Двухслойная равновесная модель течения смешивающейся неоднородной жидкости
- Авторы: Ляпидевский В.Ю.1
- 
							Учреждения: 
							- Институт гидродинамики им. М. А. Лаврентьева СО РАН
 
- Выпуск: № 4 (2024)
- Страницы: 79-93
- Раздел: Статьи
- URL: https://rjpbr.com/1024-7084/article/view/682523
- DOI: https://doi.org/10.31857/S1024708424040066
- EDN: https://elibrary.ru/OYNBYQ
- ID: 682523
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассматривается двухслойное течение стратифицированной по плотности жидкости с массообменом между слоями. В приближении Буссинеска уравнения движения сводятся к однородной квазилинейной системе уравнений в частных производных переменного типа. Параметры течения в промежуточном перемешанном слое определяются из условий равновесия в более общей модели трехслойного течения смешивающейся жидкости. В частности, из условий равновесия вытекает постоянство прослоечного числа Ричардсона в течениях со сдвигом скорости. Построено автомодельное решение задачи о распаде произвольного разрыва (задачи о водообмене в шлюзе) в области гиперболичности рассматриваемой системы. Исследованы транскритические режимы течения над локальным препятствием и определены условия, при которых препятствие определяет течение вверх по потоку. Проведено сравнение стационарных и нестационарных решений с решениями, полученными для исходных трехслойных моделей течения смешивающейся жидкости.
Ключевые слова
Полный текст
 
												
	                        Об авторах
В. Ю. Ляпидевский
Институт гидродинамики им. М. А. Лаврентьева СО РАН
							Автор, ответственный за переписку.
							Email: liapid@hydro.nsc.ru
				                					                																			                												                	Россия, 							Новосибирск						
Список литературы
- Helfrich K.R., Melville W.K. Long nonlinear internal waves // Ann. Rev. Fluid Mech. 2006. V. 38. P. 395–425. https://doi.org/10.1146/annurev.fluid.38.050304.092129
- Thorpe S.A., Li Lin. Turbulent hydraulic jumps in a stratified shear flow. Part 2 //J. Fluid Mech. 2014. V. 758. P. 94–120. https://doi.org/10.1017/jfm.2014.502
- Baines P.G. Internal hydraulic jumps in two-layer systems // J. Fluid Mech. 2016. V. 787. P. 1–15. https://doi.org/10.1017/jfm.2015.662
- Ogden K.A., Helfrich K.R. Internal hydraulic jumps in two-layer flows with increasing upstream shear // Phys. Rev. Fluids. 2020. V. 5. 074803. https://doi.org/10.1103/PhysRevFluids.5.074803
- Lawrence G.A., Armi L. Stationary internal hydraulic jumps // J. Fluid Mech. 2022. V. 936. A25. https://doi.org/10.1017/jfm.2022.74
- Rastello M., Hopfinger E.J. Sediment-entraining suspension clouds: a model of powder-snow avalanches // J. Fluid. Mech. 2004. V. 509. P. 181–206. https://doi.org/10.1017/S0022112004009322
- Ermanyuk E.V., Gavrilov N.V. A note on the propagation speed of a weakly dissipative gravity current // J. Fluid Mech. 2007. V. 574. P. 393–403. https://doi.org/10.1017/S0022112006004198
- Dai A. Experiments on gravity currents propagating on different bottom slopes // J. Fluid Mech. 2013. 731 pp. 117–141. https://doi.org/10.1017/jfm.2013.372
- Zhu R., He Z., Meiburg E. Mixing, entrainment and energetics of gravity currents released from two-layer stratified locks // J. Fluid Mech. 2023. V. 960. A1. https://doi.org/10.1017/jfm.2023.146
- Turner J.S. Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows // J. Fluid Mech. 1986. V. 183. P. 431–471. https://doi.org/10.1017/S0022112086001222
- Baines P.G. Topographic effects in stratified flows. Cambridge Univ. Press, 1995. 500 p. doi: 10.1017/9781108673983
- Klymak M., Moum J.N. Internal solitary waves of elevation advancing on a shoaling shelf // Geophys. Res. Lett. 2003. V. 30, Issue 20. 2045. https://doi.org/10.1029/2003GL017706
- Bourgault D., Kelley D.E., Galbraith P.S. Interfacial solitary wave run-up in the St. Lawrence Estuary // J. Marine Res. 2005. V. 63. P. 1001–1015. doi: 10.1357/002224005775247599
- Lamb K. Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores // J. Fluid Mech. 2003. V. 478. P. 81–100. https://doi.org/10.1017/S0022112002003269
- Ляпидевский В.Ю., Храпченков Ф.Ф., Чесноков А.А., Ярощук И.О. Моделирование нестационарных гидрофизических процессов на шельфе Японского моря // Изв. РАН. МЖГ. 2022. № 1. С. 57–68. https://doi.org/10.31857/S0568528122010066
- Кириллов В.В., Ляпидевский В.Ю., Суторихин И.А., Храпченков. Ф.Ф. Особенности трансформации нелинейных внутренних волн на шельфе и в глубоком озере // Изв. РАН. МЖГ. 2023. № 6. С. 121–131. doi: 10.31857/S1024708423600537
- Parker G., Fukushima Y., Pantin H.M. Self-accelerating turbidity currents // J. Fluid Mech. 1986. V. 171. P. 145–81. https://doi.org/10.1017/S0022112086001404
- Liapidevskii V. Yu., Dutykh D. On the velocity of turbidity currents over moderate slopes // Fluid Dyn. Res. 2019. V. 51, № 3. 035501. doi: 10.1088/1873-7005/ab0091
- Уизем Дж. Линейные и нелинейные волны. Пер. с англ. М; Мир, 1977. 621 с.
- Ляпидевский В.Ю., Чесноков А.А. Равновесная модель слоя смешения в сдвиговом течении стратифицированной жидкости // ПМТФ. 2024. doi: 10.15372/PMTF202315412
- Ляпидевский В.Ю. Равновесная модель плотностного течения // Труды МИАН. 2023. Т. 322. № 6. С. 167–189. https://doi.org/10.4213/tm4303
- Ляпидевский В.Ю., Тешуков В.М. Математические модели распространения длинных волн в неоднородной жидкости. Изд-во СО РАН, Новосибирск, 2000, 420 с.
- Baines P.G. A unified description of two-layer flow over topography // J. Fluid Mech. 1984. V. 146. P. 127–167. https://doi.org/10.1017/S0022112084001798
- Lax P.D. Hyperbolic systems of conservation laws II// Comm. Pure Appl. Math. 1957. V. 10. P. 537–566. https://doi.org/10.1002/cpa.3160100406
- Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений и их приложение к газовой динамике. М.: Наука, 1978. 687 c.
- Гаврилюк С.Л. Задача о распаде произвольного разрыва для газа Ван-дер-Ваальса // Динамика жидкости со свободными границами. Новосибирск: Ин-т гидродинамики СО АН СССР, 1985. С. 36–54. (Динамика сплошной среды; Вып. 69).
- Ляпидевский В.Ю. Течение Куэтта вязкоупругой среды максвелловского типа с двумя временами релаксации // Труды МИ АН. 2018, Т. 300. С. 146–157. doi: 10.1134/S0371968518010119
- Bukreev V.I, Gusev A.V., Liapidevskii V. Yu. Blocking effects in supercritical flows over topography // PIV and Modeling Water Wave Phenomena, Proc. of the Int. Symp. (Cambridge, UK, April 18–19, 2002), Univ. of Oslo (2002). P. 86–90.
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 








