.; Yilmaz, N.; Aydin, O. Functionally defective high-density lipoprotein and paraoxonase: A couple for endothelial dysfunction in atherosclerosis. Cholesterol, 2013, 2013, 1-10. doi: 10.1155/2013/792090 PMID: 24222847
- Mackinnon, E.S.; El-Sohemy, A.; Rao, A.V.; Rao, L.G. Paraoxonase 1 polymorphisms 172T→A and 584A→G modify the association between serum concentrations of the antioxidant lycopene and bone turnover markers and oxidative stress parameters in women 25-70 years of age. Lifestyle Genomics, 2010, 3(1), 1-8. doi: 10.1159/000316636 PMID: 20664283
- Hamel, P.; Abed, E.; Brissette, L.; Moreau, R. Characterization of oxidized low-density lipoprotein-induced hormesis-like effects in osteoblastic cells. Am. J. Physiol. Cell Physiol., 2008, 294(4), C1021-C1033. doi: 10.1152/ajpcell.00361.2007 PMID: 18287334
- Townsend, S.A.; Newsome, P.N. Review article: New treatments in non‐alcoholic fatty liver disease. Aliment. Pharmacol. Ther., 2017, 46(5), 494-507. doi: 10.1111/apt.14210 PMID: 28677333
- Riker, A.I.; Enkemann, S.A.; Fodstad, O.; Liu, S.; Ren, S.; Morris, C.; Xi, Y.; Howell, P.; Metge, B.; Samant, R.S.; Shevde, L.A.; Li, W.; Eschrich, S.; Daud, A.; Ju, J.; Matta, J. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med. Genomics, 2008, 1(1), 13. doi: 10.1186/1755-8794-1-13 PMID: 18442402
- Hu, L.P.; Zhang, X.X.; Jiang, S.H.; Tao, L.Y.; Li, Q.; Zhu, L.L.; Yang, M.W.; Huo, Y.M.; Jiang, Y.S.; Tian, G.A.; Cao, X.Y.; Zhang, Y.L.; Yang, Q.; Yang, X.M.; Wang, Y.H.; Li, J.; Xiao, G.G.; Sun, Y.W.; Zhang, Z.G. Targeting Purinergic Receptor P2Y2 Prevents the Growth of Pancreatic Ductal Adenocarcinoma by Inhibiting Cancer Cell Glycolysis. Clin. Cancer Res., 2019, 25(4), 1318-1330. doi: 10.1158/1078-0432.CCR-18-2297 PMID: 30420446
- OSullivan, S.; Naot, D.; Callon, K.; Porteous, F.; Horne, A.; Wattie, D.; Watson, M.; Cornish, J.; Browett, P.; Grey, A. Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell-dependent mechanisms. J. Bone Miner. Res., 2007, 22(11), 1679-1689. doi: 10.1359/jbmr.070719 PMID: 17663639
- Shangguan, Y.; Wu, Z.; Xie, X.; Zhou, S.; He, H.; Xiao, H.; Liu, L.; Zhu, J.; Chen, H.; Han, H.; Wang, H.; Chen, L. Low-activity programming of the PDGFRβ/FAK pathway mediates H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring rats after prenatal dexamethasone exposure. Biochem. Pharmacol., 2021, 185, 114414. doi: 10.1016/j.bcp.2021.114414 PMID: 33434537
- Morán, C.E.; Sosa, E.G.; Martinez, S.M.; Geldern, P.; Messina, D.; Russo, A.; Boerr, L.; Bai, J.C. Bone mineral density in patients with pancreatic insufficiency and steatorrhea. Am. J. Gastroenterol., 1997, 92(5), 867-871. PMID: 9149203
- Haaber, A.B.; Rosenfalck, A.M.; Hansen, B.; Hilsted, J.; Larsen, S. Bone mineral metabolism, bone mineral density, and body composition in patients with chronic pancreatitis and pancreatic exocrine insufficiency. Int. J. Gastrointest. Cancer, 2000, 27(1), 21-28. doi: 10.1385/IJGC:27:1:21 PMID: 10811020
- Dujsíková, H.; Novotný, I.; Tomandl, J.; Díte, P. Chronická pankreatitida a skelet. Vnitr. Lek., 2010, 56(7), 656-662. PMID: 20842908
- Loomes, K.M.; Spino, C.; Goodrich, N.P.; Hangartner, T.N.; Marker, A.E.; Heubi, J.E.; Kamath, B.M.; Shneider, B.L.; Rosenthal, P.; Hertel, P.M.; Karpen, S.J.; Molleston, J.P.; Murray, K.F.; Schwarz, K.B.; Squires, R.H.; Teckman, J.; Turmelle, Y.P.; Alonso, E.M.; Sherker, A.H.; Magee, J.C.; Sokol, R.J. Bone Density in Children With Chronic Liver Disease Correlates With Growth and Cholestasis. Hepatology, 2019, 69(1), 245-257. doi: 10.1002/hep.30196 PMID: 30063078
- Xu, B.; He, Y.; Lu, Y.; Ren, W.; Shen, J.; Wu, K.; Xu, K.; Wu, J.; Hu, Y. Glucagon like peptide 2 has a positive impact on osteoporosis in ovariectomized rats. Life Sci., 2019, 226, 47-56. doi: 10.1016/j.lfs.2019.04.013 PMID: 30959027
- Eriksson, R.; Broberg, B.V. Ishøy, PL Bone Status in Obese, Non-diabetic, Antipsychotic-Treated Patients, and Effects of the Glucagon-Like Peptide-1 Receptor Agonist Exenatide on Bone Turnover Markers and Bone Mineral Density. Front. Psychiatry, 2019, 9, 781. doi: 10.3389/fpsyt.2018.00781
- Li, F.; Meng, F.; Xiong, Z.; Li, Y.; Liu, R.; Liu, H. Stimulative activity of Drynaria fortunei (Kunze) J. Sm. extracts and two of its flavonoids on the proliferation of osteoblastic like cells. Pharmazie, 2006, 61(11), 962-965. PMID: 17152991
- Yang, L.; Zhu, X.F.; Wang, P.P.; Zhang, R.H. Effects of drynariae rhizoma water-extraction on the ability of osteogenic differentiation and its mechanism. Zhong Yao Cai, 2013, 36(8), 1287-1292. PMID: 24558828
- Yoon, W.J.; Islam, R.; Cho, Y.D.; Woo, K.M.; Baek, J.H.; Uchida, T.; Komori, T.; van Wijnen, A.; Stein, J.L.; Lian, J.B.; Stein, G.S.; Choi, J.Y.; Bae, S.C.; Ryoo, H.M. Pin1-mediated Runx2 modification is critical for skeletal development. J. Cell. Physiol., 2013, 228(12), 2377-2385. doi: 10.1002/jcp.24403 PMID: 23702614
- Bartelt, A.; Behler-Janbeck, F.; Beil, F.T. Lrp1 in osteoblasts controls osteoclast activity and protects against osteoporosis by limiting PDGF-RANKL signaling., 2018, Lrp1 in osteoblasts controls osteoclast activity and protects against osteoporosis by limiting PDGF-RANKL signaling. Bone Res., 2018, 6(4) doi: 10.1038/s41413-017-0006-3
- Cho, E.; Jin-Kyung, L.; Jee-Young, L. BCPA {N, N′-1,4-Butanediylbis3-(2-chlorophenyl)acrylamide} Inhibits Osteoclast Differentiation through Increased Retention of Peptidyl-Prolyl cis-trans Isomerase Never in Mitosis A-Interacting 1. Int. J. Mol. Sci., 2018, 19(11), 3436. doi: 10.3390/ijms19113436
- Bartelt, A.; Behler-Janbeck, F.; Beil, F.T. Lrp1 in osteoblasts controls osteoclast activity and protects against osteoporosis by limiting PDGF-RANKL signaling. Bone Res., 2018, 6(4) doi: 10.1038/s41413-017-0006-3
- Shen, Z.; Chen, Z. Li, Z Total Flavonoids of Rhizoma Drynariae Enhances Angiogenic-Osteogenic Coupling During Distraction Osteogenesis by Promoting Type H Vessel Formation Through PDGF-BB/PDGFR-β Instead of HIF-1α/VEGF Axis. Front. Pharmacol., 2020, 11(503524) doi: 10.3389/fphar.2020.503524
- Maruyama, T.; Jiang, M.; Abbott, A.; Yu, H.M.I.; Huang, Q.; Chrzanowska-Wodnicka, M.; Chen, E.I.; Hsu, W. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development. J. Bone Miner. Res., 2017, 32(9), 1816-1828. doi: 10.1002/jbmr.3171 PMID: 28520221
- Li, J.; Li, Y.; Wang, S.; Che, H.; Wu, J.; Ren, Y. miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates. BMB Rep., 2019, 52(9), 572-576. doi: 10.5483/BMBRep.2019.52.9.076 PMID: 31462380
- Andersen, T.L.; del Carmen Ovejero, M.; Kirkegaard, T.; Lenhard, T.; Foged, N.T.; Delaissé, J.M. A scrutiny of matrix metalloproteinases in osteoclasts: Evidence for heterogeneity and for the presence of MMPs synthesized by other cells. Bone, 2004, 35(5), 1107-1119. doi: 10.1016/j.bone.2004.06.019 PMID: 15542036
- Martignetti, J.A.; Aqeel, A.A.; Sewairi, W.A.; Boumah, C.E.; Kambouris, M.; Mayouf, S.A.; Sheth, K.V.; Eid, W.A.; Dowling, O.; Harris, J.; Glucksman, M.J.; Bahabri, S.; Meyer, B.F.; Desnick, R.J. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat. Genet., 2001, 28(3), 261-265. doi: 10.1038/90100 PMID: 11431697
- Jiang, L.; Sheng, K.; Wang, C.; Xue, D.; Pan, Z. The Effect of MMP-2 Inhibitor 1 on Osteogenesis and Angiogenesis During Bone Regeneration. Front. Cell Dev. Biol., 2021, 8(596783) doi: 10.3389/fcell.2020.596783
- Zheng, X.; Zhang, Y.; Guo, S.; Zhang, W.; Wang, J.; Lin, Y. Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy induced osteoporosis rats. Exp. Ther. Med., 2018, 16(3), 1807-1813. doi: 10.3892/etm.2018.6356 PMID: 30186405
- Sun, B.; Sun, J.; Han, X.; Liu, H.; Li, J.; Du, J.; Feng, W.; Liu, B.; Cui, J.; Guo, J.; Amizuka, N.; Li, M. Immunolocalization of MMP 2, 9 and 13 in prednisolone induced osteoporosis in mice. Histol. Histopathol., 2016, 31(6), 647-656. doi: 10.14670/HH-11-702 PMID: 26636416
- Guo, L.J.; Luo, X.H.; Wu, X.P.; Xie, H.; Zhou, H.D.; Zhang, H.; Cao, X.Z.; Liao, E.Y. Relationships between circulating matrix metalloproteinase-1, -2 and metalloproteinase-1 levels and bone biochemical markers and bone mineral density in Chinese postmenopausal women. Zhonghua Yi Xue Za Zhi, 2005, 85(11), 734-737. PMID: 15949377
- Yang, W.S.; Lee, W.J.; Huang, K.C.; Lee, K.C.; Chao, C.L.; Chen, C.L.; Tai, T.Y.; Chuang, L.M. mRNA levels of the insulin-signaling molecule SORBS1 in the adipose depots of nondiabetic women. Obes. Res., 2003, 11(4), 586-590. doi: 10.1038/oby.2003.82 PMID: 12690089
- Lin, W.H.; Chiu, K.C.; Chang, H.M.; Lee, K.C.; Tai, T.Y.; Chuang, L.M. Molecular scanning of the human sorbin and SH3-domain-containing-1 (SORBS1) gene: Positive association of the T228A polymorphism with obesity and type 2 diabetes. Hum. Mol. Genet., 2001, 10(17), 1753-1760. doi: 10.1093/hmg/10.17.1753 PMID: 11532984
- Xu, Y.; Xin, R. Sun, H Long Non-coding RNAs LOC100126784 and POM121L9P Derived From Bone Marrow Mesenchymal Stem Cells Enhance Osteogenic Differentiation via the miR-503-5p/SORBS1 Axis. Front. Cell Dev. Biol., 2021, 9, 723759. doi: 10.3389/fcell.2021.723759
- Qin, S.; Song, G.; Yu, Y. Phospholipid transfer protein in diabetes, metabolic syndrome and obesity. Cardiovasc. Hematol. Disord. Drug Targets, 2014, 14(2), 149-153. doi: 10.2174/1871529X1402140807144435 PMID: 25107452
- Scheideler, M.; Elabd, C.; Zaragosi, L.E. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics, 2008, 9(1), 340. doi: 10.1186/1471-2164-9-340
- Feng, H.; Schorpp, K.; Jin, J.; Yozwiak, C.E.; Hoffstrom, B.G.; Decker, A.M.; Rajbhandari, P.; Stokes, M.E.; Bender, H.G.; Csuka, J.M.; Upadhyayula, P.S.; Canoll, P.; Uchida, K.; Soni, R.K.; Hadian, K.; Stockwell, B.R. Transferrin Receptor Is a Specific Ferroptosis Marker. Cell Rep., 2020, 30(10), 3411-3423.e7. doi: 10.1016/j.celrep.2020.02.049 PMID: 32160546
补充文件
