Pyrrolo[2,3-D]Pyrimidines as EGFR and VEGFR Kinase Inhibitors: A Comprehensive SAR Review
- Authors: Metwally K.1, Abo-Dya N.1
-
Affiliations:
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk
- Issue: Vol 31, No 36 (2024)
- Pages: 5918-5936
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/645249
- DOI: https://doi.org/10.2174/0929867331666230815115111
- ID: 645249
Cite item
Full Text
Abstract
:Tyrosine kinases are implicated in a wide array of cellular physiological processes, including cell signaling. The discovery of the BCR-ABL tyrosine kinase inhibitor imatinib and its FDA approval in 2001 paved the way for the development of small molecule chemical entities of diverse structural backgrounds as tyrosine kinase inhibitors for the treatment of various ailments. Two of the most prominent tyrosine kinases as drug targets are the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), as evidenced by the clinical success of their many inhibitors in the drug market. Among several other physiological roles, EGFR regulates epithelial tissue development and homeostasis, while VEGFR regulates tumor-induced angiogenesis. The pyrrolo[2,3-d]pyrimidine nucleus represents a deaza-isostere of adenine, the nitrogenous base of ATP. The recent introduction of many pyrrolo[2,3-d]pyrimidines to the drug market as tyrosine kinase inhibitors makes them a hot topic in the medicinal chemistry research area at the present time. This review article comprehensively sheds light on the structure-activity relationship (SAR) of pyrrolo[2,3-d]pyrimidines as EGFR and VEGFR tyrosine kinase inhibitors, aiming to provide help medicinal chemists in the design of future pyrrolopyrimidine kinase inhibitors.
Keywords
About the authors
Kamel Metwally
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk
Author for correspondence.
Email: info@benthamscience.net
Nader Abo-Dya
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk
Email: info@benthamscience.net
References
- Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov., 2021, 20(7), 551-569. doi: 10.1038/s41573-021-00195-4 PMID: 34002056
- Ye, H.; Wang, L.; Ma, L.; Ionov, M.; Qiao, G.; Huang, J.; Cheng, L.; Zhang, Y.; Yang, X.; Cao, S.; Lin, X. Protein kinases as therapeutic targets to develop anticancer drugs with natural alkaloids. Frontiers in Bioscience-Landmark, 2021, 26(11), 1349-1361. doi: 10.52586/5028 PMID: 34856772
- Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov., 2021, 20(1), 39-63. doi: 10.1038/s41573-020-0082-8 PMID: 33077936
- Amin, F.; Ahmed, A.; Feroz, A.; Khaki, P.S.S.; Khan, M.S.; Tabrez, S.; Zaidi, S.K.; Abdulaal, W.H.; Shamsi, A.; Khan, W.; Bano, B. An update on the association of protein kinases with cardiovascular diseases. Curr. Pharm. Des., 2019, 25(2), 174-183. doi: 10.2174/1381612825666190312115140 PMID: 30864507
- Roy, S.M.; Grum-Tokars, V.L.; Schavocky, J.P.; Saeed, F.; Staniszewski, A.; Teich, A.F.; Arancio, O.; Bachstetter, A.D.; Webster, S.J.; Van Eldik, L.J.; Minasov, G.; Anderson, W.F.; Pelletier, J.C.; Watterson, D.M. Targeting human central nervous system protein kinases: An isoform selective p38αMAPK inhibitor that attenuates disease progression in Alzheimers disease mouse models. ACS Chem. Neurosci., 2015, 6(4), 666-680. doi: 10.1021/acschemneuro.5b00002 PMID: 25676389
- King, G.L.; Das-Evcimen, N. Role of protein kinase C in diabetic complications. Expert Rev. Endocrinol. Metab., 2010, 5(1), 77-88. doi: 10.1586/eem.09.74 PMID: 30934385
- Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov., 2021, 20(11), 839-861. doi: 10.1038/s41573-021-00252-y PMID: 34354255
- Cicenas, J.; Zalyte, E.; Bairoch, A.; Gaudet, P. Kinases and cancer. Cancers (Basel), 2018, 10(3), 63. doi: 10.3390/cancers10030063 PMID: 29494549
- Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotypephenotype relationships. Nat. Rev. Genet., 2010, 11(1), 60-74. doi: 10.1038/nrg2707 PMID: 20019687
- Seok, S.H. Structural insights into protein regulation by phosphorylation and substrate recognition of protein kinases/phosphatases. Life (Basel), 2021, 11(9), 957. doi: 10.3390/life11090957 PMID: 34575106
- Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115. doi: 10.7150/ijms.1.101 PMID: 15912202
- Choura, M.; Rebaï, A. Receptor tyrosine kinases: From biology to pathology. J. Recept. Signal Transduct. Res., 2011, 31(6), 387-394. doi: 10.3109/10799893.2011.625425 PMID: 22040163
- Saraon, P.; Pathmanathan, S.; Snider, J.; Lyakisheva, A.; Wong, V.; Stagljar, I. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene, 2021, 40(24), 4079-4093. doi: 10.1038/s41388-021-01841-2 PMID: 34079087
- Lee, N.Y.; Hazlett, T.L.; Koland, J.G. Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain. Protein Sci., 2006, 15(5), 1142-1152. doi: 10.1110/ps.052045306 PMID: 16597832
- Zhou, Q.; Wu, L.; Hu, P.; An, T.; Zhou, J.; Zhang, L.; Liu, X.Q.; Luo, F.; Zheng, X.; Cheng, Y.; Yang, N.; Li, J.; Feng, J.; Han, B.; Song, Y.; Wang, K.; Zhang, L.; Fang, J.; Zhao, H.; Shu, Y.; Lin, X.Y.; Chen, Z.; Gan, B.; Xu, W.H.; Tang, W.; Zhang, X.; Yang, J.J.; Xu, X.; Wu, Y.L. A novel third-generation EGFR tyrosine kinase inhibitor abivertinib for EGFR T790M-mutant non-small cell lung cancer: A multicenter phase I/II study. Clin. Cancer Res., 2022, 28(6), 1127-1135. doi: 10.1158/1078-0432.CCR-21-2595 PMID: 34740925
- Kiselyov, A.; Balakin, K.V.; Tkachenko, S.E. VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, 16(1), 83-107. doi: 10.1517/13543784.16.1.83 PMID: 17155856
- Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358(19), 2039-2049. doi: 10.1056/NEJMra0706596 PMID: 18463380
- Shahi, P.K.; Pineda, I.F. Tumoral angiogenesis: Review of the literature. Cancer Invest., 2008, 26(1), 104-108. doi: 10.1080/07357900701662509 PMID: 18181052
- Otrock, Z.; Mahfouz, R.; Makarem, J.; Shamseddine, A. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells Mol. Dis., 2007, 39(2), 212-220. doi: 10.1016/j.bcmd.2007.04.001 PMID: 17553709
- Carmeliet, P.; Collen, D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann. N. Y. Acad. Sci., 2000, 902(1), 249-264. doi: 10.1111/j.1749-6632.2000.tb06320.x PMID: 10865845
- Cébe-Suarez, S.; Zehnder-Fjällman, A.; Ballmer-Hofer, K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell. Mol. Life Sci., 2006, 63(5), 601-615. doi: 10.1007/s00018-005-5426-3 PMID: 16465447
- Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3), 4-10. doi: 10.1159/000088478 PMID: 16301830
- Ferrara, N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int., 1999, 56(3), 794-814. doi: 10.1046/j.1523-1755.1999.00610.x PMID: 10469350
- Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol., 2005, 23(5), 1011-1027. doi: 10.1200/JCO.2005.06.081 PMID: 15585754
- Ferrara, N. The Role of VEGF in the Regulation of Physiological and Pathological Angiogenesis. Mechanisms of Angiogenesis; Clauss, M.; Breier, G., Eds.; Birkhäuser Basel: Basel, 2005, pp. 209-231. doi: 10.1007/3-7643-7311-3_15
- Liu, Y.; Li, Y.; Wang, Y.; Lin, C.; Zhang, D.; Chen, J.; Ouyang, L.; Wu, F.; Zhang, J.; Chen, L. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J. Hematol. Oncol., 2022, 15(1), 89. doi: 10.1186/s13045-022-01310-7 PMID: 35799213
- Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653. doi: 10.1182/blood-2004-08-3097 PMID: 15618470
- Lydon, N.B.; Druker, B.J. Lessons learned from the development of imatinib. Leuk. Res., 2004, 28(Suppl. 1), 29-38. doi: 10.1016/j.leukres.2003.10.002 PMID: 15036939
- Araki, T.; Yashima, H.; Shimizu, K.; Aomori, T.; Hashita, T.; Kaira, K.; Nakamura, T.; Yamamoto, K. Review of the treatment of non-small cell lung cancer with gefitinib. Clin. Med. Insights Oncol., 2012, 6, 407-421. doi: 10.4137/CMO.S7340
- Murphy, M.; Stordal, B. Erlotinib or gefitinib for the treatment of relapsed platinum pretreated non-small cell lung cancer and ovarian cancer: A systematic review. Drug Resist. Updat., 2011, 14(3), 177-190. doi: 10.1016/j.drup.2011.02.004 PMID: 21435938
- Barlési, F.; Tchouhadjian, C.; Doddoli, C.; Villani, P.; Greillier, L.; Kleisbauer, J.P.; Thomas, P.; Astoul, P. Gefitinib (ZD1839, IressaR) in non-small-cell lung cancer: A review of clinical trials from a daily practice perspective. Fundam. Clin. Pharmacol., 2005, 19(3), 385-393. doi: 10.1111/j.1472-8206.2005.00323.x PMID: 15910663
- Yang, Z.; Hackshaw, A.; Feng, Q.; Fu, X.; Zhang, Y.; Mao, C.; Tang, J. Comparison of gefitinib, erlotinib and afatinib in non‐small cell lung cancer: A meta‐analysis. Int. J. Cancer, 2017, 140(12), 2805-2819. doi: 10.1002/ijc.30691 PMID: 28295308
- Wang, Y.; Schmid-Bindert, G.; Zhou, C. Erlotinib in the treatment of advanced non-small cell lung cancer: An update for clinicians. Ther. Adv. Med. Oncol., 2012, 4(1), 19-29. doi: 10.1177/1758834011427927 PMID: 22229045
- Yang, J.C.H. Afatinib for the treatment of non-small-cell lung cancer with unusual EGFR mutations: A plain language summary. Future Oncol., 2023, 19(4), 291-297. doi: 10.2217/fon-2022-0842 PMID: 36794564
- Tu, H.Y.; Wu, Y.L. Afatinib for the first-line treatment of EGFR mutation-positive NSCLC in China: A review of clinical data. Future Oncol., 2020, 16(31), 2569-2586. doi: 10.2217/fon-2020-0320 PMID: 32927981
- Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res., 2023, 187, 106552. doi: 10.1016/j.phrs.2022.106552 PMID: 36403719
- Jiang, W.; Cai, G.; Hu, P.C.; Wang, Y. Personalized medicine in non-small cell lung cancer: A review from a pharmacogenomics perspective. Acta Pharm. Sin. B, 2018, 8(4), 530-538. doi: 10.1016/j.apsb.2018.04.005 PMID: 30109178
- Altunel, E.; Roghani, R.S.; Chen, K.Y.; Kim, S.Y.; McCall, S.; Ware, K.E.; Shen, X.; Somarelli, J.A.; Hsu, D.S. Development of a precision medicine pipeline to identify personalized treatments for colorectal cancer. BMC Cancer, 2020, 20(1), 592. doi: 10.1186/s12885-020-07090-y PMID: 32580713
- Solassol, I.; Pinguet, F.; Quantin, X. FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management. Biomolecules, 2019, 9(11), 668. doi: 10.3390/biom9110668 PMID: 31671561
- Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to firstand second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(Suppl. 1), i10-i19. doi: 10.1093/annonc/mdx703 PMID: 29462254
- Kim, Y.; Ko, J.; Cui, Z.; Abolhoda, A.; Ahn, J.S.; Ou, S.H.; Ahn, M.J.; Park, K. The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol. Cancer Ther., 2012, 11(3), 784-791. doi: 10.1158/1535-7163.MCT-11-0750 PMID: 22228822
- Takeda, M.; Nakagawa, K. First- and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer? Int. J. Mol. Sci., 2019, 20(1), 146. doi: 10.3390/ijms20010146 PMID: 30609789
- Sun, D.; Zhu, Y.; Zhu, J.; Tao, J.; Wei, X.; Wo, Y.; Hou, H. Primary resistance to first-generation EGFR-TKIs induced by MDM2 amplification in NSCLC. Mol. Med., 2020, 26(1), 66. doi: 10.1186/s10020-020-00193-z PMID: 32611363
- Karachaliou, N.; Fernandez-Bruno, M.; Paulina Bracht, J.; Rosell, R. EGFR first- and second-generation TKIsthere is still place for them in EGFR-mutant NSCLC patients. Transl. Cancer Res., 2019, 8(Suppl. 1), S23-s47.
- Colinet, B.; Van Meerbeeck, J.P.; Cuppens, T.; Vansteenkiste, J.F. Osimertinib in patients with advanced/metastatic epidermal growth factor receptor T790M mutation-positive non-small cell lung cancer - the Belgian ASTRIS data. Acta Clin. Belg., 2021, 76(3), 224-231. doi: 10.1080/17843286.2019.1708125 PMID: 31935159
- Schmid, S.; Li, J.J.N.; Leighl, N.B. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer, 2020, 147, 123-129. doi: 10.1016/j.lungcan.2020.07.014 PMID: 32693293
- Zalaquett, Z.; Catherine Rita Hachem, M.; Kassis, Y.; Hachem, S.; Eid, R.; Raphael Kourie, H.; Planchard, D. Acquired resistance mechanisms to osimertinib: The constant battle. Cancer Treat. Rev., 2023, 116, 102557. doi: 10.1016/j.ctrv.2023.102557 PMID: 37060646
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737. doi: 10.1038/s41416-019-0573-8 PMID: 31564718
- Roper, N.; Brown, A.L.; Wei, J.S.; Pack, S.; Trindade, C.; Kim, C.; Restifo, O.; Gao, S.; Sindiri, S.; Mehrabadi, F.; El Meskini, R.; Ohler, Z.W.; Maity, T.K.; Venugopalan, A.; Cultraro, C.M.; Akoth, E.; Padiernos, E.; Chen, H.; Kesarwala, A.; Smart, D.K.; Nilubol, N.; Rajan, A.; Piotrowska, Z.; Xi, L.; Raffeld, M.; Panchenko, A.R.; Sahinalp, C.; Hewitt, S.; Hoang, C.D.; Khan, J.; Guha, U. Clonal evolution and heterogeneity of osimertinib acquired resistance mechanisms in EGFR mutant lung cancer. Cell Rep. Med., 2020, 1(1), 100007. doi: 10.1016/j.xcrm.2020.100007 PMID: 32483558
- Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463. doi: 10.1016/j.phrs.2021.105463 PMID: 33513356
- Yousefian, M.; Ghodsi, R. Structure-activity relationship studies of indolin‐2‐one derivatives as vascular endothelial growth factor receptor inhibitors and anticancer agents. Arch. Pharm. (Weinheim), 2020, 353(12), 2000022. doi: 10.1002/ardp.202000022 PMID: 32885522
- Keating, G.M. Sorafenib: A review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253. doi: 10.1007/s11523-017-0484-7 PMID: 28299600
- Dhillon, S. Regorafenib: A review in metastatic colorectal cancer. Drugs, 2018, 78(11), 1133-1144. doi: 10.1007/s40265-018-0938-y PMID: 29943375
- Heo, Y.A.; Syed, Y.Y. Regorafenib: A review in hepatocellular carcinoma. Drugs, 2018, 78(9), 951-958. doi: 10.1007/s40265-018-0932-4 PMID: 29915898
- Al-Salama, Z.T.; Syed, Y.Y.; Scott, L.J. Lenvatinib: A review in hepatocellular carcinoma. Drugs, 2019, 79(6), 665-674. doi: 10.1007/s40265-019-01116-x PMID: 30993651
- Frampton, J.E. Lenvatinib: A review in refractory thyroid cancer. Target. Oncol., 2016, 11(1), 115-122. doi: 10.1007/s11523-015-0416-3 PMID: 26867945
- Hatanaka, T.; Naganuma, A.; Kakizaki, S. Lenvatinib for hepatocellular carcinoma: A literature review. Pharmaceuticals (Basel), 2021, 14(1), 36. doi: 10.3390/ph14010036 PMID: 33418941
- Scott, E.N.; Meinhardt, G.; Jacques, C.; Laurent, D.; Thomas, A.L. Vatalanib: The clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours. Expert Opin. Investig. Drugs, 2007, 16(3), 367-379. doi: 10.1517/13543784.16.3.367 PMID: 17302531
- Musumeci, F.; Sanna, M.; Grossi, G.; Brullo, C.; Fallacara, A.L.; Schenone, S. Pyrrolo2,3-dpyrimidines as kinase inhibitors. Curr. Med. Chem., 2017, 24(19), 2059-2085. PMID: 28266267
- Adel, M.; Abouzid, K.A.M. New fluorinated diarylureas linked to pyrrolo2,3-dpyrimidine scaffold as VEGFR-2 inhibitors: Molecular docking and biological evaluation. Bioorg. Chem., 2022, 127, 106006. doi: 10.1016/j.bioorg.2022.106006 PMID: 35820328
- Adel, M.; Serya, R.A.T.; Lasheen, D.S.; Abouzid, K.A.M. Identification of new pyrrolo2,3-dpyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: Design, synthesis, biological evaluation and molecular modeling. Bioorg. Chem., 2018, 81, 612-629. doi: 10.1016/j.bioorg.2018.09.001 PMID: 30248512
- Sivaiah, G.; Raveesha, R.; Benaka Prasad, S.B.; Yogesh Kumar, K.; Raghu, M.S.; Alharti, F.A.; Prashanth, M.K.; Jeon, B.H. Synthesis, biological evaluation and molecular docking studies of novel pyrrolo2,3-dpyrimidin-2-amine derivatives as EGFR inhibitors. J. Mol. Struct., 2023, 1275, 134728. doi: 10.1016/j.molstruc.2022.134728
- Liang, X.; Tang, S.; Liu, X.; Liu, Y.; Xu, Q.; Wang, X.; Saidahmatov, A.; Li, C.; Wang, J.; Zhou, Y.; Zhang, Y.; Geng, M.; Huang, M.; Liu, H. Discovery of novel pyrrolo2,3-dpyrimidine-based derivatives as potent JAK/HDAC dual inhibitors for the treatment of refractory solid tumors. J. Med. Chem., 2022, 65(2), 1243-1264. doi: 10.1021/acs.jmedchem.0c02111 PMID: 33586434
- Xie, W.; Yang, S.; Liang, L.; Wang, M.; Zuo, W.; Lei, Y.; Zhang, Y.; Tang, W.; Lu, T.; Chen, Y.; Jiang, Y. Discovery of 2-amino-7-sulfonyl-7 H-pyrrolo2,3-dpyrimidine derivatives as potent reversible FGFR inhibitors with gatekeeper mutation tolerance: design, synthesis, and biological evaluation. J. Med. Chem., 2022, 65(24), 16570-16588. doi: 10.1021/acs.jmedchem.2c01420 PMID: 36480917
- Yuan, X.; Chen, Y.; Zhang, W.; He, J.; Lei, L.; Tang, M.; Liu, J.; Li, M.; Dou, C.; Yang, T.; Yang, L.; Yang, S.; Wei, Y.; Peng, A.; Niu, T.; Xiang, M.; Ye, H.; Chen, L. Identification of pyrrolo2,3-dpyrimidine-based derivatives as potent and orally effective fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia. J. Med. Chem., 2019, 62(8), 4158-4173. doi: 10.1021/acs.jmedchem.9b00223 PMID: 30939008
- Traxler, P.M.; Furet, P.; Mett, H.; Buchdunger, E.; Meyer, T.; Lydon, N. 4-(Phenylamino)pyrrolopyrimidines: Potent and selective, ATP site directed inhibitors of the EGF-receptor protein tyrosine kinase. J. Med. Chem., 1996, 39(12), 2285-2292. doi: 10.1021/jm960118j PMID: 8691423
- Thorarensen, A.; Dowty, M.E.; Banker, M.E.; Juba, B.; Jussif, J.; Lin, T.; Vincent, F.; Czerwinski, R.M.; Casimiro-Garcia, A.; Unwalla, R.; Trujillo, J.I.; Liang, S.; Balbo, P.; Che, Y.; Gilbert, A.M.; Brown, M.F.; Hayward, M.; Montgomery, J.; Leung, L.; Yang, X.; Soucy, S.; Hegen, M.; Coe, J.; Langille, J.; Vajdos, F.; Chrencik, J.; Telliez, J.B. Design of a janus kinase 3 (JAK3) specific inhibitor 1-((2 S, 5 R)-5-((7H-Pyrrolo2,3-dpyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) Allowing for the interrogation of JAK3 signaling in humans. J. Med. Chem., 2017, 60(5), 1971-1993. doi: 10.1021/acs.jmedchem.6b01694 PMID: 28139931
- Noji, S.; Hara, Y.; Miura, T.; Yamanaka, H.; Maeda, K.; Hori, A.; Yamamoto, H.; Obika, S.; Inoue, M.; Hase, Y.; Orita, T.; Doi, S.; Adachi, T.; Tanimoto, A.; Oki, C.; Kimoto, Y.; Ogawa, Y.; Negoro, T.; Hashimoto, H.; Shiozaki, M. Discovery of a janus kinase inhibitor bearing a highly three-dimensional spiro scaffold: JTE-052 (delgocitinib) as a new dermatological agent to treat inflammatory skin disorders. J. Med. Chem., 2020, 63(13), 7163-7185. doi: 10.1021/acs.jmedchem.0c00450 PMID: 32511913
- Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; Trzupek, J.D.; Brown, M.F.; Flanagan, M.E.; Mitton-Fry, M.J.; Johnson, T.A.; TenBrink, R.E.; Arnold, E.P.; Basak, A.; Heasley, S.E.; Kwon, S.; Langille, J.; Parikh, M.D.; Griffin, S.H.; Casavant, J.M.; Duclos, B.A.; Fenwick, A.E.; Harris, T.M.; Han, S.; Caspers, N.; Dowty, M.E.; Yang, X.; Banker, M.E.; Hegen, M.; Symanowicz, P.T.; Li, L.; Wang, L.; Lin, T.H.; Jussif, J.; Clark, J.D.; Telliez, J.B.; Robinson, R.P.; Unwalla, R. Identification of N-cis -3-Methyl(7 H-pyrrolo2,3- dpyrimidin-4-yl)aminocyclobutylpropane-1-sulfonamide (PF-04965842): A selective JAK1 clinical candidate for the treatment of autoimmune diseases. J. Med. Chem., 2018, 61(3), 1130-1152. doi: 10.1021/acs.jmedchem.7b01598 PMID: 29298069
- Liang, X.; Wang, C.; Wang, B.; Liu, J.; Qi, S.; Wang, A.; Liu, Q.; Deng, M.; Wang, L.; Liu, J.; Liu, Q. Discovery of Pyrrolo2,3-dpyrimidine derivatives as potent and selective colony stimulating factor 1 receptor kinase inhibitors. Eur. J. Med. Chem., 2022, 243, 114782. doi: 10.1016/j.ejmech.2022.114782 PMID: 36179404
- Mao, W.; Wu, H.; Guo, Q.; Zheng, X.; Wei, C.; Liao, Y.; Shen, L.; Mi, J.; Li, J.; Chen, S.; Qian, W. Synthesis and evaluation of hydrazinyl-containing pyrrolo2,3-dpyrimidine series as potent, selective and oral JAK1 inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2022, 74, 128905. doi: 10.1016/j.bmcl.2022.128905 PMID: 35870730
- Tan, H.; Liu, Y.; Gong, C.; Zhang, J.; Huang, J.; Zhang, Q. Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo2,3-dpyrimidine scaffold as anti-hepatocellular carcinoma agents. Eur. J. Med. Chem., 2021, 223, 113670. doi: 10.1016/j.ejmech.2021.113670 PMID: 34214842
- Perrone, M.; Giuliani, F.; Sanna, V.; Bruno, S.; Melaccio, A.; Santoro, A.N.; Laface, C.; Maselli, F.M.; Iaia, M.L.; Guarini, C.; Fancellu, A.; Fedele, P. Advances in pharmacotherapies that target the cell cycle for treatment of breast cancer: Where are we at today? Expert Opin. Pharmacother., 2023, 24(8), 887-900. doi: 10.1080/14656566.2023.2201373 PMID: 37038927
- Tefferi, A. Primary myelofibrosis: 2023 update on diagnosis, risk‐stratification, and management. Am. J. Hematol., 2023, 98(5), 801-821. doi: 10.1002/ajh.26857 PMID: 36680511
- Langbour, C.; Rene, J.; Goupille, P.; Alegria, C.G. Efficacy of Janus kinase inhibitors in rheumatoid arthritis. Inflamm. Res., 2023, 72(5), 1121-1132. doi: 10.1007/s00011-023-01717-z PMID: 37087519
- Muddebihal, A.; Khurana, A.; Sardana, K. JAK inhibitors in dermatology: The road travelled and path ahead, a narrative review. Expert Rev. Clin. Pharmacol., 2023, 16(4), 279-295. doi: 10.1080/17512433.2023.2193682 PMID: 36946306
- Moussa, A.; Eisman, S.; Kazmi, A.; Poa, J.; Chitreddy, V.; Rathnayake, D.; Joseph, S.; Sinclair, R.D.; Bhoyrul, B. Treatment of moderate-to-severe alopecia areata in adolescents with baricitinib: A retrospective review of 29 patients. J. Am. Acad. Dermatol., 2023, 88(5), 1194-1196. doi: 10.1016/j.jaad.2022.12.033 PMID: 36623557
- Lamb, Y.N. Osimertinib: A review in previously untreated, EGFR mutation-positive, advanced NSCLC. Target. Oncol., 2021, 16(5), 687-695. doi: 10.1007/s11523-021-00839-w PMID: 34564820
- Thomas, R.; Weihua, Z. Rethink of EGFR in cancer with its kinase independent function on board. Front. Oncol., 2019, 9, 800. doi: 10.3389/fonc.2019.00800 PMID: 31508364
- Dong, R.F.; Zhu, M.L.; Liu, M.M.; Xu, Y.T.; Yuan, L.L.; Bian, J.; Xia, Y.Z.; Kong, L.Y. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol. Res., 2021, 167, 105583. doi: 10.1016/j.phrs.2021.105583 PMID: 33775864
- Kujtan, L.; Subramanian, J. Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Expert Rev. Anticancer Ther., 2019, 19(7), 547-559. doi: 10.1080/14737140.2019.1596030 PMID: 30913927
- Yang, Z.; Yang, H.; Ai, Y.; Zhang, L.; Li, Z.; Wan, S.; Xu, X.; Zhang, H.; Wu, S.; Zhang, J.; Zhang, T. Computational studies of potent covalent inhibitors on wild type or T790M/L858R mutant epidermal growth factor receptor. Eur. J. Pharm. Sci., 2020, 152, 105463. doi: 10.1016/j.ejps.2020.105463 PMID: 32668314
- Shao, J.; Liu, S.; Liu, X.; Pan, Y.; Chen, W. Design, synthesis and SAR study of 2-aminopyrimidines with diverse Michael addition acceptors for chemically tuning the potency against EGFRL858R/T790M. Bioorg. Med. Chem., 2020, 28(19), 115680. doi: 10.1016/j.bmc.2020.115680 PMID: 32912431
- Song, Z.; Ge, Y.; Wang, C.; Huang, S.; Shu, X.; Liu, K.; Zhou, Y.; Ma, X. Challenges and perspectives on the development of small-molecule EGFR inhibitors against T790M-mediated resistance in non-small-cell lung cancer. J. Med. Chem., 2016, 59(14), 6580-6594. doi: 10.1021/acs.jmedchem.5b00840 PMID: 26882288
- Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38. doi: 10.1186/s12943-018-0777-1 PMID: 29455650
- Suda, K.; Rivard, C.J.; Mitsudomi, T.; Hirsch, F.R. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev. Anticancer Ther., 2017, 17(9), 779-786. doi: 10.1080/14737140.2017.1355243 PMID: 28701107
- Noda, S.; Kanda, S. Addressing epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer. Expert Rev. Respir. Med., 2016, 10(5), 547-556. doi: 10.1586/17476348.2016.1164603 PMID: 26959310
- Nelson, V.; Ziehr, J.; Agulnik, M.; Johnson, M. Afatinib: Emerging next-generation tyrosine kinase inhibitor for NSCLC. OncoTargets Ther., 2013, 6, 135-143. PMID: 23493883
- Galvani, E.; Alfieri, R.; Giovannetti, E.; Cavazzoni, A.; La Monica, S.; Galetti, M.; Fumarola, C.; Bonelli, M.; Mor, M.; Tiseo, M.; Peters, G.J.; Petronini, P.G.; Ardizzoni, A. Epidermal growth factor receptor tyrosine kinase inhibitors: Current status and future perspectives in the development of novel irreversible inhibitors for the treatment of mutant non-small cell lung cancer. Curr. Pharm. Des., 2013, 19(5), 818-832. doi: 10.2174/138161213804547222 PMID: 22973953
- Li, Y.; Mao, T.; Wang, J.; Zheng, H.; Hu, Z.; Cao, P.; Yang, S.; Zhu, L.; Guo, S.; Zhao, X.; Tian, Y.; Shen, H.; Lin, F. Toward the next generation EGFR inhibitors: An overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun. Signal., 2023, 21(1), 71. doi: 10.1186/s12964-023-01082-8 PMID: 37041601
- Li, M.C.; Coumar, M.S.; Lin, S.Y.; Lin, Y.S.; Huang, G.L.; Chen, C.H.; Lien, T.W.; Wu, Y.W.; Chen, Y.T.; Chen, C.P.; Huang, Y.C.; Yeh, K.C.; Yang, C.M.; Kalita, B.; Pan, S.L.; Hsu, T.A.; Yeh, T.K.; Chen, C.T.; Hsieh, H.P. Development of furanopyrimidine-based orally active third-generation EGFR inhibitors for the treatment of non-small cell lung cancer. J. Med. Chem., 2023, 66(4), 2566-2588. doi: 10.1021/acs.jmedchem.2c01434 PMID: 36749735
- Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300. doi: 10.1021/acs.jmedchem.7b01310 PMID: 29136465
- Heppner, D.E.; Wittlinger, F.; Beyett, T.S.; Shaurova, T.; Urul, D.A.; Buckley, B.; Pham, C.D.; Schaeffner, I.K.; Yang, B.; Ogboo, B.C.; May, E.W.; Schaefer, E.M.; Eck, M.J.; Laufer, S.A.; Hershberger, P.A. Structural basis for inhibition of mutant EGFR with Lazertinib (YH25448). ACS Med. Chem. Lett., 2022, 13(12), 1856-1863. doi: 10.1021/acsmedchemlett.2c00213 PMID: 36518696
- Shaikh, M.; Shinde, Y.; Pawara, R.; Noolvi, M.; Surana, S.; Ahmad, I.; Patel, H. Emerging approaches to overcome acquired drug resistance obstacles to osimertinib in non-small-cell lung cancer. J. Med. Chem., 2022, 65(2), 1008-1046. doi: 10.1021/acs.jmedchem.1c00876 PMID: 34323489
- An, B.; Liu, J.; Fan, Y.; Nie, W.; Yang, C.; Yao, H.; Li, W.; Zhang, Y.; Li, X.; Tian, G. Novel third-generation pyrimidines-based EGFR tyrosine kinase inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. Bioorg. Chem., 2022, 122, 105743. doi: 10.1016/j.bioorg.2022.105743 PMID: 35313239
- Shi, C.; Zhang, C.; Fu, Z.; Liu, J.; Zhou, Y.; Cheng, B.; Wang, C.; Li, S.; Zhang, Y. Antitumor activity of aumolertinib, a third-generation EGFR tyrosine kinase inhibitor, in non-small-cell lung cancer harboring uncommon EGFR mutations. Acta Pharm. Sin. B, 2023, 13(6), 2613-2627. doi: 10.1016/j.apsb.2023.03.007 PMID: 37425047
- Nagasaka, M.; Zhu, V.W.; Lim, S.M.; Greco, M.; Wu, F.; Ou, S.H.I. Beyond osimertinib: The development of third-generation EGFR tyrosine kinase inhibitors for advanced EGFR+ NSCLC. J. Thorac. Oncol., 2021, 16(5), 740-763. doi: 10.1016/j.jtho.2020.11.028 PMID: 33338652
- Cheng, H.; Nair, S.K.; Murray, B.W. Recent progress on third generation covalent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 1861-1868. doi: 10.1016/j.bmcl.2016.02.067 PMID: 26968253
- Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075. doi: 10.1073/pnas.0709662105 PMID: 18227510
- Suda, K.; Onozato, R.; Yatabe, Y.; Mitsudomi, T. EGFR T790M mutation: A double role in lung cancer cell survival? J. Thorac. Oncol., 2009, 4(1), 1-4. doi: 10.1097/JTO.0b013e3181913c9f PMID: 19096299
- Cheng, H.; Nair, S.K.; Murray, B.W.; Almaden, C.; Bailey, S.; Baxi, S.; Behenna, D.; Cho-Schultz, S.; Dalvie, D.; Dinh, D.M.; Edwards, M.P.; Feng, J.L.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.D.; Jackson-Fisher, A.; Jalaie, M.; Johnson, T.O.; Kania, R.S.; Kephart, S.; Lafontaine, J.; Lunney, B.; Liu, K.K.C.; Liu, Z.; Matthews, J.; Nagata, A.; Niessen, S.; Ornelas, M.A.; Orr, S.T.M.; Pairish, M.; Planken, S.; Ren, S.; Richter, D.; Ryan, K.; Sach, N.; Shen, H.; Smeal, T.; Solowiej, J.; Sutton, S.; Tran, K.; Tseng, E.; Vernier, W.; Walls, M.; Wang, S.; Weinrich, S.L.; Xin, S.; Xu, H.; Yin, M.J.; Zientek, M.; Zhou, R.; Kath, J.C. Discovery of 1-(3 R, 4 R)-3-(5-Chloro-2-(1-methyl-1 H -pyrazol-4-yl)amino-7 H -pyrrolo2,3- dpyrimidin-4-yloxy)methyl-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a potent, WT sparing, irreversible inhibitor of T790M-containing EGFR mutants. J. Med. Chem., 2016, 59(5), 2005-2024. doi: 10.1021/acs.jmedchem.5b01633 PMID: 26756222
- Planken, S.; Behenna, D.C.; Nair, S.K.; Johnson, T.O.; Nagata, A.; Almaden, C.; Bailey, S.; Ballard, T.E.; Bernier, L.; Cheng, H.; Cho-Schultz, S.; Dalvie, D.; Deal, J.G.; Dinh, D.M.; Edwards, M.P.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.; Kania, R.S.; Kath, J.C.; Matthews, J.; Murray, B.W.; Niessen, S.; Orr, S.T.M.; Pairish, M.; Sach, N.W.; Shen, H.; Shi, M.; Solowiej, J.; Tran, K.; Tseng, E.; Vicini, P.; Wang, Y.; Weinrich, S.L.; Zhou, R.; Zientek, M.; Liu, L.; Luo, Y.; Xin, S.; Zhang, C.; Lafontaine, J. Discovery of N -((3 R, 4 R)-4-Fluoro-1-(6-((3-methoxy-1-methyl-1 H -pyrazol-4-yl)amino)-9-methyl-9 H -purin-2-yl)pyrrolidine-3-yl)acrylamide (PF-06747775) through structure-based drug design: A high affinity irreversible inhibitor targeting oncogenic EGFR mutants with selectivity over wild-type EGFR. J. Med. Chem., 2017, 60(7), 3002-3019. doi: 10.1021/acs.jmedchem.6b01894 PMID: 28287730
- Lategahn, J.; Keul, M.; Klövekorn, P.; Tumbrink, H.L.; Niggenaber, J.; Müller, M.P.; Hodson, L.; Flaßhoff, M.; Hardick, J.; Grabe, T.; Engel, J.; Schultz-Fademrecht, C.; Baumann, M.; Ketzer, J.; Mühlenberg, T.; Hiller, W.; Günther, G.; Unger, A.; Müller, H.; Heimsoeth, A.; Golz, C.; Blank-Landeshammer, B.; Kollipara, L.; Zahedi, R.P.; Strohmann, C.; Hengstler, J.G.; van Otterlo, W.A.L.; Bauer, S.; Rauh, D. Inhibition of osimertinib-resistant epidermal growth factor receptor EGFR-T790M/C797S. Chem. Sci. (Camb.), 2019, 10(46), 10789-10801. doi: 10.1039/C9SC03445E PMID: 31857889
- Xia, Z.; Huang, R.; Zhou, X.; Chai, Y.; Chen, H.; Ma, L.; Yu, Q.; Li, Y.; Li, W.; He, Y. The synthesis and bioactivity of pyrrolo2,3-dpyrimidine derivatives as tyrosine kinase inhibitors for NSCLC cells with EGFR mutations. Eur. J. Med. Chem., 2021, 224, 113711. doi: 10.1016/j.ejmech.2021.113711 PMID: 34315040
- Kurup, S.; McAllister, B.; Liskova, P.; Mistry, T.; Fanizza, A.; Stanford, D.; Slawska, J.; Keller, U.; Hoellein, A. Design, synthesis and biological activity of N4 -phenylsubstituted-7 H -pyrrolo2,3- dpyrimidin-4-amines as dual inhibitors of aurora kinase A and epidermal growth factor receptor kinase. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 74-84. doi: 10.1080/14756366.2017.1376666 PMID: 29115879
- Gangjee, A.; Yang, J.; Ihnat, M.A.; Kamat, S. Antiangiogenic and antitumor agents. Bioorg. Med. Chem., 2003, 11(23), 5155-5170. doi: 10.1016/j.bmc.2003.08.034 PMID: 14604679
- Gangjee, A.; Zhao, Y.; Raghavan, S.; Ihnat, M.A.; Disch, B.C. Design, synthesis and evaluation of 2-amino-4-m-bromoanilino-6-arylmethyl-7H-pyrrolo2,3-dpyrimidines as tyrosine kinase inhibitors and antiangiogenic agents1. Bioorg. Med. Chem., 2010, 18(14), 5261-5273. doi: 10.1016/j.bmc.2010.05.049 PMID: 20558072
- Gangjee, A.; Namjoshi, O.A.; Ihnat, M.A.; Buchanan, A. The contribution of a 2-amino group on receptor tyrosine kinase inhibition and antiangiogenic activity in 4-anilinosubstituted pyrrolo2,3-dpyrimidines. Bioorg. Med. Chem. Lett., 2010, 20(10), 3177-3181. doi: 10.1016/j.bmcl.2010.03.064 PMID: 20403693
- Gangjee, A.; Namjoshi, O.A.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Warnke, L.A. Design, synthesis and biological evaluation of substituted pyrrolo2,3-dpyrimidines as multiple receptor tyrosine kinase inhibitors and antiangiogenic agents. Bioorg. Med. Chem., 2008, 16(10), 5514-5528. doi: 10.1016/j.bmc.2008.04.019 PMID: 18467105
- Gangjee, A.; Namjoshi, O.A.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Bailey-Downs, L.C. N2-Trimethylacetyl substituted and unsubstituted-N4-phenylsubstituted-6-(2-pyridin-2-ylethyl)-7H-pyrrolo2,3-dpyrimidine-2,4-diamines: Design, cellular receptor tyrosine kinase inhibitory activities and in vivo evaluation as antiangiogenic, antimetastatic and antitumor agents. Bioorg. Med. Chem., 2013, 21(5), 1312-1323. doi: 10.1016/j.bmc.2012.12.045 PMID: 23375090
- Beckers, T.; Sellmer, A.; Eichhorn, E.; Pongratz, H.; Schächtele, C.; Totzke, F.; Kelter, G.; Krumbach, R.; Fiebig, H.H.; Böhmer, F.D.; Mahboobi, S. Novel inhibitors of epidermal growth factor receptor: (4-(Arylamino)-7H-pyrrolo2,3-dpyrimidin-6-yl)(1H-indol-2-yl)methanones and (1H-indol-2-yl)(4-(phenylamino)thieno2,3-dpyrimidin-6-yl)methanones. Bioorg. Med. Chem., 2012, 20(1), 125-136. doi: 10.1016/j.bmc.2011.11.023 PMID: 22169601
- Reiersølmoen, A.C.; Aarhus, T.I.; Eckelt, S.; Nørsett, K.G.; Sundby, E.; Hoff, B.H. Potent and selective EGFR inhibitors based on 5-aryl-7H-pyrrolopyrimidin-4-amines. Bioorg. Chem., 2019, 88, 102918. doi: 10.1016/j.bioorg.2019.102918 PMID: 30999245
- Kaspersen, S.J.; Han, J.; Nørsett, K.G.; Rydså, L.; Kjøbli, E.; Bugge, S.; Bjørkøy, G.; Sundby, E.; Hoff, B.H. Identification of new 4-N-substituted 6-aryl-7H-pyrrolo2,3-dpyrimidine-4-amines as highly potent EGFR-TK inhibitors with Src-family activity. Eur. J. Pharm. Sci., 2014, 59, 69-82. doi: 10.1016/j.ejps.2014.04.011 PMID: 24769040
- Fischer, T.; Krüger, T.; Najjar, A.; Totzke, F.; Schächtele, C.; Sippl, W.; Ritter, C.; Hilgeroth, A. Discovery of novel substituted benzo-anellated 4-benzylamino pyrrolopyrimidines as dual EGFR and VEGFR2 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(12), 2708-2712. doi: 10.1016/j.bmcl.2017.04.053 PMID: 28478927
Supplementary files
