N-Cadherin — A Potential Target for Psychopharmacology

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Glycoprotein N-cadherin (Neuronal cadherin) belongs to the family of calcium-dependent cell adhesion molecules, representing a key element that carries out intercellular contacts in brain neurons. However, it is involved not only in the mechanical connection of neurons, but also influences the specifics of the further development and functional state of the neuron. This is due to the active interaction of N-cadherin with many proteins at the pre- and post-synapse, initiating a cascade of reactions that provide such processes as long-term potentiation (underlying learning and memory), morphogenesis, neuronal recognition, activation of receptors (NMDA and AMPA types), regulation of cytoskeleton formation. This polyfunctionality is necessary for specific neurons to connect to each other in a certain way, and such adhesion leads to the coordination of cell behavior through intercellular signaling and spatio–temporal control of differential gene expression. Mutations in the genes responsible for the expression of N-cadherin lead to various disorders of the functional activity of the synapse and the processes of spatial orientation and memory. Thus, involvement in important neuroplastic processes regulating cognitive functions and behavior determines interest in studying the effect of drugs on N-cadherin. In particular, N-cadherin deserves closer consideration by pharmacologists as a potential target in the mechanism of action of various psychoactive substances.

Texto integral

Acesso é fechado

Sobre autores

Y. Firstova

Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies

Email: firstovaj@mail.ru
Rússia, Moscow

G. Kovalev

Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies

Autor responsável pela correspondência
Email: kovalev@academpharm.ru
Rússia, Moscow

Bibliografia

  1. Hulpiau P., van Roy F. // International Journal of Biochemistry & Cell Biology. 2009. V. 41. P. 349—369.
  2. Benson D.L., Tanaka H. // The Journal of Neuroscience. 1998. V. 18. № 17. P. 6892—6904.
  3. Vae Priest A., Koirala R., Sivasankar S. // Current Opinion in Biomedical Engineering. 2019. V. 12. P. 43—50.
  4. Basu R., Taylor M., Williams M. // Cell Adhesion & Migration. 2015. V. 9. № 3. P. 193—201.
  5. Arikkath J. // Open Neurosci. J., 2009. № 3. Р. 134–147.
  6. Arikkath J., Reichardt L.F. // Trends in Neurosciences. 2008. V. 31. № 9. P. 487—494.
  7. Rudy W.J. // Sinauer Associates, Inc. Publishers. 2008. P. 500.
  8. Bozdago O., Shan W., Tanaka H., Benson D.L., Huntley G.W. // Neuron. 2000. V. 28. № 1. P. 245—259.
  9. Hayashi Y., Majewska A.K. // Neuron. 2005. V. 46. № 4. P. 529—532.
  10. Yagi T., Takeichi M. // Genes & Development. 2000. V. 14. № 10. P. 1169-80.
  11. Silverman J.B., Restituito S., Lu W., Lee-Edwards L., Khatri L., Ziff E.B. // J. Neuroscience. 2007. V. 27. № 32. P. 8505—8516.
  12. Sharpio L., Love J., Colman D.R. // Annu. Rev. Neuroscience. 2007. V. 30. P. 451—474.
  13. Yamada S., Pokutta S., Drees F., Weis W.I., Nelson W.J. // Cell. 2005. V. 123. № 5. P. 889—901.
  14. Murase S., Mosser E., Schuman E.M. // Neuron. V. 35. № 1. P. 91—105.
  15. Tai C-Y., Kim S-A., Schuman E. // Current Opinion in Cell Biology. 2008. V. 20. № 5. P. 567—575.
  16. Malinverno M., Carta M., Epis R., Marcello E., Verpelli C., Cattabeni F. // J. Neuroscience. 2010. P. 30. № 48. P. 16343—16355.
  17. Saglietti L., Dequidt C., Kamieniarz K., Rousset M.C., Valnegri P., Thoumine O., Beretta F., Fagni L., Choquet D., Sala C. // Neuron. 2007. V. 54. № 3. P. 461—477.
  18. Husi H., Ward M.A., Choudhary J.S., Blackstock W.P., Grant S.G. // Nat. Neurosci. 2000. V. 3. № 7. P. 661—669.
  19. Segal M. // Nat. Rev. Neurosci. 2005. V. 6. № 4. P. 277—284.
  20. Tai C.Y., Mysore S.P., Chiu C., Schuman E.M. // Neuron. 2007. V. 54. № 5. P. 771—785.
  21. Shepherd J.D., Huganir R.L. // Annu. Rev. Cell Dev. Biol. 2007. V. 23. P. 613—643.
  22. Jump R., Albert B., Carnahan R.H. // Seminars in Cell & Developmental Biology. 2004. V. 15. № 6. P. 657—663.
  23. Bamji S.X., Shimazu K., Kimes N., Huelsken J., Birchmeier W., Lu B., Reichardt L.F. // Neuron. 2003. V. 40. № 4. P. 719—731.
  24. Murata Y., Hamada S., Morishita H., Mutoh T., Yagi T. // J. Biol. Chem. 2004. V. 279. № 47. P. 49508-16.
  25. Marambaud P., Wen P.H., Dutt A., Shioi J., Takashima A., Siman R., Robakis N.K. // Cell. 2003. V. 114. № 5. P. 635—645.
  26. Leckband D.E., de Rooij J. // Annu. Rev. Cell Dev. Biol. 2014. V. 30. P. 291—315.
  27. Agustín-Durán D., Mateos-White I., Fabra-Beser J., Gil-Sanz C. // Cells. 2021. V. 10. № 1. P. 118.
  28. Gul I.S., Hulpiau P., Saeys Y., van Roy F. // Exp. Cell Res. 2017. V. 358. № 1. P. 3—9.
  29. McCrea P.D., Maher M.T., Gottardi C.J. // Curr. Top. Dev. Biol. 2015. V. 112. P. 129—196.
  30. Tang L., Hung C.P., Schuman E.M. // Neuron. 1998. V. 20. № 6. P. 1165—1175.
  31. Mendez P., De Roo M., Poglia L., Klauser P., Muller D. // J. Cell Biol. 2010. V. 189. № 3. P. 589—600.
  32. Togashi H., Mizoguchi A., Takaoka K., Chisaka O., Takeichi M. // Neuron. 2002. V. 35. № 1. P. 77—89.
  33. Takeichi M., Abe K. // Trends Cell Biol. 2005. V. 15. № 4. P. 216—221.
  34. Abe K., Chisaka O., Van Roy F., Takeichi M. // Nat. Neurosci. 2004. V. 7. P. 357—363.
  35. Abe K., Takeichi M. // Neuron. 2007. V. 53. № 3. P. 387—397.
  36. Moon R.T., Kohn A.D., De Ferrari G.V., Kaykas A. // Nat. Rev. Genet. 2004. V. 5. P. 691—701.
  37. Simcha I., Shtutman M., Salomon D., Zhurinsky J., Sadot E., Geiger B., Ben-Ze’ev A. // J. Cell Biol. 1998. V. 141. № 6. P. 1433—1448.
  38. Yasuda S., Tanaka H., Sugiura H., Okamura K., Sakaguchi T., Tran U., Takemiya T., Mizoguchi A., Yagita Y., Sakurai T. // Neuron. 2007. V. 56. № 3. P. 456—471.
  39. Brigidi G., Bamji S. // Current Opinion in Neurobiology. 2011. V. 21. № 2. P. 208—214.
  40. Hirano S., Takeichi M. // Physiol Rev. 2012. V. 92. № 2. P. 597—634.
  41. Nikitczuk J.S., Patil S.B., Matikainen-Ankney B.A., Scarpa J., Shapiro M.L., Benson D.L., Huntley G.W. // Hippocampus. 2014. V. 24. № 8. P. 943—962.
  42. Uchida N., Honjo Y., Johnson K.R., Wheelock M.J., Takeichi M. // J. Cell Biol. 1996. V. 135. № 3. P. 767—779.
  43. Shinoe T., Goda Y. // Curr. Opin. Neurobiol. 2015. V. 35. P. 148—155.
  44. Mysore S.P., Tai C-Y., Schuman E.M. // Front Cell Neurosci. 2007. V. 31. P. 1—14.
  45. Schrick C., Fischer A., Srivastava D.P., Tronson N.C., Penzes P., Radulovic J. // Neuron. 2007. V. 55. № 5. P. 786—798.
  46. Asada M., Utsugi I., Uemura K., Kubota M., Noda Y. // Mol Brain. 2021. V. 14. № 1. P. 23.
  47. Rediesa C., Hertela N., Hu C.A. // Brain Research. 2012. V. 1470. P. 130—144.
  48. Sakurai T. // Mol. Cell. Neurosci. 2017. V. 81. P. 4—11.
  49. Hawi Z. // Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2018. V. 177. № 2. P. 168—180.
  50. Halperin D., Stavsky A., Kadir A., Drabkin M., Wormser O. // Nature Communications. 2021. V. 12. № 1. P. 6187.
  51. Forero A., Ku H.P., Malpartida A.B., Wäldchen S., Alhama-Riba J. // Neuropharmacology. 2020. V. 15. P. 168.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The interaction of N-cadherin with various synaptic proteins (according to the data presented [3, 4, 15, 39]).

Baixar (262KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024