Shear bands in amorphous alloys and their role in the formation of nanocrystals
- Autores: Aronin A.S.1, Volkov N.A.1, Pershina E.A.1
- 
							Afiliações: 
							- Institute of Solid State Physics, Russian Academy of Sciences
 
- Edição: Nº 1 (2024)
- Páginas: 33-40
- Seção: Articles
- URL: https://rjpbr.com/1028-0960/article/view/664683
- DOI: https://doi.org/10.31857/S1028096024010054
- EDN: https://elibrary.ru/DPKZWJ
- ID: 664683
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The processes of evolution of the structure and surface morphology of Al87Ni8La5 and Fe76Si13B11 amorphous alloys under deformation have been studied. It is shown that the deformation occurs through the formation and propagation of shear bands, which form steps when they reach the surface. The formation of nanocrystals in shear bands was noted. It is shown that steps on the surface are formed under the combined action of several elementary shear bands. Shear bands have a variable thickness in the range from 5 to 20 nm. An elementary step has a thickness of about 15 nm. Shear bands can be combined into zones. The transverse size of the zones is about 1 μm. The formation of nanocrystals in zones can lead to anisotropy in the orientational position of nanocrystals in an amorphous matrix. With an increase in the degree of deformation, nanocrystals are formed not only in shear bands, but also in areas adjacent to them. There is a difference in the kinetics of the formation of nanocrystals in an alloy based on aluminum and iron.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Aronin
Institute of Solid State Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: aronin@issp.ac.ru
				                					                																			                												                	Rússia, 							142432, Chernogolovka						
N. Volkov
Institute of Solid State Physics, Russian Academy of Sciences
														Email: aronin@issp.ac.ru
				                					                																			                												                	Rússia, 							142432, Chernogolovka						
E. Pershina
Institute of Solid State Physics, Russian Academy of Sciences
														Email: aronin@issp.ac.ru
				                					                																			                												                	Rússia, 							142432, Chernogolovka						
Bibliografia
- Inoue A., Ochiai T., Horio Y., Masumoto T. // Mater. Sci. Eng. 1994. V. 649. P. 649. https://doi.org/10.1016/0921-5093(94)90286-0
- He G., Löser W., Eckert J. // Scripta Mater. 2003. V. 48. P. 1531. https://doi.org/10.1016/S1359-6462(03)00128-3
- Louzguine-Luzgin D.V., Seki I., Ketov S.V., Louzguina-Luzgina L.V., Polkin V.I., Chen N., Fecht H., Vasiliev A.N., Kawaji H. // J. Non-Cryst. Solids. 2015. V. 419. P. 12. https://doi.org/10.1016/j.jnoncrysol.2015.03.018
- Yoshizawa, Y., Oguma, S., Yamauchi, K. // J. Appl. Phys. 1988. V. 64. P. 6044. https://doi.org/10.1063/1.342149
- Aronin A., Budchenko A., Matveev D., Pershina E., Tkatch V., Abrosimova G. // Rev. Adv. Mater. Sci. 2016. V. 46. P. 53.
- Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24 P. 1. https://doi.org/10.1557/jmr.2009.0001
- Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74 P. 71. https://doi.org/10.1016/j.mser.2013.04.001
- Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Materialia. 2021. V. 209. P. 116785. doi.org/10.1016/j.actamat.2021.116785
- Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
- Davani F.A., Hilke S., Rösner H., Geissler D., Gebert A., Wilde G. // J. Alloys Compd. V. 2020. V. 837. P. 155494. https://doi.org/10.1016/j.jallcom.2020.155494
- Binkowski I., Shrivastav G.P., Horbach J., Divinski S. V., Wilde G. // Acta Materialia. 2016. V. 109. P. 330. https://doi.org/10.1016/j.actamat.2016.02.06 1
- Aronin A.S., Louzguine-Luzgin D.V. // Mechanics Mater. 2017. V. 113. P. 19. http://dx.doi.org/10.1016/j.mechmat.2017.07.007
- Постнова Е.Ю., Абросимова Г.Е., Аронин А.С. // Поверхность. Рентген., синхротр, и нейтрон. исслед. 2021. № 11. С. 5. https://doi.org/10.31857/S1028096021110169
- Aronin A.S., Aksenov O.I., Matveev D.V., Pershina E.A., Abrosimova G.E. // Mater. Lett. 2023. V. 344. P. 134478. https://doi.org/10.1016/j.matlet.2023.134478
- Glezer A.M., Louzguine-Luzgin D.V., Khriplivets I.A., Sundeev R.V., Gunderov D.V., Bazlov A.I., Pogoz- hev Y.S. // Mater. Lett. 2019 V. 256. P. 126631. https://doi.org/10.1016/j.matlet.2019.126631
- Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Cryst. Solids. 2022. V. 577. P. 121279. https://doi.org/10.1016/j.jnoncrysol.2021.121279
- Mironchuk B., Abrosimova G., Bozhko S., Drozdenko A., Postnova E., Aronin A. // Mater. Lett. 2020. V. 273. P. 127941. https://doi.org/10.1016/j.matlet.2020.127941
- Maaß R., Samver K., Arnold W., Volkert C.F. // Appl. Phys. Lett. 2014. V. 105. P. 171902. https://doi.org/10.1063/1.4936388
- Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Materialia. 2017. V. 140. P. 206. http://dx.doi.org/10.1016/j.actamat.2017.08.032
- Shahabi H.S., Scudino S., Kaban I., Stoica M., Escher B., Menzel S., Vaughan G.B.M., Kühn U., Eckert J. // Acta Materialia. 2016. V. 111. P. 187. http://dx.doi.org/10.1016/j.actamat.2016.03.035
- Pan J., Chen Q., Liu L., Li Y. // Acta Materialia. 2011 V. 59. P. 5146. https://doi.org/10.1016/j.actamat.2011.04.047
- Schmidt V., Rösner H., Peterlechner M., Wilde G. // Phys. Rev. Lett. 2015. V. 115. P. 035501. https://doi.org/10.1103/PhysRevLett.115.035501
- Abrosimova G., Aronin A., Budchenko A. // Mater. Lett. 2015. V. 139. P. 194. https://doi.org/10.1016/j.matlet.2014.10.076
- Abrosimova G., Aronin A., Fokin D., Orlova N., Postno- va E. // Mater. Lett. 2019. V. 252 P. 114. https://doi.org/10.1016/j.matlet.2019.05.099
- Huang Z.H., Li J.F., Rao Q.L., Zhou Y.H. // Mater. Sci. Engineer. A. 2008. V. 489. P. 380. https://doi.org/10.1016/j.msea.2007.12.027
- Nunes E., Pereira R.D., Freitas J.C.C., Passamani E.C., Larica C., Fernandes A.A.R., Sanchez F.H. // J. Mater. Sci. 2006. V. 41. P. 1649. https://doi.org/10.1007/s10853-005-4229-0
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 











