Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects


Cite item

Full Text

Abstract

Heat stress impacts plant growth at all phases of development, although the particular threshold for heat tolerance varies significantly across different developmental stages. During seed germination, elevated temperatures can either impede or completely halt the process, contingent upon the plant type and the severity of the stress. During advanced stages, high temperatures can have a negative impact on photosynthesis, respiration, water balance, and membrane integrity. Additionally, they can also influence the levels of hormones and primary and secondary metabolites. In addition, during the growth and development of plants, there is an increased expression of various heat shock proteins, as well as other proteins related to stress, and the generation of reactive oxygen species (ROS). These are significant plant responses to heat stress. Plants employ several strategies to deal with heat stress, such as maintaining the stability of their cell membranes, removing harmful reactive oxygen species (ROS), producing antioxidants, accumulating and adjusting compatible solutes, activating mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, crucially, signaling through chaperones and activating transcription. These molecular-level systems boost the ability of plants to flourish in heat stress. Potential genetic methods to enhance plant heat stress resistance encompass old and modern molecular breeding techniques and transgenic approaches, all of which rely on a comprehensive comprehension of these systems. Although several plants exhibit enhanced heat tolerance through traditional breeding methods, the effectiveness of genetic transformation techniques has been somewhat restricted. The latter results from the current constraints in our understanding and access to genes that have known impacts on plant heat stress tolerance. However, these challenges may be overcome in the future. Besides genetic methods, crops' heat tolerance can be improved through the pre-treatment of plants with various environmental challenges or the external application of osmoprotectants such as glycine betaine and proline. Thermotolerance is achieved through an active process in which plants allocate significant energy to maintain their structure and function to avoid damage induced by heat stress. The practice of nanoparticles has been shown to upgrade both the standard and the quantity of produce when crops are under heat stress. This review provides information on the effects of heat stress on plants and explores the importance of nanoparticles, transgenics, and genomic techniques in reducing the negative consequences of heat stress. Furthermore, it explores how plants might adapt to heat stress by modifying their biochemical, physiological, and molecular reactions.

About the authors

Vineeta Pandey

Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University

Author for correspondence.
Email: info@benthamscience.net

Sonia Singh

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

References

  1. Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain., 2019, 2(2), 95-96. doi: 10.1007/s42398-019-00078-w
  2. Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Cur-rent status, challenges and future opportunities. Sci. Total Environ., 2020, 721, 137778. doi: 10.1016/j.scitotenv.2020.137778 PMID: 32179352
  3. Patakas, A. Abiotic stress-induced morphological and anatomical changes in plants. In: Abiotic stress responses in plants; Springer: New York, 2012; pp. 21-39. doi: 10.1007/978-1-4614-0634-1_2
  4. Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci., 2013, 4, 273. doi: 10.3389/fpls.2013.00273 PMID: 23914193
  5. Kai, H.; Iba, K. Temperature stress in plants. In: Temperature Stress in Plants; 1st ed John Wiley & Sons, Ltd, 2014. doi: 10.1002/9780470015902.a0001320.pub2
  6. Kollist, H.; Zandalinas, S.I.; Sengupta, S.; Nuhkat, M.; Kangasjärvi, J.; Mittler, R. Rapid responses to abiotic stress: Priming the landscape for the signal transduction network. Trends Plant Sci., 2019, 24(1), 25-37. doi: 10.1016/j.tplants.2018.10.003 PMID: 30401516
  7. Khan, S.; Anwar, S.; Ashraf, M.Y.; Khaliq, B.; Sun, M.; Hussain, S.; Gao, Z.; Noor, H.; Alam, S. Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants, 2019, 8(11), 508. doi: 10.3390/plants8110508 PMID: 31731732
  8. Suzuki, N. Temperature stress and responses in plants. Int. J. Mol. Sci., 2019, 20(8), 2001. doi: 10.3390/ijms20082001 PMID: 31022827
  9. Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 2019, 24(14), 2558. doi: 10.3390/molecules24142558 PMID: 31337070
  10. Singh, A.; Tiwari, S.; Pandey, J.; Lata, C.; Singh, I.K. Role of nanoparticles in crop improvement and abiotic stress management. J. Biotechnol., 2021, 337, 57-70. doi: 10.1016/j.jbiotec.2021.06.022 PMID: 34175328
  11. Sajid, M.; Rashid, B.; Ali, Q.; Husnain, T. Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biol. Plant., 2018, 62(3), 409-420. doi: 10.1007/s10535-018-0795-2
  12. Srivastava, S.; Pathak, A.D.; Gupta, P.S.; Shrivastava, A.K.; Srivastava, A.K. Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J. Environ. Biol., 2012, 33(3), 657-661. PMID: 23029918
  13. Adams, S.; Cockshull, K.E.; Cave, C.R. Effect of temperature on the growth and development of tomato fruits. Ann. Bot., 2001, 88(5), 869-877. doi: 10.1006/anbo.2001.1524
  14. Nievola, C.C.; Carvalho, C.P.; Carvalho, V.; Rodrigues, E. Rapid responses of plants to temperature changes. Temperature, 2017, 4(4), 371-405. doi: 10.1080/23328940.2017.1377812 PMID: 29435478
  15. Biamonti, G.; Caceres, J.F. Cellular stress and RNA splicing. Trends Biochem. Sci., 2009, 34(3), 146-153. doi: 10.1016/j.tibs.2008.11.004 PMID: 19208481
  16. Vabulas, R.M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol., 2010, 2(12), a004390. doi: 10.1101/cshperspect.a004390 PMID: 21123396
  17. Driedonks, N.; Xu, J.; Peters, J.L.; Park, S.; Rieu, I. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front. Plant Sci., 2015, 6, 999. doi: 10.3389/fpls.2015.00999 PMID: 26635827
  18. Gupta, S.C.; Sharma, A.; Mishra, M.; Mishra, R.K.; Chowdhuri, D.K. Heat shock proteins in toxicology: How close and how far? Life Sci., 2010, 86(11-12), 377-384. doi: 10.1016/j.lfs.2009.12.015 PMID: 20060844
  19. Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress re-sponse. Trends Plant Sci., 2004, 9(5), 244-252. doi: 10.1016/j.tplants.2004.03.006 PMID: 15130550
  20. Gao, J.; Zhang, W.; Dang, W.; Mou, Y.; Gao, Y.; Sun, B.J.; Du, W.G. Heat shock protein expression enhances heat tolerance of reptile embryos. Proc Biol Sci., 1791, 281(1791), 20141135.
  21. Verghese, J.; Abrams, J.; Wang, Y.; Morano, K.A. Biology of the heat shock response and protein chaperones: Budding yeast (Saccharo-myces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev., 2012, 76(2), 115-158. doi: 10.1128/MMBR.05018-11 PMID: 22688810
  22. Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci., 2005, 62(6), 670-684. doi: 10.1007/s00018-004-4464-6 PMID: 15770419
  23. Li, Z.G. Mechanisms of plant adaptation and tolerance to heat stress. In: Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II; Springer: Singapore, 2020; pp. 39-59. doi: 10.1007/978-981-15-2172-0_3
  24. Wayne, N.; Mishra, P.; Bolon, D.N. Hsp90 and client protein maturation. In: Molecular Chaperones. Methods in Molecular Biology; Humana Press., 2011; 787, p. 33-44. doi: 10.1007/978-1-61779-295-3_3
  25. Liu, J.J.; Ekramoddoullah, A.K.M. The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in re-sponse to biotic and abiotic stresses. Physiol. Mol. Plant Pathol., 2006, 68(1-3), 3-13. doi: 10.1016/j.pmpp.2006.06.004
  26. Webster, J.M.; Darling, A.L.; Uversky, V.N.; Blair, L.J. Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front. Pharmacol., 2019, 10, 1047. doi: 10.3389/fphar.2019.01047 PMID: 31619995
  27. Mishra, D.; Shekhar, S.; Singh, D.; Chakraborty, S.; Chakraborty, N. Heat shock proteins and abiotic stress tolerance in plants. In: Regulation of Heat Shock Protein Responses. Heat Shock Proteins; Springer: Cham, 2018; pp. 41-69. doi: 10.1007/978-3-319-74715-6_3
  28. Morimoto, R.I.; Santoro, M.G. Stress–inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nat. Biotechnol., 1998, 16(9), 833-838. doi: 10.1038/nbt0998-833 PMID: 9743115
  29. Larkindale, J.; Hall, J.D.; Knight, M.R.; Vierling, E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol., 2005, 138(2), 882-897. doi: 10.1104/pp.105.062257 PMID: 15923322
  30. van Montfort, R.L.M.; Basha, E.; Friedrich, K.L.; Slingsby, C.; Vierling, E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol., 2001, 8(12), 1025-1030. doi: 10.1038/nsb722 PMID: 11702068
  31. Asthir, B. Protective mechanisms of heat tolerance in crop plants. J. Plant Interact., 2015, 10(1), 202-210. doi: 10.1080/17429145.2015.1067726
  32. Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322. doi: 10.1104/pp.106.077073 PMID: 16760481
  33. Savicka, M.; Škute, N. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seed-lings (Triticum aestivum L.). Ekologija (Liet. Moksl. Akad.), 2010, 56(1), 26-33. doi: 10.2478/v10055-010-0004-x
  34. Zulfiqar, F.; Akram, N.A.; Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta, 2020, 251(1), 3. doi: 10.1007/s00425-019-03293-1 PMID: 31776765
  35. Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants, 2019, 8(4), 94. doi: 10.3390/antiox8040094 PMID: 30965652
  36. Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2014, 2, 53. doi: 10.3389/fenvs.2014.00053
  37. Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Hussain, S.J.; Khan, N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot., 2018, 145, 104-120. doi: 10.1016/j.envexpbot.2017.11.004
  38. Figueroa-Soto, C.G.; Valenzuela-Soto, E.M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie, 2018, 147, 89-97. doi: 10.1016/j.biochi.2018.01.002 PMID: 29366935
  39. Rasheed, R.; Wahid, A.; Farooq, M.; Hussain, I.; Basra, S.M.A. Role of proline and glycinebetaine pretreatments in improving heat toler-ance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul., 2011, 65(1), 35-45. doi: 10.1007/s10725-011-9572-3
  40. Allakhverdiev, S.I.; Los, D.A.; Mohanty, P.; Nishiyama, Y.; Murata, N. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim. Biophys. Acta Bioenerg., 2007, 1767(12), 1363-1371. doi: 10.1016/j.bbabio.2007.10.005 PMID: 17991419
  41. Rontein, D.; Basset, G.; Hanson, A.D. Metabolic engineering of osmoprotectant accumulation in plants. Metab. Eng., 2002, 4(1), 49-56. doi: 10.1006/mben.2001.0208 PMID: 11800574
  42. Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, 51(1), 463-499. doi: 10.1146/annurev.arplant.51.1.463 PMID: 15012199
  43. Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal., 2013, 19(9), 998-1011. doi: 10.1089/ars.2012.5074 PMID: 23581681
  44. Foyer, C.H. Redox homeostasis: Opening up ascorbate transport. Nat. Plants, 2015, 1(1), 14012. doi: 10.1038/nplants.2014.12 PMID: 27246058
  45. Munné-Bosch, S. Linking tocopherols with cellular signaling in plants. New Phytol., 2005, 166(2), 363-366. doi: 10.1111/j.1469-8137.2005.01411.x PMID: 15819901
  46. Choe, E.; Min, D.B. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. Food Saf., 2009, 8(4), 345-358. doi: 10.1111/j.1541-4337.2009.00085.x
  47. Chen, Z.; Galli, M.; Gallavotti, A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr. Opin. Plant Biol., 2022, 65, 102134. doi: 10.1016/j.pbi.2021.102134 PMID: 34749068
  48. Larkindale, J.; Huang, B. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol., 2004, 161(4), 405-413. doi: 10.1078/0176-1617-01239 PMID: 15128028
  49. Larkindale, J.; Knight, M.R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, eth-ylene, and salicylic acid. Plant Physiol., 2002, 128(2), 682-695. doi: 10.1104/pp.010320 PMID: 11842171
  50. Wang, J.; Huang, R. Modulation of ethylene and ascorbic acid on reactive oxygen species scavenging in plant salt response. Front. Plant Sci., 2019, 10, 319. doi: 10.3389/fpls.2019.00319 PMID: 30936887
  51. Devireddy, A.R.; Zandalinas, S.I.; Fichman, Y.; Mittler, R. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J., 2021, 105(2), 459-476. doi: 10.1111/tpj.15010 PMID: 33015917
  52. Wang, X.; Zhuang, L.; Shi, Y.; Huang, B. Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fes-cue and Arabidopsis. Int. J. Mol. Sci., 2017, 18(9), 1981. doi: 10.3390/ijms18091981 PMID: 28914758
  53. Nolan, T.M.; Vukašinović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, develop-ment, and stress responses. Plant Cell, 2020, 32(2), 295-318. doi: 10.1105/tpc.19.00335 PMID: 31776234
  54. Kothari, A.; Lachowiec, J. Roles of brassinosteroids in mitigating heat stress damage in cereal crops. Int. J. Mol. Sci., 2021, 22(5), 2706. doi: 10.3390/ijms22052706 PMID: 33800127
  55. Khalil, R.; Haroun, S.; Bassyoini, F.; Nagah, A.; Yusuf, M. Salicylic acid in combination with kinetin or calcium ameliorates heavy metal stress in Phaseolus vulgaris plant. J. Agric. Food Res., 2021, 5, 100182. doi: 10.1016/j.jafr.2021.100182
  56. Scott, I.M.; Clarke, S.M.; Wood, J.E.; Mur, L.A.J. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol., 2004, 135(2), 1040-1049. doi: 10.1104/pp.104.041293 PMID: 15173571
  57. Clarke, S.M.; Mur, L.A.J.; Wood, J.E.; Scott, I.M. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J., 2004, 38(3), 432-447. doi: 10.1111/j.1365-313X.2004.02054.x PMID: 15086804
  58. Savada, R.P.; Ozga, J.A.; Jayasinghege, C.P.A.; Waduthanthri, K.D.; Reinecke, D.M. Heat stress differentially modifies ethylene biosynthe-sis and signaling in pea floral and fruit tissues. Plant Mol. Biol., 2017, 95(3), 313-331. doi: 10.1007/s11103-017-0653-1 PMID: 28861701
  59. Jegadeesan, S.; Chaturvedi, P.; Ghatak, A.; Pressman, E.; Meir, S.; Faigenboim, A.; Rutley, N.; Beery, A.; Harel, A.; Weckwerth, W.; Firon, N. Proteomics of heat-stress and ethylene-mediated thermotolerance mechanisms in tomato pollen grains. Front. Plant Sci., 2018, 9, 1558. doi: 10.3389/fpls.2018.01558 PMID: 30483278
  60. Wu, Y.S.; Yang, C.Y. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot. Stud., 2019, 60(1), 23. doi: 10.1186/s40529-019-0272-z PMID: 31549254
  61. Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.Z.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J. Samaha, RR Creelman 8. Ara-bidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499), 2105-2110.
  62. Kotak, S.; Vierling, E.; Bäumlein, H.; Koskull-Döring, P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell, 2007, 19(1), 182-195. doi: 10.1105/tpc.106.048165 PMID: 17220197
  63. Heerklotz, D.; Döring, P.; Bonzelius, F.; Winkelhaus, S.; Nover, L. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol. Cell. Biol., 2001, 21(5), 1759-1768. doi: 10.1128/MCB.21.5.1759-1768.2001 PMID: 11238913
  64. Nover, L. Bharti, K.; Döring, P.; Mishra, S.K.; Ganguli, A.; Scharf, K.D. - Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress Chaperones, 2001, 6(3), 177-189. doi: 10.1379/1466-1268(2001)0062.0.CO;2 PMID: 11599559
  65. Parankusam, S.; Adimulam, S.S.; Bhatnagar-Mathur, P.; Sharma, K.K. Nitric oxide (NO) in plant heat stress tolerance: Current knowledge and perspectives. Front. Plant Sci., 2017, 8, 1582. doi: 10.3389/fpls.2017.01582 PMID: 28955368
  66. Liu, X.H.; Lyu, Y.S.; Yang, W.; Yang, Z.T.; Lu, S.J.; Liu, J.X. A membrane‐associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol. J., 2020, 18(5), 1317-1329. doi: 10.1111/pbi.13297 PMID: 31733092
  67. Mishra, S.K.; Tripp, J.; Winkelhaus, S.; Tschiersch, B.; Theres, K.; Nover, L.; Scharf, K.D. In the complex family of heat stress transcrip-tion factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev., 2002, 16(12), 1555-1567. doi: 10.1101/gad.228802 PMID: 12080093
  68. Yokotani, N.; Ichikawa, T.; Kondou, Y.; Matsui, M.; Hirochika, H.; Iwabuchi, M.; Oda, K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 2008, 227(5), 957-967. doi: 10.1007/s00425-007-0670-4 PMID: 18064488
  69. Sehgal, A.; Sita, K.; Nayyar, H. Heat stress in plants: Sensing and defense mechanisms. J. Plant Sci. Res., 2016, 32(2), 195.
  70. Friant, S.; Meier, K.D.; Riezman, H. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock pro-tein induction. EMBO J., 2003, 22(15), 3783-3791. doi: 10.1093/emboj/cdg375 PMID: 12881413
  71. Ortiz, C.; Cardemil, L. Heat-shock responses in two leguminous plants: A comparative study. J. Exp. Bot., 2001, 52(361), 1711-1719. PMID: 11479337
  72. Liu, J.G.; Qin, Q.; Zhang, Z.; Peng, R.H.; Xiong, A.S.; Chen, J.M.; Yao, Q.H. OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep., 2009, 42(1), 16-21. doi: 10.5483/BMBRep.2009.42.1.016 PMID: 19192388
  73. Tang, Y.; Gao, C.C.; Gao, Y.; Yang, Y.; Shi, B.; Yu, J.L.; Lyu, C.; Sun, B.F.; Wang, H.L.; Xu, Y.; Yang, Y.G.; Chong, K. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev. Cell, 2020, 53(3), 272-286.e7. doi: 10.1016/j.devcel.2020.03.009 PMID: 32275888
  74. Singh, A.; Mittal, D.; Lavania, D.; Agarwal, M.; Mishra, R.C.; Grover, A. OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperones, 2012, 17(2), 243-254. doi: 10.1007/s12192-011-0303-5 PMID: 22147560
  75. Li, H.W.; Zang, B.S.; Deng, X.W.; Wang, X.P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234(5), 1007-1018. doi: 10.1007/s00425-011-1458-0 PMID: 21698458
  76. Alia, H.H.; Hayashi, H.; Sakamoto, A.; Murata, N. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineer-ing of the synthesis of glycinebetaine. Plant J., 1998, 16(2), 155-161. doi: 10.1046/j.1365-313x.1998.00284.x PMID: 9839462
  77. Foresi, N.; Mayta, M.L.; Lodeyro, A.F.; Scuffi, D.; Correa-Aragunde, N.; García-Mata, C.; Casalongué, C.; Carrillo, N.; Lamattina, L. Ex-pression of the tetrahydrofolate‐dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant J., 2015, 82(5), 806-821. doi: 10.1111/tpj.12852 PMID: 25880454
  78. Feng, L.; Han, Y.; Liu, G.; An, B.; Yang, J.; Yang, G.; Li, Y.; Zhu, Y. Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct. Plant Biol., 2007, 34(9), 822-834. doi: 10.1071/FP07074 PMID: 32689410
  79. Wei, H.; Liu, J.; Wang, Y.; Huang, N.; Zhang, X.; Wang, L.; Zhang, J.; Tu, J.; Zhong, X. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48°C high temperature at seedling stage. J. Hered., 2013, 104(2), 287-294. doi: 10.1093/jhered/ess103 PMID: 23258571
  80. El-kereamy, A.; Bi, Y.M.; Ranathunge, K.; Beatty, P.H.; Good, A.G.; Rothstein, S.J. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One, 2012, 7(12), e52030. doi: 10.1371/journal.pone.0052030 PMID: 23251677
  81. Hossain, M.A.; Cho, J.I.; Han, M.; Ahn, C.H.; Jeon, J.S.; An, G.; Park, P.B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J. Plant Physiol., 2010, 167(17), 1512-1520. doi: 10.1016/j.jplph.2010.05.008 PMID: 20576316
  82. Kan, Y.; Mu, X.R.; Zhang, H.; Gao, J.; Shan, J.X.; Ye, W.W.; Lin, H.X. TT2 controls rice thermotolerance through SCT1-dependent altera-tion of wax biosynthesis. Nat. Plants, 2021, 8(1), 53-67. doi: 10.1038/s41477-021-01039-0 PMID: 34992240
  83. Zhang, H.; Zhou, J.F.; Kan, Y.; Shan, J.X.; Ye, W.W.; Dong, N.Q.; Guo, T.; Xiang, Y.H.; Yang, Y.B.; Li, Y.C.; Zhao, H.Y.; Yu, H.X.; Lu, Z.Q.; Guo, S.Q.; Lei, J.J.; Liao, B.; Mu, X.R.; Cao, Y.J.; Yu, J.J.; Lin, Y.; Lin, H.X. A genetic module at one locus in rice protects chloro-plasts to enhance thermotolerance. Science, 2022, 376(6599), 1293-1300. doi: 10.1126/science.abo5721 PMID: 35709289
  84. Woldegiorgis, S.T.; Wu, T.; Gao, L.; Huang, Y.; Zheng, Y.; Qiu, F.; Xu, S.; Tao, H.; Harrison, A.; Liu, W.; He, H. Identification of heat-tolerant genes in non-reference sequences in rice by integrating pan-genome, transcriptomics, and QTLs. Genes (Basel), 2022, 13(8), 1353. doi: 10.3390/genes13081353 PMID: 36011264
  85. Guo, W.; Zhang, J.; Zhang, N.; Xin, M.; Peng, H.; Hu, Z.; Ni, Z.; Du, J. The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS One, 2015, 10(8), e0135667. doi: 10.1371/journal.pone.0135667 PMID: 26305210
  86. Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. Int. J. Mol. Sci., 2020, 22(1), 117. doi: 10.3390/ijms22010117 PMID: 33374376
  87. Sanghera, G.S.; Wani, S.H.; Hussain, W.; Singh, N.B. Engineering cold stress tolerance in crop plants. Curr. Genomics, 2011, 12(1), 30-43. doi: 10.2174/138920211794520178 PMID: 21886453
  88. Yashveer, S.; Redhu, N.; Singh, V.; Sangwan, S.; Laxman, H.; Tokas, J.; Malhotra, S.; Khurana, S.; Sindhu, A. Nanoparticles in agriculture: Characterization, uptake and role in mitigating heat stress. NRFHH, 2022, 2(2), 160-181. doi: 10.53365/nrfhh/144175
  89. Singh, S.; Singh, B.K.; Yadav, S.M.; Gupta, A.K. Applications of nanotechnology in agricultural and their role in disease management. Res. J. Nanosci. Nanotechnol., 2015, 5(1), 1-5. doi: 10.3923/rjnn.2015.1.5
  90. Rizwan, M.; Ali, S.; Adrees, M.; Ibrahim, M.; Tsang, D.C.W. Zia-ur-Rehman, M.; Zahir, Z.A.; Rinklebe, J.; Tack, F.M.G.; Ok, Y.S. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 2017, 182, 90-105. doi: 10.1016/j.chemosphere.2017.05.013 PMID: 28494365
  91. Abdoli, S.; Ghassemi-Golezani, K.; Alizadeh-Salteh, S. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ. Sci. Pollut. Res. Int., 2020, 27(29), 36939-36953. doi: 10.1007/s11356-020-09453-1 PMID: 32577958
  92. Khalid, M.F.; Iqbal Khan, R.; Jawaid, M.Z.; Shafqat, W.; Hussain, S.; Ahmed, T.; Rizwan, M.; Ercisli, S.; Pop, O.L.; Alina Marc, R. Nano-particles: The plant saviour under abiotic stresses. Nanomaterials, 2022, 12(21), 3915. doi: 10.3390/nano12213915 PMID: 36364690
  93. Djanaguiraman, M.; Prasad, P.V.V.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem., 2010, 48(12), 999-1007. doi: 10.1016/j.plaphy.2010.09.009 PMID: 20951054
  94. Haghighi, M.; Abolghasemi, R.; Teixeira da Silva, J.A. Low and high temperature stress affect the growth characteristics of tomato in hy-droponic culture with Se and nano-Se amendment. Sci. Hortic., 2014, 178, 231-240. doi: 10.1016/j.scienta.2014.09.006
  95. El-Saadony, M.T.; Saad, A.M.; Najjar, A.A.; Alzahrani, S.O.; Alkhatib, F.M.; Shafi, M.E.; Selem, E.; Desoky, E.S.M.; Fouda, S.E.E.; El-Tahan, A.M.; Hassan, M.A.A. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi J. Biol. Sci., 2021, 28(8), 4461-4471. doi: 10.1016/j.sjbs.2021.04.043 PMID: 34354431
  96. Kareem, H.A.; Saleem, M.F.; Saleem, S.; Rather, S.A.; Wani, S.H.; Siddiqui, M.H.; Alamri, S.; Kumar, R.; Gaikwad, N.B.; Guo, Z.; Niu, J.; Wang, Q. Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Front. Plant Sci., 2022, 13, 842349. doi: 10.3389/fpls.2022.842349 PMID: 35251111
  97. Iqbal, M.; Raja, N.I.; Mashwani, Z.U.; Hussain, M.; Ejaz, M.; Yasmeen, F. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A. Science, 2019, 43, 387-395.
  98. Djanaguiraman, M.; Belliraj, N.; Bossmann, S.H.; Prasad, P.V. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 2018, 3(3), 2479-2491. doi: 10.1021/acsomega.7b01934
  99. Hassan, N.S.; Salah El Din, T.A.; Hendawey, M.H.; Borai, I.H.; Mahdi, A.A. Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Curr. Nanomater., 2018, 3(1), 32-43. doi: 10.2174/2405461503666180619160923
  100. Wu, J.; Wang, T. Synergistic effect of zinc oxide nanoparticles and heat stress on the alleviation of transcriptional gene silencing in Ara-bidopsis thaliana. Bull. Environ. Contam. Toxicol., 2020, 104(1), 49-56. doi: 10.1007/s00128-019-02749-0 PMID: 31745599
  101. Younis, A.A.; Khattab, H.; Emam, M.M. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biol. Plant., 2020, 64(1), 343-352. doi: 10.32615/bp.2020.030
  102. Yue, L.; Ma, C.; Zhan, X.; White, J.C.; Xing, B. Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction. Environ. Sci. Nano, 2017, 4(4), 843-855. doi: 10.1039/C6EN00487C
  103. Bhat, M.A.; Bhat, M.A.; Kumar, V.; Wani, I.A.; Bashir, H.; Shah, A.A.; Rahman, S.; Jan, A.T. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J. Biotechnol., 2020, 324, 34-60. doi: 10.1016/j.jbiotec.2020.09.013 PMID: 32980369
  104. Demirer, G.S.; Zhang, H.; Matos, J.L.; Goh, N.S.; Cunningham, F.J.; Sung, Y.; Chang, R.; Aditham, A.J.; Chio, L.; Cho, M.J.; Staskawicz, B.; Landry, M.P. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol., 2019, 14(5), 456-464. doi: 10.1038/s41565-019-0382-5 PMID: 30804481
  105. Ashraf, M. Inducing drought tolerance in plants: Recent advances. Biotechnol. Adv., 2010, 28(1), 169-183. doi: 10.1016/j.biotechadv.2009.11.005 PMID: 19914371
  106. Malik, M.K.; Slovin, J.P.; Hwang, C.H.; Zimmerman, J.L. Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance ‡. Plant J., 1999, 20(1), 89-99. doi: 10.1046/j.1365-313X.1999.00581.x PMID: 10571868
  107. Murakami, T.; Matsuba, S.; Funatsuki, H.; Kawaguchi, K.; Saruyama, H.; Tanida, M.; Sato, Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed., 2004, 13(2), 165-175. doi: 10.1023/B:MOLB.0000018764.30795.c1
  108. Sanmiya, K.; Suzuki, K.; Egawa, Y.; Shono, M. Mitochondrial small heat‐shock protein enhances thermotolerance in tobacco plants. FEBS Lett., 2004, 557(1-3), 265-268. doi: 10.1016/S0014-5793(03)01494-7 PMID: 14741379
  109. Queitsch, C.; Hong, S.W.; Vierling, E.; Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 2000, 12(4), 479-492. doi: 10.1105/tpc.12.4.479 PMID: 10760238
  110. Wu, C. Heat shock transcription factors: Structure and regulation. Annu. Rev. Cell Dev. Biol., 1995, 11(1), 441-469. doi: 10.1146/annurev.cb.11.110195.002301 PMID: 8689565
  111. Lee, J.H.; Hübel, A.; Schöffl, F. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J., 1995, 8(4), 603-612. doi: 10.1046/j.1365-313X.1995.8040603.x PMID: 7496404
  112. Wan, X.L.; Yang, J.; Li, X.B.; Zhou, Q.; Guo, C.; Bao, M.Z.; Zhang, J.W. Over-expression of PmHSP17. 9 in transgenic Arabidopsis thali-ana confers thermotolerance. Plant Mol. Biol. Report., 2016, 34(5), 899-908. doi: 10.1007/s11105-016-0974-2
  113. Sakuma, Y.; Maruyama, K.; Osakabe, Y.; Qin, F.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of an Arabidop-sis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5), 1292-1309. doi: 10.1105/tpc.105.035881 PMID: 16617101
  114. Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohor-mones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 2019, 9(7), 285. doi: 10.3390/biom9070285 PMID: 31319576
  115. Papageorgiou, G.C.; Murata, N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth. Res., 1995, 44(3), 243-252. doi: 10.1007/BF00048597 PMID: 24307094
  116. Yang, X.; Liang, Z.; Lu, C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol., 2005, 138(4), 2299-2309. doi: 10.1104/pp.105.063164 PMID: 16024688
  117. Singh, A.; Grover, A. Genetic engineering for heat tolerance in plants. Physiol. Mol. Biol. Plants, 2008, 14(1-2), 155-166. doi: 10.1007/s12298-008-0014-2 PMID: 23572882
  118. Horváth, I.; Glatz, A.; Nakamoto, H.; Mishkind, M.L.; Munnik, T.; Saidi, Y.; Goloubinoff, P.; Harwood, J.L.; Vigh, L. Heat shock re-sponse in photosynthetic organisms: Membrane and lipid connections. Prog. Lipid Res., 2012, 51(3), 208-220. doi: 10.1016/j.plipres.2012.02.002 PMID: 22484828
  119. Murakami, Y.; Tsuyama, M.; Kobayashi, Y.; Kodama, H.; Iba, K. Trienoic fatty acids and plant tolerance of high temperature. Science, 2000, 287(5452), 476-479. doi: 10.1126/science.287.5452.476 PMID: 10642547
  120. Zhang, H.; Li, Y.; Zhu, J.K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants, 2018, 4(12), 989-996. doi: 10.1038/s41477-018-0309-4 PMID: 30478360
  121. Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 2002, 53(372), 1331-1341. doi: 10.1093/jexbot/53.372.1331 PMID: 11997379
  122. Shi, W.M.; Muramoto, Y.; Ueda, A.; Takabe, T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotol-erance by overexpressing in Arabidopsis thaliana. Gene, 2001, 273(1), 23-27. doi: 10.1016/S0378-1119(01)00566-2 PMID: 11483357
  123. Chen, S.; Vaghchhipawala, Z.; Li, W.; Asard, H.; Dickman, M.B. Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiol., 2004, 135(3), 1630-1641. doi: 10.1104/pp.103.038091 PMID: 15235116
  124. Tang, L.; Kwon, S.Y.; Kim, S.H.; Kim, J.S.; Choi, J.S.; Cho, K.Y.; Sung, C.K.; Kwak, S.S.; Lee, H.S. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high tempera-ture. Plant Cell Rep., 2006, 25(12), 1380-1386. doi: 10.1007/s00299-006-0199-1 PMID: 16841217
  125. Jha, U.C.; Nayyar, H.; Palakurthi, R.; Jha, R.; Valluri, V.; Bajaj, P.; Chitikineni, A.; Singh, N.P.; Varshney, R.K.; Thudi, M. Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Front. Plant Sci., 2021, 12, 655103. doi: 10.3389/fpls.2021.655103 PMID: 34381469
  126. Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci., 2011, 30(6), 491-507. doi: 10.1080/07352689.2011.615687
  127. Yang, J.; Sears, R.G.; Gill, B.S.; Paulsen, G.M. Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica, 2002, 126(2), 185-193. doi: 10.1023/A:1016365728633
  128. Kumar, U.; Joshi, A.K.; Kumar, S.; Chand, R.; Röder, M.S. Quantitative trait loci for resistance to spot blotch caused by Bipolaris sorokin-iana in wheat (T. aestivum L.) lines ‘Ning 8201’ and ‘Chirya 3’. Mol. Breed., 2010, 26(3), 477-491. doi: 10.1007/s11032-009-9388-2
  129. Hao, L.; Qiao, X. Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ, 2018, 6, e5816. doi: 10.7717/peerj.5816 PMID: 30356996
  130. Kumar, S.; Kumari, P.; Kumar, U.; Grover, M.; Singh, A.K.; Singh, R.; Sengar, R.S. Molecular approaches for designing heat tolerant wheat. J. Plant Biochem. Biotechnol., 2013, 22(4), 359-371. doi: 10.1007/s13562-013-0229-3
  131. Sadat, S.; Saeid, K.A.; Bihamta, M.R.; Torabi, S.; Salekdeh, S.G.; Ayeneh, G.A. Marker assisted selection for heat tolerance in bread wheat. World Appl. Sci. J., 2013, 21(8), 1181-1189.
  132. Malzahn, A.; Lowder, L.; Qi, Y. Plant genome editing with TALEN and CRISPR. Cell Biosci., 2017, 7(1), 21. doi: 10.1186/s13578-017-0148-4 PMID: 28451378
  133. Ricroch, A.; Clairand, P.; Harwood, W. Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg. Top. Life Sci., 2017, 1(2), 169-182. doi: 10.1042/ETLS20170085 PMID: 33525765
  134. Qiu, Z.; Kang, S.; He, L.; Zhao, J.; Zhang, S.; Hu, J.; Zeng, D.; Zhang, G.; Dong, G.; Gao, Z.; Ren, D.; Chen, G.; Guo, L.; Qian, Q.; Zhu, L. The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci., 2018, 267, 168-179. doi: 10.1016/j.plantsci.2017.11.015 PMID: 29362095
  135. Yu, W.; Wang, L.; Zhao, R.; Sheng, J.; Zhang, S.; Li, R.; Shen, L. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol., 2019, 19(1), 354. doi: 10.1186/s12870-019-1939-z PMID: 31412779
  136. Chaudhuri, A.; Halder, K.; Abdin, M.Z.; Majee, M.; Datta, A. Abiotic stress tolerance in plants: Brassinosteroids navigate competently. Int. J. Mol. Sci., 2022, 23(23), 14577. doi: 10.3390/ijms232314577 PMID: 36498906
  137. Yin, Y.; Qin, K.; Song, X.; Zhang, Q.; Zhou, Y.; Xia, X.; Yu, J. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol., 2018, 59(11), 2239-2254. doi: 10.1093/pcp/pcy146 PMID: 30107607
  138. Casal, J.J.; Balasubramanian, S. Thermomorphogenesis. Annu. Rev. Plant Biol., 2019, 70(1), 321-346. doi: 10.1146/annurev-arplant-050718-095919 PMID: 30786235
  139. Shinozaki, Y.; Ezura, K.; Hu, J.; Okabe, Y.; Bénard, C.; Prodhomme, D.; Gibon, Y.; Sun, T.; Ezura, H.; Ariizumi, T. Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato. Sci. Rep., 2018, 8(1), 12043. doi: 10.1038/s41598-018-30502-w PMID: 30104574
  140. Abdallah, N.A.; Prakash, C.S.; McHughen, A.G. Genome editing for crop improvement: Challenges and opportunities. GM Crops Food, 2015, 6(4), 183-205. doi: 10.1080/21645698.2015.1129937 PMID: 26930114

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers