Ion implantation: nanoporous germanium
- Autores: Stepanov A.L.1, Nuzhdin V.I.1, Valeev V.F.1, Rogov А.М.1, Konovalov D.А.1
- 
							Afiliações: 
							- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS
 
- Edição: Nº 7 (2024)
- Páginas: 83-90
- Seção: Articles
- URL: https://rjpbr.com/1028-0960/article/view/664797
- DOI: https://doi.org/10.31857/S1028096024070119
- EDN: https://elibrary.ru/EUSZJE
- ID: 664797
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The formation of thin surface amorphous layers of nanoporous Ge with various morphology during low-energy high-dose implantation by metal ions of different masses 63Cu+, 108Ag+ and 209Bi+ of monocrystalline c-Ge substrates were experimentally demonstrated by high-resolution scanning electron microscopy. Analysis of the crystallographic structure of all nanoporous germanium layers obtained was carried out by reflected backscattering electron diffraction. It was shown that at low irradiation energies, in the case of 63Cu+ and 108Ag+, needle-shaped nanoformations were created on the c-Ge surface, constituting a nanoporous Ge layer, while when using 209Bi+, the implanted layer consists of densely packed nanowires. At high energies, the morphology of thin surface layers of nanoporous germanium changes with an increase in the mass of the implanted ions from three-dimensional network to spongy with separate discharged interlacing nanowires. General possible mechanisms of pore formation in Ge during low-energy high-dose ion implantation, such as cluster-vacancy, local thermal microexplosion, and point heating accompanied by melting, are discussed.
Texto integral
 
												
	                        Sobre autores
A. Stepanov
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS
							Autor responsável pela correspondência
							Email: aanstep@gmail.com
				                					                																			                												                	Rússia, 							Kazan						
V. Nuzhdin
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS
														Email: aanstep@gmail.com
				                					                																			                												                	Rússia, 							Kazan						
V. Valeev
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS
														Email: aanstep@gmail.com
				                					                																			                												                	Rússia, 							Kazan						
А. Rogov
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS
														Email: aanstep@gmail.com
				                					                																			                												                	Rússia, 							Kazan						
D. Konovalov
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the RAS
														Email: aanstep@gmail.com
				                					                																			                												                	Rússia, 							Kazan						
Bibliografia
- Степанов А.Л., Нуждин В.И., Рогов А.М., Воробьев В.В. Формирование слоев пористого кремния и германия с металлическими наночастциами. Казань: ФИЦПРЕСС, 2019. 198 c.
- Rojas E.G., Hensen J., Carstensen J., Föll H., Brendel R. // RCS Transactions. 2011. V. 33. P. 95. https://www.doi.org/10.1149/1.3553351
- Nowak D., Turkiewicz M., Solnica N. // Coatings. 2019. V. 9. P. 120. https://www.doi.org/10.3390/coatings9020120
- Zhang Y.-Y., Shin S.-H., Kang H.-J., Jeon S., Hwang S.H., Zhou W., Jeong J.-H., Li X., Kim M. // Appl. Surf. Sci. 2021. V. 546. P. 149083. https://www.doi.org/10.1016/j.apsusc.2021.149083
- Степанов А.Л., Нуждин В.И., Валеев В.Ф., Коновалов Д.А., Рогов А.М. // Письма ЖТФ. 2023. Т. 49. № 8. С. 10. https://www.doi.org/10.21883/PJTF.2023.08.55129.19446
- Uchida G., Nagai K., Habu Y., Hayashi J., Ikebe Y., Hiramatsu M., Narishige R., Itagaki N., Shiratani M., Setsuhara Y. // Sci. Rep. 2022. V. 12. P. 1742. https://www.doi.org/10.1038/s41598-022-05579-z
- Гаврилова Т.П., Хантимеров С.М., Нуждин В.И., Валеев В.Ф., Рогов А.М., Степанов А.Л. // Письма ЖТФ. 2022. Т. 48. № 8. С. 33. https://www.doi.org/10.21883/PJTF.2022.08.52364.19096
- Evtugin V.G., Rogov A.M., Nuzhdin V.I., Valeev V.F., Kavetsky T.S., Khalilov R.I., Stepanov A.L. // Vacuum. 2019. V. 165. P. 320. https://www.doi.org/10.1016/j.vacuum.2019.04.044
- Koleva M.E., Dutta M., Fukata N. // Mater. Sci. Engineer. B. 2014. V. 187. P. 102. https://www.doi.org/10.1016/j.mseb.2014.05.008
- Zegadi R., Lorrain N., Bodiou L., Guendouz M., Ziet L., Charrier J. // J. Opt. 2021. V. 23. P. 35102. https://www.doi.org/10.1088/2040-8986-abdf69
- Donovan T.M., Heinemann K. // Phys. Rev. Lett. 1971. V. 27. № 26. P. 1794.
- Flamand G., Pooetmans J., Dessein K. // Phys. Stat. Sol. C. 2005. V. 2. № 9. P. 3243. https://www.doi.org/10.1002/pssc.200461130
- Shieh J., Chen H.L., Ko T.S., Cheng H.C., Chu T.C. // AdV. Mater. 2004. V. 16. № 13. P. 1121. https://www.doi.org/10.1002/adma.200306541
- Kartopu G., Bayliss S.C., Hummel R.E., Ekinci Y. // J. Appl. Phys. 2004. V. 95. № 7. P. 3466. https://www.doi.org/10.1063/1.650919
- Foti G., Vitali G., Davies J.A. // Rad. Effects. 1977. V. 32. P. 187.
- Wilson I.H. // J. Appl. Phys. 1982. V. 53. № 3. P. 1698.
- Rudawski N.G., Jones K.S. // J. Mater. Res. 2013. V. 28. № 13. P. 1633. https://www.doi.org/10.1151/jmr.2013.24
- Stepanov A.L., Nuzhdin V.I., Valeev V.F., Rogov A.M., Vorobev V.V. // Vacuum. 2018. V. 152. P. 200. https://www.doi.org/10.1016/j.vacuum.2018.03.030
- Рогов А.М., Нуждин В.И., Валеев В.Ф., Романов И.А., Климович И.М., Степанов А.Л. // Российские нанотехнологии. 2018. Т. 13. № 9–10. С. 35.
- Rogov A.M., Nuzhdin V.I., Valeev V.F., Stepanov A.L. // Composites Commun. 2020. V. 19. P. 6. https://www.doi.org/10.1016/j.coco.2020.01.002
- А.П. Александров Документы и воспоминания. К 100-летию со дня рождения. / Ред. Хлопкин Н.С. М.: ИздАТ, 2003. 456 с.
- Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instr. Meeth. Phys. Res. B. 2010. V. 268. P. 1818. https://www.doi.org/10.1016/j.nimb.2010.02.091
- Nastasi M., Mayer J.W., Hirvonen J.K. Ion-solid interactions. Cambridge: Cambridge UniV. Press, 1996. 540 p.
- Darby B.L., Yates B.R., Rudawski N.G., Jones K.S., Elliman R.G. // Thin Solid Films. 2011. V. 519. P. 5962. https://www.doi.org/10.1016/j.tsf.2011.03.040
- Cawthorne C., Fulton E.J. // Nature. 1967. V. 216. № 11. P. 576.
- Romano L., Impellizzeri G., Tomasello M.V., Giannazzo F., Spinella C., Grimaldi M.G. // J. Appl. Phys. 2010. V. 107. P. 84314.
- Ghaly M., Nordlund K., Averback R.S. // Philosoph. Magazin. 1999. V. 79. № 4. P. 795.
- Герасименко Н.Н., Пархоменко Ю.Н. Кремний — материал наноэлектроники. М.: Техносфера, 2007. 352 с.
- Kudriavtsev Y., Hernandez-Zanabria A., Salinas C., Asomoza R. // Vacuum. 2020. V. 177. P. 109393. https://www.doi.org/10.1016/j.vacuum.2020.109393
- Kudriavtsev Y., Asomoza R., Hernandez A., Kazantsev D.Y., Ber B.Y., Gorokhov A.N. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 53203. https://www.doi.org/10.1116/6.0000262
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







