Investigation of high-intensity implantation of titanium ions into silicon under conditions of the beam’s energy impact on the surface
- Autores: Ivanova А.I.1, Vakhrushev D.О.1, Korneva О.S.1, Gurulev А.V.1, Varlachev V.А.1, Efimov D.D.2, Chernyshev А.А.3
- 
							Afiliações: 
							- National Research Tomsk Polytechnic University
- Immanuel Kant Baltic Federal University
- National Research Tomsk State University
 
- Edição: Nº 10 (2024)
- Páginas: 74-79
- Seção: Articles
- URL: https://rjpbr.com/1028-0960/article/view/664735
- DOI: https://doi.org/10.31857/S1028096024100095
- EDN: https://elibrary.ru/SHEYEO
- ID: 664735
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Methods of modifying surface and near-surface layers of materials and coatings by ion beams can be applied in many fields of science and technology. To practically implement the technologies for the targeted improvement of the performance properties of parts and products for various purposes, it is of great interest to develop the methods of deep ion doping of near-surface layers of semiconductor materials, as well as metals and alloys due to the enhancement of radiation-stimulated diffusion under conditions when the irradiated sample’s deep layers are not subjected to significant temperature impact. This work studies the features and regularities of the implementing the synergy of high-intensity titanium ion implantation at current densities of several hundred milliamps per square centimeter with simultaneous energy impact of a submillisecond ion beam with a power density reaching several tens of kilowatts per square centimeter on the surface. This work is the first to show that the synergy of high-intensity ion implantation and the energy impact of a high-power density ion beam, taking the titanium implantation into silicon as an example, provides the possibility of increasing the ion doping depth from fractions of a micron to 6 μm by increasing the irradiation time from 0.5 to 60 min.
Texto integral
 
												
	                        Sobre autores
А. Ivanova
National Research Tomsk Polytechnic University
							Autor responsável pela correspondência
							Email: bai@tpu.ru
				                					                																			                												                	Rússia, 							Tomsk						
D. Vakhrushev
National Research Tomsk Polytechnic University
														Email: bai@tpu.ru
				                					                																			                												                	Rússia, 							Tomsk						
О. Korneva
National Research Tomsk Polytechnic University
														Email: bai@tpu.ru
				                					                																			                												                	Rússia, 							Tomsk						
А. Gurulev
National Research Tomsk Polytechnic University
														Email: bai@tpu.ru
				                					                																			                												                	Rússia, 							Tomsk						
V. Varlachev
National Research Tomsk Polytechnic University
														Email: bai@tpu.ru
				                					                																			                												                	Rússia, 							Tomsk						
D. Efimov
Immanuel Kant Baltic Federal University
														Email: bai@tpu.ru
				                					                																			                												                	Rússia, 							Kaliningrad						
А. Chernyshev
National Research Tomsk State University
														Email: bai@tpu.ru
				                					                																			                												                	Rússia, 							Tomsk						
Bibliografia
- Диденко А.Н., Лигачев А.Е., Куракин И. Б. Воздействие пучков заряженных частиц на поверхность металлов и сплавов. Москва: Энергоатомиздат, 1987. 184 с.
- Комаров Ф.Ф. Ионная имплантация в металлы. М.: Металлургия, 1990. 216 с.
- Быковский Ю.А., Неволин В.Н., Фоминский В.Ю. Ионная и лазерная имплантация металлических материалов. М.: Энергоатомиздат, 1991. 240 с.
- Челядинский А.Р., Комаров Ф.Ф. // УФН. 2003. Т. 173. № 8. С. 813. https://www.doi.org/10.1070/PU2003v046n08 ABEH001371.
- Диденко А.Н., Шаркеев Ю.П., Козлов Э.В., Рябчиков А.И. Эффекты дальнодействия в ионно-имплантированных металлических материалах. Томск: Изд-во НТЛ, 2004. 328 с.
- Борисов А.М., Крит Б.Л., Куликаускас В.С., Семенова Н.Л., Суминов И.В., Тихонов С.А. // Известия Томского политехнического университета. 2014. Т. 324. № 2. C. 137.
- Ryssel H., Ruge I. Ion implantation. Chichester: Wiley, 1986. 478 p. https://www.doi.org/10.1002/sia.740100409
- Williams J.S., Poate J.M., Ion Implantation and Beam Processing, 1st ed. Orlando: Academic, 1984. 432 p.
- Komarov F.F. // Phys.-Uspekhi. 2003. V. 46. № 12. P. 1253. https://www.doi.org/10.1070/PU2003v046n12 ABEH001286
- Mehrer H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, 1st ed. Berlin: Springer Science & Business Media, 2007. 645 p.
- Valiev S.H., Pugacheva T.S., Jurabekova F.G., Lem S.A., Miyagawa Y. // Nucl. Instrum. Methods Phys. Res. B. 1997. V. 127–128. P. 265. https://www.doi.org/10.1016/S0168-583X(96)00937-8
- Ho P.S. // Surf. Sci. 1978. V. 72. № 2. P. 253. https://www.doi.org/10.1016/0039-6028(78)90294-7.
- Miotello A., Mazzoldi P. // J. Appl. Phys. 1983. V. 54. P. 4235. https://www.doi.org/10.1063/1.332527
- Eltoukhy A.H., Green J.E. // J. Appl. Phys. 1980. V. 51. № 8. P. 4444. https://www.doi.org/10.1063/1.328265
- Sizmann R. // J. Nucl. Mater. 1978. V. 69–70. P. 386. https://www.doi.org/10.1016/0022-3115(78)90256-8
- Patent 2787564 (US). Forming semiconductive devices by ionic bombardment. / Bell Telephone Laboratories Inc., New York. Shockley W. // 1957.
- Poate J.M., Foti G., Jacobson D.C. Surface Modification and Alloying by Laser, Ion, and Electron Beams, 1st ed. Berlin: Springer, 2013. 414 p.
- Ryabchikov A.I., Stepanov I.B., Dektjarev S.V., Sergeev O.V. // Rev. Sci. Instrum. 1998. V. 69. P. 810. https://www.doi.org/10.1063/1.1148585
- Nikolaev A.G., Oks E.M., Savkin K.P., Yushkov G.Yu., Brown I.G. // Rev. Sci. Instrum. 2012. V. 83. № 2. P. 501. https://www.doi.org/10.1063/1.3655529
- Anders A. Handbook of Plasma Immersion Ion Implantation and Deposition, 1st ed. N.Y.: John Wiley & Sons, 2000. 760 p.
- Widner M., Alexeff I., Jones W.D., Lonngren K.E. // Phys. Fluids. 1970. V. 13. P. 2532. https://www.doi.org/10.1063/1.1692823
- Anders A. // Surf. Coat. Technol. 1997. V. 93. № 2–3. P. 158. https://www.doi.org/10.1016/S0257-8972(97)00037-6
- Wei R. // Surf. Coat. Technol. 1996. V. 83. P. 218. https://www.doi.org/10.1016/0257-8972(95)02828-5
- Anishchik V.M., Uglov V.V. Modification of Instrumental Materials by Ion and Plasma Beams. Minsk: Belorus. Gos. Univ., 2003. 177 p. [in Russian].
- Ryabchikov A.I. Ananin P.S., Dektyarev S.V., Sivin D.O., Shevelev A.E. // Vacuum. 2017. V. 143. P. 447. https://www.doi.org/10.1016/j.vacuum.2017.03.011
- Ryabchikov A.I. // IEEE Trans. Plasma Sci. 2021. V. 49. № 9. P. 2529. https://www.doi.org/10.1109/TPS.2021.3073942.
- SIMNRA Computer simulation of RBS, ERDA, NRA, MEIS and PIGE by Matej Mayer [Электронный ресурс]. https://mam.home.ipp.mpg.de/Download.html. Дата обращения: 14.11.2022.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



