Структурная эволюция наноразмерных сегнетоэлектрических слоев Hf0.5Zr0.5O2 в результате их циклической электрической стимуляции
- Авторы: Лев Л.Л.1, Конашук А.С.2, Хакимов Р.Р.1, Черникова А.Г.1, Маркеев А.М.1, Лебедев А.М.3, Назин В.Г.3, Чумаков Р.Г.3, Зенкевич А.В.1
- 
							Учреждения: 
							- Московский физико-технический институт (национальный исследовательский университет)
- Санкт-Петербургский государственный университет
- Национальный исследовательский центр “Курчатовский институт”
 
- Выпуск: № 4 (2025)
- Страницы: 3-10
- Раздел: Статьи
- URL: https://rjpbr.com/1028-0960/article/view/689122
- DOI: https://doi.org/10.31857/S1028096025040011
- EDN: https://elibrary.ru/FBOYZB
- ID: 689122
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Несмотря на очень большое число уже опубликованных статей на тему сегнетоэлектрических слоев Hf0.5Zr0.5O2 (HZO), этот материал продолжает привлекать к себе повышенное внимание исследователей благодаря перспективам создания на его основе совместимых с современной кремниевой технологией конкурентоспособных устройств энергонезависимой памяти. Среди трудностей на пути создания промышленной технологии таких устройств — нестабильность остаточной поляризации сегнетоэлектрика в процессе многократных переключений внешним электрическим полем. В частности, на начальных этапах такого “циклирования”, как правило, наблюдается значительный рост остаточной поляризации (эффект “пробуждения”), а затем после достижения некоторого количества циклов — ее снижение (эффект “усталости”). Вопрос о том, какие процессы приводят к такой нестабильности, остается дискуссионным. При использовании ранее разработанной методологии анализа фазового состава сверхтонких слоев HZO синхротронным методом NEXAFS показано, что в конденсаторах на основе структур TiN/HZO/TiN “пробуждение”, наблюдающееся в течение первых 105 циклов переключений, объясняется увеличением относительного содержания полярной ромбической фазы в HZO за счет уменьшения содержания “паразитной” тетрагональной фазы. Полученные результаты подтверждают стимулированный электрическим полем структурный фазовый переход в пленках как один из механизмов, объясняющих эволюцию функциональных свойств сегнетоэлектрических элементов памяти на основе HZO на протяжении их срока эксплуатации.
Полный текст
 
												
	                        Об авторах
Л. Л. Лев
Московский физико-технический институт (национальный исследовательский университет)
							Автор, ответственный за переписку.
							Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Долгопрудный, Московская область						
А. С. Конашук
Санкт-Петербургский государственный университет
														Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Санкт-Петербург						
Р. Р. Хакимов
Московский физико-технический институт (национальный исследовательский университет)
														Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Долгопрудный, Московская область						
А. Г. Черникова
Московский физико-технический институт (национальный исследовательский университет)
														Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Долгопрудный, Московская область						
А. М. Маркеев
Московский физико-технический институт (национальный исследовательский университет)
														Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Долгопрудный, Московская область						
А. М. Лебедев
Национальный исследовательский центр “Курчатовский институт”
														Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Москва						
В. Г. Назин
Национальный исследовательский центр “Курчатовский институт”
														Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Москва						
Р. Г. Чумаков
Национальный исследовательский центр “Курчатовский институт”
														Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Москва						
А. В. Зенкевич
Московский физико-технический институт (национальный исследовательский университет)
														Email: lev.ll@mipt.ru
				                					                																			                												                	Россия, 							Долгопрудный, Московская область						
Список литературы
- Robertson J. // Rep. Progress Phys. 2005. V. 69. P. 327. https://doi.org/10.1088/0034-4885/69/2/R02
- Kim S. K., Lee S. W., Han J. H., Lee B., Han S., Hwang C. S. // Adv. Funct. Mater. 2010. V 20. P. 2989. https://doi.org/10.1002/adfm.201000599
- Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. // Appl. Phys. Lett. 2011. V. 99. P. 102903. https://doi.org/10.1063/1.3634052
- Mueller S., Mueller J., Singh A., Riedel S., Sundqvist J., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2012. V. 22. P. 2412. https://doi.org/10.1002/adfm.201103119
- Chernikova A.G., Kuzmichev D.S., Negrov D.V., Kozodaev M.G., Polyakov S.N., Markeev A.M. // Appl. Phys. Lett. 2016. V. 108. P. 242905. https://doi.org/10.1063/1.4953787
- Hoffmann M., Schroeder U., Schenk T., Shimizu T., Funakubo H., Sakata O., Pohl D., Drescher M., Adelmann C., Materlik R., Kersch A., Mikolajick T. // J. Appl. Phys. 2015. V. 118. P. 072006. https://doi.org/10.1063/1.4927805
- Müller J., Schröder U., Böscke T. S., Müller I., Böttger U., Wilde L., Sundqvist J., Lemberger M., Kücher P., Mikolajick T., Frey L. // J. Appl. Phys. 2011. V. 110. P. 114113. https://doi.org/10.1063/1.3667205
- Schroeder U., Yurchuk E., Müller J., Martin D., Schenk T., Polakowski P., Adelmann C., Popovici M.I., Kalinin S.V., Mikolajick T. // Jpn. J. Appl. Phys. 2014. V. 53. P. 08LE02. https://doi.org/10.7567/JJAP.53.08LE02
- Müller J., Böscke T.S., Schröder U., Mueller S., Bräuhaus D., Böttger U., Frey L., Mikolajick T. // Nano Lett. 2012. V. 12. P. 4318. https://doi.org/10.1021/nl302049k
- Hyuk Park M., Joon Kim H., Jin Kim Y., Lee W., Moon T., Seong Hwang C. // Appl. Phys. Lett. 2013. V. 102. P. 242905. https://doi.org/10.1063/1.4811483
- Chernikova A., Kozodaev M., Markeev A., Negrov D., Spiridonov M., Zarubin S., Bak O., Buragohain P., Lu H., Suvorova E., Gruverman A., Zenkevich A. // ACS Appl. Mater. Interfaces. 2016. V. 11. P. 7232. https://doi.org/10.1021/acsami.5b11653
- Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
- Zarubin S., Suvorova E., Spiridonov M., Negrov D., Chernikova A., Markeev A., Zenkevich A. // Appl. Phys. Lett. 2016. V. 109. P. 192903. https://doi.org/10.1063/1.4966219
- Hwang C.S. // Adv. Electron. Mater. 2015. V. one. P. 1400056. https://doi.org/10.1002/aelm.201400056
- Kim S. K., Popovici M. // MRS Bull. 2018. V. 43. P. 334. https://doi.org/10.1557/mrs.2018.95
- Pešić M., Fengler F.P.G., Larcher L., Padovani A., Schenk T., Grimley E.D., Sang X., LeBeau J.M., Slesazeck S., Schroeder U. and Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
- Hamouda W., Pancotti A., Lubin C., Tortech L., Richter C., Mikolajick T., Schroeder U., Barrett N. // J. Appl. Phys. 2020. V. 127. P. 064105. https://doi.org/10.1063/1.5128502
- Chouprik A., Negrov D., Tsymbal E., Zenkevich A. // Nanoscale. 2021. V. 13. P. 11635. https://doi.org/10.1039/D1NR01260F
- Koroleva A.A., Chernikova A.G., Zarubin S.S., Korostylev E.V., Khakimov R.R., Zhuk M.Yu., Markeev A.M. // ACS Omega. 2022. V. seven. № 50. P. 47084. https://doi.org/10.1021/acsomega.2c06237
- Colla E.L., Taylor D.V., Tagantsev A.K., Setter N. // Appl. Phys. Lett. 1998. V. 72. № 19. P. 2478. https://doi.org/10.1063/1.121386
- Stöhr J. NEXAFS Spectroscopy. Vol. 25. Springer Berlin Heidelberg, 1992.
- Filatova E.O., Sokolov A.A. // J. Synchrotron Radiat. 2018. V. 25. P. 232. https://doi.org/10.1107/S1600577517016253
- Filatova E.O., Sokolov A.A., Kozhevnikov I.V., Taracheva E.Y., Grunsky O.S., Schaefers F., Braun W. // J. Phys. Condens. Matter. 2009. V. 21. P. 185012. https://doi.org/10.1088/0953-8984/21/18/185012
- Dmitriyeva A.V., Zarubin S.S., Konashuk A.S., Kasatikov S.A., Popov V.V., Zenkevich A.V. // J. Appl. Phys. 2023. V. 133. P. 054103. https://doi.org/10.1063/5.0131893
- Cheema S.S., Kwon D., Shanker N., dos Reis R., Hsu S.-L., Xiao J., Zhang H., Wagner R., Datar A., McCarter M.R., Serrao C.R., Yadav A.K., Karbasian G., Hsu C.-H., Tan A.J., Wang L.-C., Thakare V., Zhang X., Mehta A., Karapetrova E., Chopdekar R.V, Shafer P., Arenholz E., Hu C., Proksch R., Ramesh R., Ciston J., Salahuddin S. // Nature. 2020. V. 580. P. 478. https://doi.org/10.1038/s41586-020-2208-x
- Kozodaev M.G., Chernikova A.G., Korostylev E.V., Park M.H., Khakimov R.R., Hwang C.S., Markeev A.M. // 2019. J. Appl. Phys. V. 125. P. 034101. https://doi.org/10.1063/1.5050700
- Lebedev A.M., Menshikov K.A., Nazin V.G., Stankevich V.G., Tsetlin M.B., Chumakov R.G. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 1039. https://doi.org/10.1134/S1027451021050335
- Henke B.L., Gullikson E.M., Davis J.C. // Atomic Data and Nuclear Data Tables. 1993. V. 54. № 2. P. 181. https://doi.org/10.1006/adnd.1993.1013
- Vasić R., Consiglio S., Clark R. D., Tapily K., Sallis S., Chen B., Newby, Jr. D., Medikonda M., Muthinti G.R., Bersch E., Jordan-Sweet J., Lavoie C., Leusink G.J., Diebold A.C. // J. Appl. Phys. V. 2013. 113. P. 234101. https://doi.org/10.1063/1.4811446
- Jain A., Ong S. P., Hautier G., Chen W., Davidson Richards W., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K.A. // APL Mater. 2013. V. 1. P. 011002. https://doi.org/10.1063/1.4812323
- Cho D.-Y., Jung H.-S., Hwang C. S. // 2010. Phys. Rev. B. V. 82. P. 094104. https://doi.org/10.1103/PhysRevB.82.094104
- Martin D., Müller J., Schenk T., Arruda T.M., Kumar A., Strelcov E., Yurchuk E., Müller S., Pohl D., Schröder U., Kalinin S.V., Mikolajick T. // Adv. Mater. 2014. V. 26. P. 8198. https://doi.org/10.1002/adma.201403115
- Lederer M., Abdulazhanov S., Olivo R., Lehninger D., Kämpfe T., Seidel K., Eng L. M. // Sci. Rep. 2021. V. 11. P. 22266. https://doi.org/10.1038/s41598-021-01724-2
- Lomenzo P.D., Takmeel Q., Zhou C., Fancher C.M., Lambers E., Rudawski N.G., Jones J.L., Moghaddam S., Nishida T. // J. Appl. Phys. 2015. V. 117. P. 134105. https://doi.org/10.1063/1.4916715
- Kim H.J., Park M.H., Kim Y.J., Lee Y.H., Moon T., Kim K.D., Hyun S.D., Hwang C.S. // Nanoscale. 2016. V. 8. P. 1383. https://doi.org/10.1039/C5NR05339K
- Grimley E.D., Schenk T., Sang X., Pešić M., Schroeder U., Mikolajick T., LeBeau J.M. // Adv. Electron. Mater. 2016. V. 2. P. 1600173. https://doi.org/10.1002/aelm.201600173
- Pešić M., Fengler F.P.G., Larcher L., Padovani A., Schenk T., Grimley E.D., Sang X., LeBeau J.M., Slesazeck S., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
- Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




