Composition and Structure of FCC-Structured High Entropy Alloys, Irradiated with Helium Ions
- Autores: Uglov V.V.1, Ungarbaev E.O.2, Sapar A.D.2, Koloberdin M.V.2, Kurahmedov A.E.2, Kozlovski A.L.2, Ryskulov A.E.2, Stepanjuk N.A.1, Zlotski S.V.1, Ivanov I.A.2, Jin K.3
- 
							Afiliações: 
							- Belarusian State University
- Nuclear Physics Institute of ME of the RK
- Beijing Institute of Technology
 
- Edição: Nº 4 (2023)
- Páginas: 101-106
- Seção: Articles
- URL: https://rjpbr.com/1028-0960/article/view/664586
- DOI: https://doi.org/10.31857/S1028096023040210
- EDN: https://elibrary.ru/JGQRSK
- ID: 664586
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In this study bulk samples of high-entropy alloys CoCrFeNi and CoCrFeMnNi, fabricated by arc melting (of pure metal powders up to 99.97%, argon atmosphere) followed by annealing (1150°C, 24 and 72 h) and cold rolling (85% decrease in thickness) were irradiated with He2+ ions (40 keV, fluence 2 × 1017 cm–2). Samples of CoCrFeNi and CoCrFeMnNi are substitutional solid solutions with a close to equiatomic composition and a uniform distribution of elements over the depth of the alloys. They have a coarse grain structure with a grain size of about 80 µm for CoCrFeNi and 100 µm for CoCrFeMnNi alloys. It was revealed that the surface microstructure, phase and elemental composition of high-entropy alloys are resistant to irradiation. No traces of radiation erosion and changes in the elemental and phase composition of the alloys were found. In alloys, the dislocation density increases, which leads to a decrease in the size of coherent scattering regions, and helium bubbles are also formed, leading to an increase in compressive macrostresses. It was found that tensile microstresses prevail in irradiated CoCrFeNi alloys, while compressive stresses prevail in CoCrFeMnNi alloys. It has been found that high-entropy CoCrFeMnNi alloys with a more complex composition are more resistant to radiation damage.
Sobre autores
V. Uglov
Belarusian State University
							Autor responsável pela correspondência
							Email: uglov@bsu.by
				                					                																			                												                								Belarus, 220030, Minsk						
E. Ungarbaev
Nuclear Physics Institute of ME of the RK
														Email: uglov@bsu.by
				                					                																			                												                								Kazakhstan, 010008, Astana						
A. Sapar
Nuclear Physics Institute of ME of the RK
														Email: uglov@bsu.by
				                					                																			                												                								Kazakhstan, 010008, Astana						
M. Koloberdin
Nuclear Physics Institute of ME of the RK
														Email: uglov@bsu.by
				                					                																			                												                								Kazakhstan, 010008, Astana						
A. Kurahmedov
Nuclear Physics Institute of ME of the RK
														Email: uglov@bsu.by
				                					                																			                												                								Kazakhstan, 010008, Astana						
A. Kozlovski
Nuclear Physics Institute of ME of the RK
														Email: uglov@bsu.by
				                					                																			                												                								Kazakhstan, 010008, Astana						
A. Ryskulov
Nuclear Physics Institute of ME of the RK
														Email: uglov@bsu.by
				                					                																			                												                								Kazakhstan, 010008, Astana						
N. Stepanjuk
Belarusian State University
														Email: uglov@bsu.by
				                					                																			                												                								Belarus, 220030, Minsk						
S. Zlotski
Belarusian State University
														Email: uglov@bsu.by
				                					                																			                												                								Belarus, 220030, Minsk						
I. Ivanov
Nuclear Physics Institute of ME of the RK
														Email: uglov@bsu.by
				                					                																			                												                								Kazakhstan, 010008, Astana						
K. Jin
Beijing Institute of Technology
														Email: uglov@bsu.by
				                					                																			                												                								China, 100811, Beijing						
Bibliografia
- Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. // Materials Today. 2016. V. 19. P. 349. https://www.doi.org/10.1016/j.mattod.2015.11.026
- Manzoni A.M., Glatzel U. // Encyclopedia of Materials: Metals and Alloys. 2020. V. 2. P. 441. https://www.doi.org/10.1016/B978-0-12-803581-8.11774-6
- Li W., Xie D., Li D., Zhang Y., Gao Y., Liaw P.K. // Prog. Mater. Sci. 2021. V. 118. P. 100777. https://www.doi.org/10.1016/j.pmatsci.2021.100777
- Son S., Kim S., Kwak J., Gu G.H., Hwang D.S., Kim Y.T., Kim H.S. // Mater. Lett. 2021. V. 300. P. 130130. https://www.doi.org/10.1016/j.jmrt.2022.01.141
- Yu P.F., Zhang L.J., Cheng H., Zhang H., Ma M.Z., Li Y.C., Li G., Liaw P.K., Liu R.P. // Intermetallics. 2016. V. 70. P. 82. https://www.doi.org/10.1016/j.intermet.2015.11.005
- Koval N.E., Juaristi J.I., Muiño R.D., Alducin M. // J. Appl. Phys. 2020. V. 127. P. 145102. https://www.doi.org/10.1063/1.5142239
- Zhang Y., Zuo T. T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. // Prog. Mater. Sci. 2014. V. 6. P. 1. https://www.doi.org/10.1016/j.pmatsci.2013.10.001
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. // Mater. Sci. Eng. 2020. V. 375. P. 213. https://www.doi.org/10.1016/j.msea.2003.10.257
- Senkov O.N., Scott J.M., Senkova S.V., Miracle D.B., Woodward C.F. // J. Alloys Compounds. 2011. V. 509. P. 6043. https://www.doi.org/10.1016/j.jallcom.2011.02.171
- Karati A., Guruvidyathri K., Hariharan V.S., Murty B.S. // Scripta Materialia. 2019. V. 162. P. 465. https://www.doi.org/10.1016/j.scriptamat.2018.12.017
- Pacheco V., Lindwall G., Karlsson D., Cedervall J., Fritze S., Ek G., Berastegui P., Sahlberg M., Jansson U. // Inorg. Chem. 2019. V. 58. P. 811. https://www.doi.org/10.1021/acs.inorgchem.8b02957
- Xia S. Q., Wang Z., Yang T., Zhang Y. // J. Iron Steel Res. 2015. V. 22. P. 879. https://www.doi.org/10.1016/S1006-706X(15)30084-4
- Jones N.G., Owen L.R. // Encyclopedia of Materials: Metals and Alloys. 2020. V. 2. P. 393. https://www.doi.org/10.1016/B978-0-12-803581-8.12124-1
- Tian Y., Li L., Li J., Yang Y., Li S., Qin G. // Adv. Engineering Mater. 2021. V. 23. P. 2001514. https://www.doi.org/10.1002/adem.202001514
- Lu Y., Huang H., Gao X., Ren C., Gao J., Zhang H., Zheng S., Jin Q., Zhao Y., Chenyang L., Wang T., Li T. // J. Mater. Sci. Technol. 2018. V. 35. P. 369. https://www.doi.org/10.1016/j.jmst.2018.09.034
- Song H., Ma Q., Zhang W., Tian F. // J. Alloys Compounds. 2021. V. 885. P. 160944. https://www.doi.org/10.1016/j.jallcom.2021.160944
- Zhang Z., Han E.H., Xiang C. // Corrosion Sci. 2021. V. 191. P. 109742. https://www.doi.org/10.1016/j.corsci.2021.109742
- Murty B.S., Yeh J.-W., Ranganathan S. High-Entropy Alloy, 1st ed. Butterworth-Heinemann, 2014. 218 p.
- Lee C., Chou Y., Kim G., Song G., Gao M.C., Zhang C., Chen W., Poplawsky J., Chou Y.C., Choo H., Liaw P.K. // Adv. Mater. 2020. V. 32. P. 2004029. https://www.doi.org/10.1002/adma.202004029
- Рогачев А.С. // Физика металлов и металловедение. 2020. Т. 121. № 8. С. 807. https://www.doi.org/10.31857/S0015323020080094
- http://www.srim.org/
- Zhang Z., Armstrong D.E.J., Grant P.S. // Prog. Mater. Sci. 2022. V. 123. P. 100807. https://www.doi.org/10.1016/j.pmatsci.2021.100807
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







