Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects
- Authors: Pandey V.1, Singh S.2
-
Affiliations:
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University
- Institute of Pharmaceutical Research, GLA University
- Issue: Vol 27, No 12 (2024)
- Pages: 1701-1715
- Section: Chemistry
- URL: https://rjpbr.com/1386-2073/article/view/643940
- DOI: https://doi.org/10.2174/0113862073300371240229100613
- ID: 643940
Cite item
Full Text
Abstract
Heat stress impacts plant growth at all phases of development, although the particular threshold for heat tolerance varies significantly across different developmental stages. During seed germination, elevated temperatures can either impede or completely halt the process, contingent upon the plant type and the severity of the stress. During advanced stages, high temperatures can have a negative impact on photosynthesis, respiration, water balance, and membrane integrity. Additionally, they can also influence the levels of hormones and primary and secondary metabolites. In addition, during the growth and development of plants, there is an increased expression of various heat shock proteins, as well as other proteins related to stress, and the generation of reactive oxygen species (ROS). These are significant plant responses to heat stress. Plants employ several strategies to deal with heat stress, such as maintaining the stability of their cell membranes, removing harmful reactive oxygen species (ROS), producing antioxidants, accumulating and adjusting compatible solutes, activating mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, crucially, signaling through chaperones and activating transcription. These molecular-level systems boost the ability of plants to flourish in heat stress. Potential genetic methods to enhance plant heat stress resistance encompass old and modern molecular breeding techniques and transgenic approaches, all of which rely on a comprehensive comprehension of these systems. Although several plants exhibit enhanced heat tolerance through traditional breeding methods, the effectiveness of genetic transformation techniques has been somewhat restricted. The latter results from the current constraints in our understanding and access to genes that have known impacts on plant heat stress tolerance. However, these challenges may be overcome in the future. Besides genetic methods, crops' heat tolerance can be improved through the pre-treatment of plants with various environmental challenges or the external application of osmoprotectants such as glycine betaine and proline. Thermotolerance is achieved through an active process in which plants allocate significant energy to maintain their structure and function to avoid damage induced by heat stress. The practice of nanoparticles has been shown to upgrade both the standard and the quantity of produce when crops are under heat stress. This review provides information on the effects of heat stress on plants and explores the importance of nanoparticles, transgenics, and genomic techniques in reducing the negative consequences of heat stress. Furthermore, it explores how plants might adapt to heat stress by modifying their biochemical, physiological, and molecular reactions.
About the authors
Vineeta Pandey
Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University
Author for correspondence.
Email: info@benthamscience.net
Sonia Singh
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
References
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain., 2019, 2(2), 95-96. doi: 10.1007/s42398-019-00078-w
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Cur-rent status, challenges and future opportunities. Sci. Total Environ., 2020, 721, 137778. doi: 10.1016/j.scitotenv.2020.137778 PMID: 32179352
- Patakas, A. Abiotic stress-induced morphological and anatomical changes in plants. In: Abiotic stress responses in plants; Springer: New York, 2012; pp. 21-39. doi: 10.1007/978-1-4614-0634-1_2
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci., 2013, 4, 273. doi: 10.3389/fpls.2013.00273 PMID: 23914193
- Kai, H.; Iba, K. Temperature stress in plants. In: Temperature Stress in Plants; 1st ed John Wiley & Sons, Ltd, 2014. doi: 10.1002/9780470015902.a0001320.pub2
- Kollist, H.; Zandalinas, S.I.; Sengupta, S.; Nuhkat, M.; Kangasjärvi, J.; Mittler, R. Rapid responses to abiotic stress: Priming the landscape for the signal transduction network. Trends Plant Sci., 2019, 24(1), 25-37. doi: 10.1016/j.tplants.2018.10.003 PMID: 30401516
- Khan, S.; Anwar, S.; Ashraf, M.Y.; Khaliq, B.; Sun, M.; Hussain, S.; Gao, Z.; Noor, H.; Alam, S. Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants, 2019, 8(11), 508. doi: 10.3390/plants8110508 PMID: 31731732
- Suzuki, N. Temperature stress and responses in plants. Int. J. Mol. Sci., 2019, 20(8), 2001. doi: 10.3390/ijms20082001 PMID: 31022827
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 2019, 24(14), 2558. doi: 10.3390/molecules24142558 PMID: 31337070
- Singh, A.; Tiwari, S.; Pandey, J.; Lata, C.; Singh, I.K. Role of nanoparticles in crop improvement and abiotic stress management. J. Biotechnol., 2021, 337, 57-70. doi: 10.1016/j.jbiotec.2021.06.022 PMID: 34175328
- Sajid, M.; Rashid, B.; Ali, Q.; Husnain, T. Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biol. Plant., 2018, 62(3), 409-420. doi: 10.1007/s10535-018-0795-2
- Srivastava, S.; Pathak, A.D.; Gupta, P.S.; Shrivastava, A.K.; Srivastava, A.K. Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J. Environ. Biol., 2012, 33(3), 657-661. PMID: 23029918
- Adams, S.; Cockshull, K.E.; Cave, C.R. Effect of temperature on the growth and development of tomato fruits. Ann. Bot., 2001, 88(5), 869-877. doi: 10.1006/anbo.2001.1524
- Nievola, C.C.; Carvalho, C.P.; Carvalho, V.; Rodrigues, E. Rapid responses of plants to temperature changes. Temperature, 2017, 4(4), 371-405. doi: 10.1080/23328940.2017.1377812 PMID: 29435478
- Biamonti, G.; Caceres, J.F. Cellular stress and RNA splicing. Trends Biochem. Sci., 2009, 34(3), 146-153. doi: 10.1016/j.tibs.2008.11.004 PMID: 19208481
- Vabulas, R.M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol., 2010, 2(12), a004390. doi: 10.1101/cshperspect.a004390 PMID: 21123396
- Driedonks, N.; Xu, J.; Peters, J.L.; Park, S.; Rieu, I. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front. Plant Sci., 2015, 6, 999. doi: 10.3389/fpls.2015.00999 PMID: 26635827
- Gupta, S.C.; Sharma, A.; Mishra, M.; Mishra, R.K.; Chowdhuri, D.K. Heat shock proteins in toxicology: How close and how far? Life Sci., 2010, 86(11-12), 377-384. doi: 10.1016/j.lfs.2009.12.015 PMID: 20060844
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress re-sponse. Trends Plant Sci., 2004, 9(5), 244-252. doi: 10.1016/j.tplants.2004.03.006 PMID: 15130550
- Gao, J.; Zhang, W.; Dang, W.; Mou, Y.; Gao, Y.; Sun, B.J.; Du, W.G. Heat shock protein expression enhances heat tolerance of reptile embryos. Proc Biol Sci., 1791, 281(1791), 20141135.
- Verghese, J.; Abrams, J.; Wang, Y.; Morano, K.A. Biology of the heat shock response and protein chaperones: Budding yeast (Saccharo-myces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev., 2012, 76(2), 115-158. doi: 10.1128/MMBR.05018-11 PMID: 22688810
- Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci., 2005, 62(6), 670-684. doi: 10.1007/s00018-004-4464-6 PMID: 15770419
- Li, Z.G. Mechanisms of plant adaptation and tolerance to heat stress. In: Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II; Springer: Singapore, 2020; pp. 39-59. doi: 10.1007/978-981-15-2172-0_3
- Wayne, N.; Mishra, P.; Bolon, D.N. Hsp90 and client protein maturation. In: Molecular Chaperones. Methods in Molecular Biology; Humana Press., 2011; 787, p. 33-44. doi: 10.1007/978-1-61779-295-3_3
- Liu, J.J.; Ekramoddoullah, A.K.M. The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in re-sponse to biotic and abiotic stresses. Physiol. Mol. Plant Pathol., 2006, 68(1-3), 3-13. doi: 10.1016/j.pmpp.2006.06.004
- Webster, J.M.; Darling, A.L.; Uversky, V.N.; Blair, L.J. Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front. Pharmacol., 2019, 10, 1047. doi: 10.3389/fphar.2019.01047 PMID: 31619995
- Mishra, D.; Shekhar, S.; Singh, D.; Chakraborty, S.; Chakraborty, N. Heat shock proteins and abiotic stress tolerance in plants. In: Regulation of Heat Shock Protein Responses. Heat Shock Proteins; Springer: Cham, 2018; pp. 41-69. doi: 10.1007/978-3-319-74715-6_3
- Morimoto, R.I.; Santoro, M.G. Stressinducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nat. Biotechnol., 1998, 16(9), 833-838. doi: 10.1038/nbt0998-833 PMID: 9743115
- Larkindale, J.; Hall, J.D.; Knight, M.R.; Vierling, E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol., 2005, 138(2), 882-897. doi: 10.1104/pp.105.062257 PMID: 15923322
- van Montfort, R.L.M.; Basha, E.; Friedrich, K.L.; Slingsby, C.; Vierling, E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol., 2001, 8(12), 1025-1030. doi: 10.1038/nsb722 PMID: 11702068
- Asthir, B. Protective mechanisms of heat tolerance in crop plants. J. Plant Interact., 2015, 10(1), 202-210. doi: 10.1080/17429145.2015.1067726
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322. doi: 10.1104/pp.106.077073 PMID: 16760481
- Savicka, M.; kute, N. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seed-lings (Triticum aestivum L.). Ekologija (Liet. Moksl. Akad.), 2010, 56(1), 26-33. doi: 10.2478/v10055-010-0004-x
- Zulfiqar, F.; Akram, N.A.; Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta, 2020, 251(1), 3. doi: 10.1007/s00425-019-03293-1 PMID: 31776765
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants, 2019, 8(4), 94. doi: 10.3390/antiox8040094 PMID: 30965652
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2014, 2, 53. doi: 10.3389/fenvs.2014.00053
- Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Hussain, S.J.; Khan, N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot., 2018, 145, 104-120. doi: 10.1016/j.envexpbot.2017.11.004
- Figueroa-Soto, C.G.; Valenzuela-Soto, E.M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie, 2018, 147, 89-97. doi: 10.1016/j.biochi.2018.01.002 PMID: 29366935
- Rasheed, R.; Wahid, A.; Farooq, M.; Hussain, I.; Basra, S.M.A. Role of proline and glycinebetaine pretreatments in improving heat toler-ance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul., 2011, 65(1), 35-45. doi: 10.1007/s10725-011-9572-3
- Allakhverdiev, S.I.; Los, D.A.; Mohanty, P.; Nishiyama, Y.; Murata, N. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim. Biophys. Acta Bioenerg., 2007, 1767(12), 1363-1371. doi: 10.1016/j.bbabio.2007.10.005 PMID: 17991419
- Rontein, D.; Basset, G.; Hanson, A.D. Metabolic engineering of osmoprotectant accumulation in plants. Metab. Eng., 2002, 4(1), 49-56. doi: 10.1006/mben.2001.0208 PMID: 11800574
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, 51(1), 463-499. doi: 10.1146/annurev.arplant.51.1.463 PMID: 15012199
- Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal., 2013, 19(9), 998-1011. doi: 10.1089/ars.2012.5074 PMID: 23581681
- Foyer, C.H. Redox homeostasis: Opening up ascorbate transport. Nat. Plants, 2015, 1(1), 14012. doi: 10.1038/nplants.2014.12 PMID: 27246058
- Munné-Bosch, S. Linking tocopherols with cellular signaling in plants. New Phytol., 2005, 166(2), 363-366. doi: 10.1111/j.1469-8137.2005.01411.x PMID: 15819901
- Choe, E.; Min, D.B. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. Food Saf., 2009, 8(4), 345-358. doi: 10.1111/j.1541-4337.2009.00085.x
- Chen, Z.; Galli, M.; Gallavotti, A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr. Opin. Plant Biol., 2022, 65, 102134. doi: 10.1016/j.pbi.2021.102134 PMID: 34749068
- Larkindale, J.; Huang, B. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol., 2004, 161(4), 405-413. doi: 10.1078/0176-1617-01239 PMID: 15128028
- Larkindale, J.; Knight, M.R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, eth-ylene, and salicylic acid. Plant Physiol., 2002, 128(2), 682-695. doi: 10.1104/pp.010320 PMID: 11842171
- Wang, J.; Huang, R. Modulation of ethylene and ascorbic acid on reactive oxygen species scavenging in plant salt response. Front. Plant Sci., 2019, 10, 319. doi: 10.3389/fpls.2019.00319 PMID: 30936887
- Devireddy, A.R.; Zandalinas, S.I.; Fichman, Y.; Mittler, R. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J., 2021, 105(2), 459-476. doi: 10.1111/tpj.15010 PMID: 33015917
- Wang, X.; Zhuang, L.; Shi, Y.; Huang, B. Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fes-cue and Arabidopsis. Int. J. Mol. Sci., 2017, 18(9), 1981. doi: 10.3390/ijms18091981 PMID: 28914758
- Nolan, T.M.; Vukainović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, develop-ment, and stress responses. Plant Cell, 2020, 32(2), 295-318. doi: 10.1105/tpc.19.00335 PMID: 31776234
- Kothari, A.; Lachowiec, J. Roles of brassinosteroids in mitigating heat stress damage in cereal crops. Int. J. Mol. Sci., 2021, 22(5), 2706. doi: 10.3390/ijms22052706 PMID: 33800127
- Khalil, R.; Haroun, S.; Bassyoini, F.; Nagah, A.; Yusuf, M. Salicylic acid in combination with kinetin or calcium ameliorates heavy metal stress in Phaseolus vulgaris plant. J. Agric. Food Res., 2021, 5, 100182. doi: 10.1016/j.jafr.2021.100182
- Scott, I.M.; Clarke, S.M.; Wood, J.E.; Mur, L.A.J. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol., 2004, 135(2), 1040-1049. doi: 10.1104/pp.104.041293 PMID: 15173571
- Clarke, S.M.; Mur, L.A.J.; Wood, J.E.; Scott, I.M. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J., 2004, 38(3), 432-447. doi: 10.1111/j.1365-313X.2004.02054.x PMID: 15086804
- Savada, R.P.; Ozga, J.A.; Jayasinghege, C.P.A.; Waduthanthri, K.D.; Reinecke, D.M. Heat stress differentially modifies ethylene biosynthe-sis and signaling in pea floral and fruit tissues. Plant Mol. Biol., 2017, 95(3), 313-331. doi: 10.1007/s11103-017-0653-1 PMID: 28861701
- Jegadeesan, S.; Chaturvedi, P.; Ghatak, A.; Pressman, E.; Meir, S.; Faigenboim, A.; Rutley, N.; Beery, A.; Harel, A.; Weckwerth, W.; Firon, N. Proteomics of heat-stress and ethylene-mediated thermotolerance mechanisms in tomato pollen grains. Front. Plant Sci., 2018, 9, 1558. doi: 10.3389/fpls.2018.01558 PMID: 30483278
- Wu, Y.S.; Yang, C.Y. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot. Stud., 2019, 60(1), 23. doi: 10.1186/s40529-019-0272-z PMID: 31549254
- Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.Z.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J. Samaha, RR Creelman 8. Ara-bidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499), 2105-2110.
- Kotak, S.; Vierling, E.; Bäumlein, H.; Koskull-Döring, P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell, 2007, 19(1), 182-195. doi: 10.1105/tpc.106.048165 PMID: 17220197
- Heerklotz, D.; Döring, P.; Bonzelius, F.; Winkelhaus, S.; Nover, L. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol. Cell. Biol., 2001, 21(5), 1759-1768. doi: 10.1128/MCB.21.5.1759-1768.2001 PMID: 11238913
- Nover, L. Bharti, K.; Döring, P.; Mishra, S.K.; Ganguli, A.; Scharf, K.D. - Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress Chaperones, 2001, 6(3), 177-189. doi: 10.1379/1466-1268(2001)0062.0.CO;2 PMID: 11599559
- Parankusam, S.; Adimulam, S.S.; Bhatnagar-Mathur, P.; Sharma, K.K. Nitric oxide (NO) in plant heat stress tolerance: Current knowledge and perspectives. Front. Plant Sci., 2017, 8, 1582. doi: 10.3389/fpls.2017.01582 PMID: 28955368
- Liu, X.H.; Lyu, Y.S.; Yang, W.; Yang, Z.T.; Lu, S.J.; Liu, J.X. A membrane‐associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol. J., 2020, 18(5), 1317-1329. doi: 10.1111/pbi.13297 PMID: 31733092
- Mishra, S.K.; Tripp, J.; Winkelhaus, S.; Tschiersch, B.; Theres, K.; Nover, L.; Scharf, K.D. In the complex family of heat stress transcrip-tion factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev., 2002, 16(12), 1555-1567. doi: 10.1101/gad.228802 PMID: 12080093
- Yokotani, N.; Ichikawa, T.; Kondou, Y.; Matsui, M.; Hirochika, H.; Iwabuchi, M.; Oda, K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 2008, 227(5), 957-967. doi: 10.1007/s00425-007-0670-4 PMID: 18064488
- Sehgal, A.; Sita, K.; Nayyar, H. Heat stress in plants: Sensing and defense mechanisms. J. Plant Sci. Res., 2016, 32(2), 195.
- Friant, S.; Meier, K.D.; Riezman, H. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock pro-tein induction. EMBO J., 2003, 22(15), 3783-3791. doi: 10.1093/emboj/cdg375 PMID: 12881413
- Ortiz, C.; Cardemil, L. Heat-shock responses in two leguminous plants: A comparative study. J. Exp. Bot., 2001, 52(361), 1711-1719. PMID: 11479337
- Liu, J.G.; Qin, Q.; Zhang, Z.; Peng, R.H.; Xiong, A.S.; Chen, J.M.; Yao, Q.H. OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep., 2009, 42(1), 16-21. doi: 10.5483/BMBRep.2009.42.1.016 PMID: 19192388
- Tang, Y.; Gao, C.C.; Gao, Y.; Yang, Y.; Shi, B.; Yu, J.L.; Lyu, C.; Sun, B.F.; Wang, H.L.; Xu, Y.; Yang, Y.G.; Chong, K. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev. Cell, 2020, 53(3), 272-286.e7. doi: 10.1016/j.devcel.2020.03.009 PMID: 32275888
- Singh, A.; Mittal, D.; Lavania, D.; Agarwal, M.; Mishra, R.C.; Grover, A. OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperones, 2012, 17(2), 243-254. doi: 10.1007/s12192-011-0303-5 PMID: 22147560
- Li, H.W.; Zang, B.S.; Deng, X.W.; Wang, X.P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234(5), 1007-1018. doi: 10.1007/s00425-011-1458-0 PMID: 21698458
- Alia, H.H.; Hayashi, H.; Sakamoto, A.; Murata, N. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineer-ing of the synthesis of glycinebetaine. Plant J., 1998, 16(2), 155-161. doi: 10.1046/j.1365-313x.1998.00284.x PMID: 9839462
- Foresi, N.; Mayta, M.L.; Lodeyro, A.F.; Scuffi, D.; Correa-Aragunde, N.; García-Mata, C.; Casalongué, C.; Carrillo, N.; Lamattina, L. Ex-pression of the tetrahydrofolate‐dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant J., 2015, 82(5), 806-821. doi: 10.1111/tpj.12852 PMID: 25880454
- Feng, L.; Han, Y.; Liu, G.; An, B.; Yang, J.; Yang, G.; Li, Y.; Zhu, Y. Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct. Plant Biol., 2007, 34(9), 822-834. doi: 10.1071/FP07074 PMID: 32689410
- Wei, H.; Liu, J.; Wang, Y.; Huang, N.; Zhang, X.; Wang, L.; Zhang, J.; Tu, J.; Zhong, X. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48°C high temperature at seedling stage. J. Hered., 2013, 104(2), 287-294. doi: 10.1093/jhered/ess103 PMID: 23258571
- El-kereamy, A.; Bi, Y.M.; Ranathunge, K.; Beatty, P.H.; Good, A.G.; Rothstein, S.J. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One, 2012, 7(12), e52030. doi: 10.1371/journal.pone.0052030 PMID: 23251677
- Hossain, M.A.; Cho, J.I.; Han, M.; Ahn, C.H.; Jeon, J.S.; An, G.; Park, P.B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J. Plant Physiol., 2010, 167(17), 1512-1520. doi: 10.1016/j.jplph.2010.05.008 PMID: 20576316
- Kan, Y.; Mu, X.R.; Zhang, H.; Gao, J.; Shan, J.X.; Ye, W.W.; Lin, H.X. TT2 controls rice thermotolerance through SCT1-dependent altera-tion of wax biosynthesis. Nat. Plants, 2021, 8(1), 53-67. doi: 10.1038/s41477-021-01039-0 PMID: 34992240
- Zhang, H.; Zhou, J.F.; Kan, Y.; Shan, J.X.; Ye, W.W.; Dong, N.Q.; Guo, T.; Xiang, Y.H.; Yang, Y.B.; Li, Y.C.; Zhao, H.Y.; Yu, H.X.; Lu, Z.Q.; Guo, S.Q.; Lei, J.J.; Liao, B.; Mu, X.R.; Cao, Y.J.; Yu, J.J.; Lin, Y.; Lin, H.X. A genetic module at one locus in rice protects chloro-plasts to enhance thermotolerance. Science, 2022, 376(6599), 1293-1300. doi: 10.1126/science.abo5721 PMID: 35709289
- Woldegiorgis, S.T.; Wu, T.; Gao, L.; Huang, Y.; Zheng, Y.; Qiu, F.; Xu, S.; Tao, H.; Harrison, A.; Liu, W.; He, H. Identification of heat-tolerant genes in non-reference sequences in rice by integrating pan-genome, transcriptomics, and QTLs. Genes (Basel), 2022, 13(8), 1353. doi: 10.3390/genes13081353 PMID: 36011264
- Guo, W.; Zhang, J.; Zhang, N.; Xin, M.; Peng, H.; Hu, Z.; Ni, Z.; Du, J. The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS One, 2015, 10(8), e0135667. doi: 10.1371/journal.pone.0135667 PMID: 26305210
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. Int. J. Mol. Sci., 2020, 22(1), 117. doi: 10.3390/ijms22010117 PMID: 33374376
- Sanghera, G.S.; Wani, S.H.; Hussain, W.; Singh, N.B. Engineering cold stress tolerance in crop plants. Curr. Genomics, 2011, 12(1), 30-43. doi: 10.2174/138920211794520178 PMID: 21886453
- Yashveer, S.; Redhu, N.; Singh, V.; Sangwan, S.; Laxman, H.; Tokas, J.; Malhotra, S.; Khurana, S.; Sindhu, A. Nanoparticles in agriculture: Characterization, uptake and role in mitigating heat stress. NRFHH, 2022, 2(2), 160-181. doi: 10.53365/nrfhh/144175
- Singh, S.; Singh, B.K.; Yadav, S.M.; Gupta, A.K. Applications of nanotechnology in agricultural and their role in disease management. Res. J. Nanosci. Nanotechnol., 2015, 5(1), 1-5. doi: 10.3923/rjnn.2015.1.5
- Rizwan, M.; Ali, S.; Adrees, M.; Ibrahim, M.; Tsang, D.C.W. Zia-ur-Rehman, M.; Zahir, Z.A.; Rinklebe, J.; Tack, F.M.G.; Ok, Y.S. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 2017, 182, 90-105. doi: 10.1016/j.chemosphere.2017.05.013 PMID: 28494365
- Abdoli, S.; Ghassemi-Golezani, K.; Alizadeh-Salteh, S. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ. Sci. Pollut. Res. Int., 2020, 27(29), 36939-36953. doi: 10.1007/s11356-020-09453-1 PMID: 32577958
- Khalid, M.F.; Iqbal Khan, R.; Jawaid, M.Z.; Shafqat, W.; Hussain, S.; Ahmed, T.; Rizwan, M.; Ercisli, S.; Pop, O.L.; Alina Marc, R. Nano-particles: The plant saviour under abiotic stresses. Nanomaterials, 2022, 12(21), 3915. doi: 10.3390/nano12213915 PMID: 36364690
- Djanaguiraman, M.; Prasad, P.V.V.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem., 2010, 48(12), 999-1007. doi: 10.1016/j.plaphy.2010.09.009 PMID: 20951054
- Haghighi, M.; Abolghasemi, R.; Teixeira da Silva, J.A. Low and high temperature stress affect the growth characteristics of tomato in hy-droponic culture with Se and nano-Se amendment. Sci. Hortic., 2014, 178, 231-240. doi: 10.1016/j.scienta.2014.09.006
- El-Saadony, M.T.; Saad, A.M.; Najjar, A.A.; Alzahrani, S.O.; Alkhatib, F.M.; Shafi, M.E.; Selem, E.; Desoky, E.S.M.; Fouda, S.E.E.; El-Tahan, A.M.; Hassan, M.A.A. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi J. Biol. Sci., 2021, 28(8), 4461-4471. doi: 10.1016/j.sjbs.2021.04.043 PMID: 34354431
- Kareem, H.A.; Saleem, M.F.; Saleem, S.; Rather, S.A.; Wani, S.H.; Siddiqui, M.H.; Alamri, S.; Kumar, R.; Gaikwad, N.B.; Guo, Z.; Niu, J.; Wang, Q. Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Front. Plant Sci., 2022, 13, 842349. doi: 10.3389/fpls.2022.842349 PMID: 35251111
- Iqbal, M.; Raja, N.I.; Mashwani, Z.U.; Hussain, M.; Ejaz, M.; Yasmeen, F. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A. Science, 2019, 43, 387-395.
- Djanaguiraman, M.; Belliraj, N.; Bossmann, S.H.; Prasad, P.V. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 2018, 3(3), 2479-2491. doi: 10.1021/acsomega.7b01934
- Hassan, N.S.; Salah El Din, T.A.; Hendawey, M.H.; Borai, I.H.; Mahdi, A.A. Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Curr. Nanomater., 2018, 3(1), 32-43. doi: 10.2174/2405461503666180619160923
- Wu, J.; Wang, T. Synergistic effect of zinc oxide nanoparticles and heat stress on the alleviation of transcriptional gene silencing in Ara-bidopsis thaliana. Bull. Environ. Contam. Toxicol., 2020, 104(1), 49-56. doi: 10.1007/s00128-019-02749-0 PMID: 31745599
- Younis, A.A.; Khattab, H.; Emam, M.M. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biol. Plant., 2020, 64(1), 343-352. doi: 10.32615/bp.2020.030
- Yue, L.; Ma, C.; Zhan, X.; White, J.C.; Xing, B. Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction. Environ. Sci. Nano, 2017, 4(4), 843-855. doi: 10.1039/C6EN00487C
- Bhat, M.A.; Bhat, M.A.; Kumar, V.; Wani, I.A.; Bashir, H.; Shah, A.A.; Rahman, S.; Jan, A.T. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J. Biotechnol., 2020, 324, 34-60. doi: 10.1016/j.jbiotec.2020.09.013 PMID: 32980369
- Demirer, G.S.; Zhang, H.; Matos, J.L.; Goh, N.S.; Cunningham, F.J.; Sung, Y.; Chang, R.; Aditham, A.J.; Chio, L.; Cho, M.J.; Staskawicz, B.; Landry, M.P. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol., 2019, 14(5), 456-464. doi: 10.1038/s41565-019-0382-5 PMID: 30804481
- Ashraf, M. Inducing drought tolerance in plants: Recent advances. Biotechnol. Adv., 2010, 28(1), 169-183. doi: 10.1016/j.biotechadv.2009.11.005 PMID: 19914371
- Malik, M.K.; Slovin, J.P.; Hwang, C.H.; Zimmerman, J.L. Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance . Plant J., 1999, 20(1), 89-99. doi: 10.1046/j.1365-313X.1999.00581.x PMID: 10571868
- Murakami, T.; Matsuba, S.; Funatsuki, H.; Kawaguchi, K.; Saruyama, H.; Tanida, M.; Sato, Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed., 2004, 13(2), 165-175. doi: 10.1023/B:MOLB.0000018764.30795.c1
- Sanmiya, K.; Suzuki, K.; Egawa, Y.; Shono, M. Mitochondrial small heat‐shock protein enhances thermotolerance in tobacco plants. FEBS Lett., 2004, 557(1-3), 265-268. doi: 10.1016/S0014-5793(03)01494-7 PMID: 14741379
- Queitsch, C.; Hong, S.W.; Vierling, E.; Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 2000, 12(4), 479-492. doi: 10.1105/tpc.12.4.479 PMID: 10760238
- Wu, C. Heat shock transcription factors: Structure and regulation. Annu. Rev. Cell Dev. Biol., 1995, 11(1), 441-469. doi: 10.1146/annurev.cb.11.110195.002301 PMID: 8689565
- Lee, J.H.; Hübel, A.; Schöffl, F. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J., 1995, 8(4), 603-612. doi: 10.1046/j.1365-313X.1995.8040603.x PMID: 7496404
- Wan, X.L.; Yang, J.; Li, X.B.; Zhou, Q.; Guo, C.; Bao, M.Z.; Zhang, J.W. Over-expression of PmHSP17. 9 in transgenic Arabidopsis thali-ana confers thermotolerance. Plant Mol. Biol. Report., 2016, 34(5), 899-908. doi: 10.1007/s11105-016-0974-2
- Sakuma, Y.; Maruyama, K.; Osakabe, Y.; Qin, F.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of an Arabidop-sis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5), 1292-1309. doi: 10.1105/tpc.105.035881 PMID: 16617101
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohor-mones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 2019, 9(7), 285. doi: 10.3390/biom9070285 PMID: 31319576
- Papageorgiou, G.C.; Murata, N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth. Res., 1995, 44(3), 243-252. doi: 10.1007/BF00048597 PMID: 24307094
- Yang, X.; Liang, Z.; Lu, C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol., 2005, 138(4), 2299-2309. doi: 10.1104/pp.105.063164 PMID: 16024688
- Singh, A.; Grover, A. Genetic engineering for heat tolerance in plants. Physiol. Mol. Biol. Plants, 2008, 14(1-2), 155-166. doi: 10.1007/s12298-008-0014-2 PMID: 23572882
- Horváth, I.; Glatz, A.; Nakamoto, H.; Mishkind, M.L.; Munnik, T.; Saidi, Y.; Goloubinoff, P.; Harwood, J.L.; Vigh, L. Heat shock re-sponse in photosynthetic organisms: Membrane and lipid connections. Prog. Lipid Res., 2012, 51(3), 208-220. doi: 10.1016/j.plipres.2012.02.002 PMID: 22484828
- Murakami, Y.; Tsuyama, M.; Kobayashi, Y.; Kodama, H.; Iba, K. Trienoic fatty acids and plant tolerance of high temperature. Science, 2000, 287(5452), 476-479. doi: 10.1126/science.287.5452.476 PMID: 10642547
- Zhang, H.; Li, Y.; Zhu, J.K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants, 2018, 4(12), 989-996. doi: 10.1038/s41477-018-0309-4 PMID: 30478360
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 2002, 53(372), 1331-1341. doi: 10.1093/jexbot/53.372.1331 PMID: 11997379
- Shi, W.M.; Muramoto, Y.; Ueda, A.; Takabe, T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotol-erance by overexpressing in Arabidopsis thaliana. Gene, 2001, 273(1), 23-27. doi: 10.1016/S0378-1119(01)00566-2 PMID: 11483357
- Chen, S.; Vaghchhipawala, Z.; Li, W.; Asard, H.; Dickman, M.B. Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiol., 2004, 135(3), 1630-1641. doi: 10.1104/pp.103.038091 PMID: 15235116
- Tang, L.; Kwon, S.Y.; Kim, S.H.; Kim, J.S.; Choi, J.S.; Cho, K.Y.; Sung, C.K.; Kwak, S.S.; Lee, H.S. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high tempera-ture. Plant Cell Rep., 2006, 25(12), 1380-1386. doi: 10.1007/s00299-006-0199-1 PMID: 16841217
- Jha, U.C.; Nayyar, H.; Palakurthi, R.; Jha, R.; Valluri, V.; Bajaj, P.; Chitikineni, A.; Singh, N.P.; Varshney, R.K.; Thudi, M. Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Front. Plant Sci., 2021, 12, 655103. doi: 10.3389/fpls.2021.655103 PMID: 34381469
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci., 2011, 30(6), 491-507. doi: 10.1080/07352689.2011.615687
- Yang, J.; Sears, R.G.; Gill, B.S.; Paulsen, G.M. Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica, 2002, 126(2), 185-193. doi: 10.1023/A:1016365728633
- Kumar, U.; Joshi, A.K.; Kumar, S.; Chand, R.; Röder, M.S. Quantitative trait loci for resistance to spot blotch caused by Bipolaris sorokin-iana in wheat (T. aestivum L.) lines Ning 8201 and Chirya 3. Mol. Breed., 2010, 26(3), 477-491. doi: 10.1007/s11032-009-9388-2
- Hao, L.; Qiao, X. Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ, 2018, 6, e5816. doi: 10.7717/peerj.5816 PMID: 30356996
- Kumar, S.; Kumari, P.; Kumar, U.; Grover, M.; Singh, A.K.; Singh, R.; Sengar, R.S. Molecular approaches for designing heat tolerant wheat. J. Plant Biochem. Biotechnol., 2013, 22(4), 359-371. doi: 10.1007/s13562-013-0229-3
- Sadat, S.; Saeid, K.A.; Bihamta, M.R.; Torabi, S.; Salekdeh, S.G.; Ayeneh, G.A. Marker assisted selection for heat tolerance in bread wheat. World Appl. Sci. J., 2013, 21(8), 1181-1189.
- Malzahn, A.; Lowder, L.; Qi, Y. Plant genome editing with TALEN and CRISPR. Cell Biosci., 2017, 7(1), 21. doi: 10.1186/s13578-017-0148-4 PMID: 28451378
- Ricroch, A.; Clairand, P.; Harwood, W. Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg. Top. Life Sci., 2017, 1(2), 169-182. doi: 10.1042/ETLS20170085 PMID: 33525765
- Qiu, Z.; Kang, S.; He, L.; Zhao, J.; Zhang, S.; Hu, J.; Zeng, D.; Zhang, G.; Dong, G.; Gao, Z.; Ren, D.; Chen, G.; Guo, L.; Qian, Q.; Zhu, L. The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci., 2018, 267, 168-179. doi: 10.1016/j.plantsci.2017.11.015 PMID: 29362095
- Yu, W.; Wang, L.; Zhao, R.; Sheng, J.; Zhang, S.; Li, R.; Shen, L. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol., 2019, 19(1), 354. doi: 10.1186/s12870-019-1939-z PMID: 31412779
- Chaudhuri, A.; Halder, K.; Abdin, M.Z.; Majee, M.; Datta, A. Abiotic stress tolerance in plants: Brassinosteroids navigate competently. Int. J. Mol. Sci., 2022, 23(23), 14577. doi: 10.3390/ijms232314577 PMID: 36498906
- Yin, Y.; Qin, K.; Song, X.; Zhang, Q.; Zhou, Y.; Xia, X.; Yu, J. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol., 2018, 59(11), 2239-2254. doi: 10.1093/pcp/pcy146 PMID: 30107607
- Casal, J.J.; Balasubramanian, S. Thermomorphogenesis. Annu. Rev. Plant Biol., 2019, 70(1), 321-346. doi: 10.1146/annurev-arplant-050718-095919 PMID: 30786235
- Shinozaki, Y.; Ezura, K.; Hu, J.; Okabe, Y.; Bénard, C.; Prodhomme, D.; Gibon, Y.; Sun, T.; Ezura, H.; Ariizumi, T. Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato. Sci. Rep., 2018, 8(1), 12043. doi: 10.1038/s41598-018-30502-w PMID: 30104574
- Abdallah, N.A.; Prakash, C.S.; McHughen, A.G. Genome editing for crop improvement: Challenges and opportunities. GM Crops Food, 2015, 6(4), 183-205. doi: 10.1080/21645698.2015.1129937 PMID: 26930114
Supplementary files
