Unlocking the Immunomodulatory Potential of Rosmarinic Acid Isolated from Punica granatum L. using Bioactivity-Guided Approach: In Silico, In Vitro, and In Vivo Approaches
- Авторлар: Gautam R.1, Tripathi S.2, Akash S.3, Sharma S.4, Sharma K.5, Goyal S.6, Behzad S.7, Gundamaraju R.8, Mishra D.9, Zhang Y.1, Shen B.1, Sundriyal S.10, Singla R.1
-
Мекемелер:
- Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
- Department of Pharmacy, Birla Institute of Technology and Science Pilani
- Department of Pharmacy, Daffodil International University
- Department of Quality Assurance, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS
- Bhupal Nobles' College of Pharmacy,, Bhopal Noble's University
- Faculty of Pharmacy, Mandsaur University
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences
- ER stress and mucosal immunology lab, School of Health Sciences, University of CaliforniUniversity of Tasmaniaa, San Francisco
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Koni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus
- Шығарылым: Том 31, № 36 (2024)
- Беттер: 5969-5988
- Бөлім: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/645252
- DOI: https://doi.org/10.2174/0109298673291064240227094654
- ID: 645252
Дәйексөз келтіру
Толық мәтін
Аннотация
Background:Punica granatum L. is well-known for its multifaceted therapeutic potential, including anti-inflammatory and immunomodulatory activities.
Aim:This study aimed to characterize an immunomodulatory compound isolated from Punica granatum L. using a bioactivity-guided approach.
Methods:Chromatographic techniques were adopted for isolation and purification of secondary metabolites. In silico, in vitro, and in vivo methods were performed to characterize the therapeutic potential of the isolated compound.
Results:Using preparative thin-layer chromatography, rosmarinic acid was isolated from F4 (column chromatography product obtained from a butanolic fraction of the extract). The impact of rosmarinic acid was assessed in rats using the neutrophil adhesion test, DTH response, and phagocytic index. In immunized rats, rosmarinic acid demonstrated significant immunomodulatory potential. Computational experiments, like molecular docking and molecular dynamics, were also conducted against two targeted receptors, Cereblon (PDB ID: 8AOQ) and human CD22 (PDB ID: 5VKM). Computational studies suggested that an increase in phagocytic index by rosmarinic acid could be attributed to inhibiting Cereblon and CD22. Pharmacokinetics and toxicity prediction also suggested the drug-likeness of rosmarinic acid.
Conclusion:Rosmarinic acid is a potential candidate, but extensive research needs to be done to translate this molecule from bench to bedside.
Негізгі сөздер
Авторлар туралы
Rupesh Gautam
Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
Email: info@benthamscience.net
Shailesh Tripathi
Department of Pharmacy, Birla Institute of Technology and Science Pilani
Email: info@benthamscience.net
Shopnil Akash
Department of Pharmacy, Daffodil International University
Email: info@benthamscience.net
Sanjay Sharma
Department of Quality Assurance, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS
Email: info@benthamscience.net
Komal Sharma
Bhupal Nobles' College of Pharmacy,, Bhopal Noble's University
Email: info@benthamscience.net
Swapnil Goyal
Faculty of Pharmacy, Mandsaur University
Email: info@benthamscience.net
Sahar Behzad
Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences
Email: info@benthamscience.net
Rohit Gundamaraju
ER stress and mucosal immunology lab, School of Health Sciences, University of CaliforniUniversity of Tasmaniaa, San Francisco
Email: info@benthamscience.net
Dinesh Mishra
Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Koni
Email: info@benthamscience.net
Yingbo Zhang
Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
Email: info@benthamscience.net
Bairong Shen
Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Sandeep Sundriyal
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Rajeev Singla
Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Wagner, H.; Hikino, H.; Farnsworth, N. Economic and Medicinal Plant Research, 3rd ed.; Elsevier, 1989.
- Singla, R.K.; Guimarães, A.G.; Zengin, G. Editorial: Application of plant secondary metabolites to pain neuromodulation, volume III. Front. Pharmacol., 2023, 14, 1166272. doi: 10.3389/fphar.2023.1166272 PMID: 36895948
- Singla, R.K.; Joon, S.; Sinha, B.; Kamal, M.A.; Simal-Gandara, J.; Xiao, J.; Shen, B. Current trends in natural products for the treatment and management of dementia: Computational to clinical studies. Neurosci. Biobehav. Rev., 2023, 147, 105106. doi: 10.1016/j.neubiorev.2023.105106 PMID: 36828163
- Babbar, R.; Kaur, R.; Rana, P.; Arora, S.; Behl, T.; Albratty, M.; Najmi, A.; Meraya, A.M.; Alhazmi, H.A.; Singla, R.K.; Parajuli, N. The current landscape of bioactive molecules against DENV: A systematic review. Evid. Based Complement. Alternat. Med., 2023, 2023, 1-17. doi: 10.1155/2023/2236210 PMID: 36818227
- Kumar, D.; Singla, R.K.; Sharma, R.; Sharma, P.; Kumar, L.; Kaur, N.; Dhawan, R.K.; Sharma, S.; Dua, K. Phytochemistry and polypharmacological potential of Colebrookea oppositifolia smith. Curr. Top. Med. Chem., 2023, 23(5), 334-348. doi: 10.2174/1568026623666221202112414 PMID: 36476430
- Singla, R.K.; De, R.; Efferth, T.; Mezzetti, B.; Sahab Uddin, M. The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis. Phytomedicine, 2023, 108, 154520.
- Singla, R.K.; Dubey, A.K. Phytochemical profiling, GC-MS analysis and α-amylase inhibitory potential of ethanolic extract of Cocos nucifera linn. endocarp. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 419-442. doi: 10.2174/1871530319666181128100206 PMID: 30484412
- Marzocco, S.; Singla, R.K.; Capasso, A. Multifaceted effects of lycopene: A boulevard to the multitarget-based treatment for cancer. Molecules, 2021, 26(17), 5333. doi: 10.3390/molecules26175333 PMID: 34500768
- Singla, R.K.; Sai, C.S.; Chopra, H.; Behzad, S.; Bansal, H.; Goyal, R.; Gautam, R.K.; Tsagkaris, C.; Joon, S.; Singla, S.; Shen, B. Natural products for the management of castration-resistant prostate cancer: Special focus on nanoparticles based studies. Front. Cell Dev. Biol., 2021, 9, 745177. doi: 10.3389/fcell.2021.745177 PMID: 34805155
- Patel, P.; Asdaq, S.M.B. Immunomodulatory activity of methanolic fruit extract of Aegle marmelos in experimental animals. Saudi Pharm. J., 2010, 18(3), 161-165. doi: 10.1016/j.jsps.2010.05.006 PMID: 23964175
- Neelam Balekar, S.B.; Mohan, V.; Prasad, A. Modulatory activity of a polyphenolic fraction of Cinnamomum zeylanicum L. bark on multiple arms of immunity in normal and immunocompromised mice. J. Appl. Pharm. Sci., 2014, 4(7), 114-122.
- Alhazmi, H.A.; Najmi, A.; Javed, S.A.; Sultana, S.; Al Bratty, M.; Makeen, H.A.; Meraya, A.M.; Ahsan, W.; Mohan, S.; Taha, M.M.E.; Khalid, A. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front. Immunol., 2021, 12, 637553.
- Zebeaman, M.; Tadesse, M.G.; Bachheti, R.K.; Bachheti, A.; Gebeyhu, R.; Chaubey, K.K.; Li, M.H. Plants and plant-derived molecules as natural immunomodulators. BioMed Res. Int., 2023, 2023, 1-14. doi: 10.1155/2023/7711297 PMID: 37313550
- Satyavati, G.V.; Gupta, A.K.; Tandon, N.; Seth, S.D. Medicinal Plants of India; Indian Council of Medical Research, 1987, 2, p. 262.
- Morzelle, M.C.; Salgado, J.M.; Telles, M.; Mourelle, D.; Bachiega, P.; Buck, H.S.; Viel, T.A. Neuroprotective effects of pomegranate peel extract after chronic infusion with amyloid-β peptide in mice. PLoS One, 2016, 11(11), e0166123. doi: 10.1371/journal.pone.0166123 PMID: 27829013
- Venkatrao, N.; Koroth, S.M.; Satyanarayana, S.; Hemamalini, K.; Kumar, S.M.S. Antidiarrhoeal and anti-inflammatory activity of fruit rind extracts of Punica granatum. Indian Drugs, 2007, 44(12), 909-914.
- Das, S.; Singh, S.R.; Ahmed, S.; Kanodia, L. Analgesic and anti-inflammatory activities of ethanolic extract of leaves of Punica granatum L. on experimental animal models. Pharmacologyonline, 2011, 3, 379-385.
- Labsi, M.; Khelifi, L.; Mezioug, D.; Soufli, I.; Touil-Boukoffa, C. Antihydatic and immunomodulatory effects of Punica granatum peel aqueous extract in a murine model of echinococcosis. Asian Pac. J. Trop. Med., 2016, 9(3), 211-220. doi: 10.1016/j.apjtm.2016.01.038 PMID: 26972390
- Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical screening and extraction: A review. Int. Pharm. Sci., 2011, 1(1), 98-106.
- Wang, J.; Rani, N.; Jakhar, S.; Redhu, R.; Kumar, S.; Kumar, S.; Kumar, S.; Devi, B.; Simal-Gandara, J.; Shen, B.; Singla, R.K. Opuntia ficus-indica (L.) Mill. - anticancer properties and phytochemicals: current trends and future perspectives. Front. Plant Sci., 2023, 14, 1236123. doi: 10.3389/fpls.2023.1236123
- Singla, R.K.; Singh, D.; Verma, R.; Kaushik, D.; Echeverría, J.; Garg, V.; Gupta, P.; Rahman, M.A.; Sharma, A.; Mittal, V.; Shen, B. Fermented formulation of silybum marianum seeds: Optimization, heavy metal analysis, and hepatoprotective assessment. Phytomedicine, 2023. PMID: 38241906
- Singla, R.K.; Zhang, Y.; Singla, S.; Shen, B. Bibliometric and temporal trend analysis of nipah virus- an emerging zoonotic disease: what do we know so far. bioRxiv, 2023. doi: 10.1101/2023.10.17.562837
- Hajiluian, G.; Karegar, S.J.; Shidfar, F.; Aryaeian, N.; Salehi, M.; Lotfi, T.; Farhangnia, P.; Heshmati, J.; Delbandi, A.A. The effects of Ellagic acid supplementation on neurotrophic, inflammation, and oxidative stress factors, and indoleamine 2, 3-dioxygenase gene expression in multiple sclerosis patients with mild to moderate depressive symptoms: A randomized, triple-blind, placebo-controlled trial. Phytomedicine, 2023, 121, 155094. doi: 10.1016/j.phymed.2023.155094 PMID: 37806153
- Ghadimi, M.; Foroughi, F.; Hashemipour, S.; Nooshabadi, R.M.; Ahmadi, M.H.; Ahadi Nezhad, B.; Khadem Haghighian, H. Randomized double-blind clinical trial examining the Ellagic acid effects on glycemic status, insulin resistance, antioxidant, and inflammatory factors in patients with type 2 diabetes. Phytother. Res., 2021, 35(2), 1023-1032. doi: 10.1002/ptr.6867 PMID: 32909365
- Barghchi, H.; Milkarizi, N.; Belyani, S.; Norouzian Ostad, A.; Askari, V.R.; Rajabzadeh, F.; Goshayeshi, L.; Ghelichi Kheyrabadi, S.Y.; Razavidarmian, M.; Dehnavi, Z.; Sobhani, S.R.; Nematy, M. Pomegranate (Punica granatum L.) peel extract ameliorates metabolic syndrome risk factors in patients with non-alcoholic fatty liver disease: A randomized double-blind clinical trial. Nutr. J., 2023, 22(1), 40. doi: 10.1186/s12937-023-00869-2 PMID: 37605174
- Gautam, R.K.; Gupta, G.; Sharma, S.; Hatware, K.; Patil, K.; Sharma, K.; Goyal, S.; Chellappan, D.K.; Dua, K. Rosmarinic acid attenuates inflammation in experimentally induced arthritis in Wistar rats, using Freunds complete adjuvant. Int. J. Rheum. Dis., 2019, 22(7), 1247-1254. doi: 10.1111/1756-185X.13602 PMID: 31155849
- Kokate, C.K.; Purohit, A.P.; Gohkale, S.B. Pharmacognosy, 21 ed.; Nirali Prakashan: Pune, India, Med. J., 2002, 43(2), pp. 007-085.
- Yadav, R.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phytol., 2011, 3(12), 10-14.
- Gautam, R.K.; Sharma, S.; Sharma, K. Comparative evaluation of anti-arthritic activity of Salvadora persica linn. and Asparagus racemosus willd: an in-vitro study. IAJPR, 2013, 3(10), 8222-8227.
- Wilkinson, P. Neutrophil adhesion test. In: In Handbook of experimental pharmacology, I, 1st ed.; Springer: Berlin, 1978; p. 109.
- Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol., 2015, 4(2), 147-179. doi: 10.5455/jice.20150313021918 PMID: 26401403
- Rajput, K.; Dubey, R.C.; Kumar, A. Probiotic potential and immunomodulatory properties in Enterococcus faecium GMB24 and Enterococcus hirae SMB16 isolated from goat and sheep milk. Arch. Microbiol., 2022, 204(10), 619. doi: 10.1007/s00203-022-03217-w PMID: 36098848
- Kumar, H.; Vasudeva, N. Immunomodulatory potential of Nyctanthes abrortristis stem bark. J. Ayurveda Integr. Med., 2022, 13(2), 100556. doi: 10.1016/j.jaim.2022.100556 PMID: 35653920
- Shen, X.; Zeng, Y.; Li, J.; Tang, C.; Zhang, Y.; Meng, X. The anti-arthritic activity of total glycosides from Pterocephalus hookeri, a traditional Tibetan herbal medicine. Pharm. Biol., 2017, 55(1), 560-570. doi: 10.1080/13880209.2016.1263869 PMID: 27937009
- Upadhyay, R.K. Anti-arthritic potential of plant natural products; its use in joint pain medications and anti-inflammatory drug formulations. Int. J. Green. Pharm., 2016, 10(3), S120-S130.
- Muthuraman, A.; Sood, S.; Singla, S.K. The antiinflammatory potential of phenolic compounds from Emblica officinalis L. in rat. Inflammopharmacology, 2011, 19(6), 327-334. doi: 10.1007/s10787-010-0041-9 PMID: 20596897
- Cheng, W.; Li, J.; You, T.; Hu, C. Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linné. J. Ethnopharmacol., 2005, 101(1-3), 334-337. doi: 10.1016/j.jep.2005.04.035 PMID: 16029939
- Shukla, S.; Mehta, A.; John, J.; Mehta, P.; Vyas, S.P.; Shukla, S. Immunomodulatory activities of the ethanolic extract of Caesalpinia bonducella seeds. J. Ethnopharmacol., 2009, 125(2), 252-256. doi: 10.1016/j.jep.2009.07.002 PMID: 19607900
- Anonymous Schrödinger Release. 2023. Available from: https://www.schrodinger.com/citations#LigPrep
- Jorgensen, W.L.; Tirado-Rives, J. The OPLS optimized potentials for liquid simulations potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988, 110(6), 1657-1666. doi: 10.1021/ja00214a001 PMID: 27557051
- Anonymous Schrödinger Release. Available from: https://www.schrodinger.com/citations#Epik
- Lopez-Girona, A.; Mendy, D.; Ito, T.; Miller, K.; Gandhi, A.K.; Kang, J.; Karasawa, S.; Carmel, G.; Jackson, P.; Abbasian, M.; Mahmoudi, A.; Cathers, B.; Rychak, E.; Gaidarova, S.; Chen, R.; Schafer, P.H.; Handa, H.; Daniel, T.O.; Evans, J.F.; Chopra, R. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia, 2012, 26(11), 2326-2335. doi: 10.1038/leu.2012.119 PMID: 22552008
- Carrancio, S.; Groocock, L.; Janardhanan, P.; Jankeel, D.; Galasso, R.; Guarinos, C.; Narla, R.K.; Groza, M.; Leisten, J.; Pierce, D.W.; Rolfe, M.; Lopez-Girona, A. CC-99282 is a novel cereblon (CRBN) E3 Ligase Modulator (CELMoD) agent with enhanced tumoricidal activity in preclinical models of lymphoma. Blood, 2021, 138(S1), 1200-1200. doi: 10.1182/blood-2021-148068
- Moon, H.; Min, C.; Kim, G.; Kim, D.; Kim, K.; Lee, S.A.; Moon, B.; Yang, S.; Lee, J.; Yang, S.J.; Cho, S.K.; Lee, G.; Lee, C.S.; Park, C.S.; Park, D. Crbn modulates calcium influx by regulating Orai1 during efferocytosis. Nat. Commun., 2020, 11(1), 5489. doi: 10.1038/s41467-020-19272-0 PMID: 33127885
- Pluvinage, J.V.; Haney, M.S.; Smith, B.A.H.; Sun, J.; Iram, T.; Bonanno, L.; Li, L.; Lee, D.P.; Morgens, D.W.; Yang, A.C.; Shuken, S.R.; Gate, D.; Scott, M.; Khatri, P.; Luo, J.; Bertozzi, C.R.; Bassik, M.C.; Wyss-Coray, T. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature, 2019, 568(7751), 187-192. doi: 10.1038/s41586-019-1088-4 PMID: 30944478
- Aires, V.; Coulon-Bainier, C.; Pavlovic, A.; Ebeling, M.; Schmucki, R.; Schweitzer, C.; Kueng, E.; Gutbier, S.; Harde, E. CD22 blockage restores age-related impairments of microglia surveillance capacity. Front. Immunol., 2021, 12, 684430. doi: 10.3389/fimmu.2021.684430 PMID: 34140954
- Rossi, E.A.; Goldenberg, D.M.; Michel, R.; Rossi, D.L.; Wallace, D.J.; Chang, C.H. Trogocytosis of multiple B- cell surface markers by CD22 targeting with epratuzumab. Blood, 2013, 122(17), 3020-3029. doi: 10.1182/blood-2012-12-473744 PMID: 23821660
- Enterina, J.R.; Jung, J.; Macauley, M.S. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed. J., 2019, 42(4), 218-232. doi: 10.1016/j.bj.2019.07.010 PMID: 31627864
- Krasavin, M.; Adamchik, M.; Bubyrev, A.; Heim, C.; Maiwald, S.; Zhukovsky, D.; Zhmurov, P.; Bunev, A.; Hartmann, M.D. Synthesis of novel glutarimide ligands for the E3 ligase substrate receptor Cereblon (CRBN): Investigation of their binding mode and antiproliferative effects against myeloma cell lines. Eur. J. Med. Chem., 2023, 246, 114990. doi: 10.1016/j.ejmech.2022.114990 PMID: 36476642
- Ereño-Orbea, J.; Sicard, T.; Cui, H.; Mazhab-Jafari, M.T.; Benlekbir, S.; Guarné, A.; Rubinstein, J.L.; Julien, J.P. Molecular basis of human CD22 function and therapeutic targeting. Nat. Commun., 2017, 8(1), 764. doi: 10.1038/s41467-017-00836-6 PMID: 28970495
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234. doi: 10.1007/s10822-013-9644-8 PMID: 23579614
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
- Raj, P.; Selvam, K.; Roy, K.; Mani Tripathi, S.; Kesharwani, S.; Gopal, B.; Varshney, U.; Sundriyal, S. Identification of a new and diverse set of Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng) inhibitors using structure-based virtual screening: Experimental validation and molecular dynamics studies. Bioorg. Med. Chem. Lett., 2022, 76, 129008. doi: 10.1016/j.bmcl.2022.129008 PMID: 36174837
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718. doi: 10.1002/jcc.20291 PMID: 16211538
- Vanommeslaeghe, K.; MacKerell, A.D., Jr. Automation of the CHARMM General Force Field (CGenFF) I: Bond perception and atom typing. J. Chem. Inf. Model., 2012, 52(12), 3144-3154. doi: 10.1021/ci300363c PMID: 23146088
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28. doi: 10.1016/0263-7855(96)00018-5 PMID: 8744570
- Schiffrin, B.; Radford, S.E.; Brockwell, D.J.; Calabrese, A.N. PYXLINKVIEWER : A flexible tool for visualization of protein chemical crosslinking data within the PYMOL molecular graphics system. Protein Sci., 2020, 29(8), 1851-1857. doi: 10.1002/pro.3902 PMID: 32557917
- Tripathi, S.M.; Akash, S.; Rahman, M.A.; Sundriyal, S. Identification of synthetically tractable MERS-CoV main protease inhibitors using structure-based virtual screening and molecular dynamics potential of mean force (PMF) calculations. J. Biomol. Struct. Dyn., 2023, 1-11. doi: 10.1080/07391102.2023.2283780 PMID: 37978909
- Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962. doi: 10.1021/ci500020m PMID: 24850022
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
- Ambriz-Perez, D.L.; Leyva-Lopez, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B.; Yildiz, F. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food Agric., 2016, 2(1), 1131412.
- do Nascimento, R.F.; de Oliveira Formiga, R.; Machado, F.D.F.; de Sales, I.R.P.; de Lima, G.M.; Alves Júnior, E.B.; Vieira, G.C.; Pereira, R.F.; de Araújo, A.A.; de Araújo Junior, R.F.; Barbosa Filho, J.M.; Batista, L.M. Rosmarinic acid prevents gastric ulcers via sulfhydryl groups reinforcement, antioxidant and immunomodulatory effects. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(12), 2265-2278. doi: 10.1007/s00210-020-01894-2 PMID: 32642876
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508. doi: 10.1021/acs.chemrev.9b00055 PMID: 31244000
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461. doi: 10.1517/17460441.2015.1032936 PMID: 25835573
- Lataliza, A.A.B.; de Assis, P.M.; da Rocha Laurindo, L.; Gonçalves, E.C.D.; Raposo, N.R.B.; Dutra, R.C. Antidepressant-like effect of rosmarinic acid during LPS -induced neuroinflammatory model: The potential role of cannabinoid receptors/ PPAR -γ signaling pathway. Phytother. Res., 2021, 35(12), 6974-6989. doi: 10.1002/ptr.7318 PMID: 34709695
- Hitl, M.; Kladar, N.; Gavarić, N.; Boin, B. Rosmarinic acid-human pharmacokinetics and health benefits. Planta Med., 2021, 87(4), 273-282. doi: 10.1055/a-1301-8648 PMID: 33285594
- Kim, S.B.; Kim, K.S.; Kim, D.D.; Yoon, I.S. Metabolic interactions of rosmarinic acid with human cytochrome P450 monooxygenases and uridine diphosphate glucuronosyltransferases. Biomed. Pharmacother., 2019, 110, 111-117. doi: 10.1016/j.biopha.2018.11.040 PMID: 30466000
- Yao, Y.; Li, R.; Liu, D.; Long, L.; He, N. Rosmarinic acid alleviates acetaminophen-induced hepatotoxicity by targeting Nrf2 and NEK7-NLRP3 signaling pathway. Ecotoxicol. Environ. Saf., 2022, 241, 113773. doi: 10.1016/j.ecoenv.2022.113773 PMID: 35753269
- Yu, Y.; Wu, Y.; Yan, H.; Xia, Z.; Wen, W.; Liu, D.; Wan, L. Rosmarinic acid ameliorates acetaminophen-induced acute liver injury in mice via RACK1/TNF-α mediated antioxidant effect. Pharm. Biol., 2021, 59(1), 1284-1291. doi: 10.1080/13880209.2021.1974059 PMID: 34517734
- Ahmadvand, H.; Jafaripour, L.; Naserzadeh, R.; Alizamani, E.; Javad Mashhadi, S.M.; Moghadam, E.R.; Nouryazdan, N. Effects of rosmarinic acid on methotrexate-induced nephrotoxicity and hepatotoxicity in wistar rats. Indian J. Nephrol., 2021, 31(3), 218-224. doi: 10.4103/ijn.IJN_14_20 PMID: 34376933
- Elufioye, T.O.; Habtemariam, S. Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed. Pharmacother., 2019, 112, 108600. doi: 10.1016/j.biopha.2019.108600 PMID: 30780110
- Renzulli, C.; Galvano, F.; Pierdomenico, L.; Speroni, E.; Guerra, M.C. Effects of rosmarinic acid against aflatoxin B 1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (Hep G2). J. Appl. Toxicol., 2004, 24(4), 289-296. doi: 10.1002/jat.982 PMID: 15300717
- Furtado, M.A.; de Almeida, L.C.F.; Furtado, R.A.; Cunha, W.R.; Tavares, D.C. Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2008, 657(2), 150-154. doi: 10.1016/j.mrgentox.2008.09.003 PMID: 18926924
- Han, J.; Wang, D.; Ye, L.; Li, P.; Hao, W.; Chen, X.; Ma, J.; Wang, B.; Shang, J.; Li, D.; Zheng, Q. Rosmarinic acid protects against inflammation and cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury by activating peroxisome proliferator-activated receptor gamma. Front. Pharmacol., 2017, 8, 456. doi: 10.3389/fphar.2017.00456 PMID: 28744220
- Chen, C.; Ma, J.; Xu, Z.; Chen, L.; Sun, B.; Shi, Y.; Miao, Y.; Wu, T.; Qin, M.; Zhang, Y.; Zhang, M.; Cao, X. Rosmarinic acid inhibits platelet aggregation and neointimal hyperplasia in vivo and vascular smooth muscle cell dedifferentiation, proliferation, and migration in vitro via activation of the keap1-Nrf2-ARE antioxidant system. J. Agric. Food Chem., 2022, 70(24), 7420-7440. doi: 10.1021/acs.jafc.2c01176 PMID: 35687823
- Fetoni, A.R.; Paciello, F.; Rolesi, R.; Eramo, S.L.M.; Mancuso, C.; Troiani, D.; Paludetti, G. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea. Free Radic. Biol. Med., 2015, 85, 269-281. doi: 10.1016/j.freeradbiomed.2015.04.021 PMID: 25936352
- Deepti, B.; Suyog, G.; Beautikuma, S.; Ankita, P. Tannin rich fraction of Punica granatum linn. leaves ameliorates freunds adjuvant induced arthritis in experimental animals. Pharmacologia, 2014, 5(1), 19-31. doi: 10.5567/pharmacologia.2014.19.31
- Petersen, M.; Simmonds, M.S.J. Rosmarinic acid. Phytochemistry, 2003, 62(2), 121-125. doi: 10.1016/S0031-9422(02)00513-7 PMID: 12482446
- Boonyarikpunchai, W.; Sukrong, S.; Towiwat, P. Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl. Pharmacol. Biochem. Behav., 2014, 124, 67-73. doi: 10.1016/j.pbb.2014.05.004 PMID: 24836183
- Ellis, B.E.; Towers, G.H.N. Biogenesis of rosmarinic acid in Mentha. Biochem. J., 1970, 118(2), 291-297. doi: 10.1042/bj1180291 PMID: 5484678
- Weitzel, C.; Petersen, M. Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L. Phytochemistry, 2011, 72(7), 572-578. doi: 10.1016/j.phytochem.2011.01.039 PMID: 21354582
- Fasolo, J.M.M.A.; Vizuete, A.F.K.; Rico, E.P.; Rambo, R.B.S.; Toson, N.S.B.; Santos, E.; de Oliveira, D.L.; Gonçalves, C.A.S.; Schapoval, E.E.S.; Heriques, A.T. Anti-inflammatory effect of rosmarinic acid isolated from Blechnum brasiliense in adult zebrafish brain. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 239, 108874. doi: 10.1016/j.cbpc.2020.108874 PMID: 32805443
- Lin, L.; Dong, Y.; Zhao, H.; Wen, L.; Yang, B.; Zhao, M. Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and α-glucosidase. Food Chem., 2011, 129(3), 884-889. doi: 10.1016/j.foodchem.2011.05.039 PMID: 25212314
- Ulbrich, B.; Wiesner, W.; Arens, H. Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei benth. In: Primary and Secondary Metabolism of Plant Cell Cultures; Springer, 1985; pp. 293-303. doi: 10.1007/978-3-642-70717-9_28
- Zou, Z.W.; Xu, L.N.; Tian, J.Y. Antithrombotic and antiplatelet effects of rosmarinic acid, a water-soluble component isolated from radix Salviae miltiorrhizae (danshen). Yao Xue Xue Bao, 1993, 28(4), 241-245. PMID: 8213164
- Nakamura, Y.; Ohto, Y.; Murakami, A.; Ohigashi, H. Superoxide scavenging activity of rosmarinic acid from Perilla frutescens Britton Var. acuta f. viridis. J. Agric. Food Chem., 1998, 46(11), 4545-4550. doi: 10.1021/jf980557m
- Gohari, A.R.; Saeidnia, S.; Malmir, M.; Hadjiakhoondi, A.; Ajani, Y. Flavones and rosmarinic acid from Salvia limbata. Nat. Prod. Res., 2010, 24(20), 1902-1906. doi: 10.1080/14786411003766912 PMID: 21108116
- Gamaro, G.D.; Suyenaga, E.; Borsoi, M.; Lermen, J.; Pereira, P.; Ardenghi, P. Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats. ISRN Pharmacol., 2011, 2011, 1-6. doi: 10.5402/2011/451682 PMID: 22084714
- Costa, R.S.; Carneiro, T.C.B.; Cerqueira-Lima, A.T.; Queiroz, N.V.; Alcântara-Neves, N.M.; Pontes-de-Carvalho, L.C.; Velozo, E.S.; Oliveira, E.J.; Figueiredo, C.A. Ocimum gratissimum Linn. and rosmarinic acid, attenuate eosinophilic airway inflammation in an experimental model of respiratory allergy to Blomia tropicalis. Int. Immunopharmacol., 2012, 13(1), 126-134. doi: 10.1016/j.intimp.2012.03.012 PMID: 22465960
- Luo, C.; Zou, L.; Sun, H.; Peng, J.; Gao, C.; Bao, L.; Ji, R.; Jin, Y.; Sun, S. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front. Pharmacol., 2020, 11, 153. doi: 10.3389/fphar.2020.00153 PMID: 32184728
- Zhao, L.; Zhang, Y.; Liu, G.; Hao, S.; Wang, C.; Wang, Y. Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice. Food Funct., 2018, 9(5), 2796-2808. doi: 10.1039/C7FO01490B PMID: 29691532
- Shakeri, F.; Eftekhar, N.; Roshan, N.M.; Rezaee, R.; Moghimi, A.; Boskabady, M.H. Rosmarinic acid affects immunological and inflammatory mediator levels and restores lung pathological features in asthmatic rats. Allergol. Immunopathol., 2019, 47(1), 16-23. doi: 10.1016/j.aller.2018.04.004 PMID: 29983238
- Kraus, R.F.; Gruber, M.A. Neutrophils-from bone marrow to first-line defense of the innate immune system. Front. Immunol., 2021, 12, 767175. doi: 10.3389/fimmu.2021.767175 PMID: 35003081
- Singh, R.; Sharma, P.; Wadhwan, V. Neutrophils defending the defenders. J. Oral Maxillofac. Pathol., 2021, 25(1), 177-182. doi: 10.4103/jomfp.jomfp_495_20 PMID: 34349432
- Bhattacharjee, S.; Ghosh, D.; Saha, R.; Sarkar, R.; Kumar, S.; Khokhar, M.; Pandey, R.K. Mechanism of immune evasion in mosquito-borne diseases. Pathogens, 2023, 12(5), 635. doi: 10.3390/pathogens12050635 PMID: 37242305
Қосымша файлдар
