Linoleic and Arachidonic Fatty Acids and their Potential Relationship with Inflammation, Pregnancy, and Fetal Development


Citar

Texto integral

Resumo

A healthy maternal diet must consider an appropriate supply of long-chain polyunsaturated fatty acids (LCPUFAs) precursors to ensure adequate growth and development of the fetus. In this regard, n-6 PUFAs, predominantly linoleic (C18:2 n-6, LA) and arachidonic acid (C20:4 n-6), have a central role in the development of the central nervous system because they are part of the membrane structure and participate in the metabolism and signal transduction of cells. Nevertheless, they can also be transformed into inflammatory metabolites promoting the pathogenesis of cardiovascular diseases, cancer, and autoimmune or inflammatory conditions. In modern westernized societies, there is a high dietary consumption of foods rich in n-6 PUFAs which could have detrimental consequences for the fetus and neonate due to excessive exposure to these fatty acids (FAs).

Objective:To summarize the evidence of maternal, placental, and fetal alterations that an excessive intake of n-6 polyunsaturated FAs (PUFAs), LA, and AA, could produce during pregnancy.

Methods:A thorough review of the literature regarding the effects of n-6 PUFAs during pregnancy and lactation including in vivo and in vitro models, was carried out using the PubMed database from the National Library of Medicine-National Institutes of Health.

Results:An elevated intake of n-6 PUFA, specifically LA, during pregnancy influences children's motor, cognitive, and verbal development during infancy and early childhood. Similarly, they could harm the placenta and the development of other fetal organs such as the fat tissue, liver, and cardiovascular system.

Conclusion:Maternal diet, specifically LA intake, could have significant repercussions on fetal development and long-term consequences in the offspring, including the possibility of future metabolic and mental diseases. It would be necessary to focus on the prevention of these alterations through timely dietary interventions in the target population.

Sobre autores

Macarena Ortiz

Laboratory of Endocrinology and Metabolism, Department of Medicine West Division,, Universidad de Chile

Email: info@benthamscience.net

Daniela Álvarez

Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile

Email: info@benthamscience.net

Yasna Muñoz

Laboratory, Universidad de Chile

Email: info@benthamscience.net

Nicolás Crisosto

Department of Medicine West Division, Universidad de Chile

Email: info@benthamscience.net

Rodrigo Valenzuela

Nutrition Department, School of Medicine,, Universidad de Chil

Email: info@benthamscience.net

Manuel Maliqueo

Department of Medicine West Division, Universidad de Chile

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Simopoulos, A.P. Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol. Neurobiol., 2011, 44(2), 203-215. doi: 10.1007/s12035-010-8162-0 PMID: 21279554
  2. Bianchi, S.; Bernardi, S.; Belli, M.; Varvara, G.; Macchiarelli, G. Exposure to persistent organic pollutants during tooth formation: molecular mechanisms and clinical findings. Rev. Environ. Health, 2020, 35(4), 303-310. doi: 10.1515/reveh-2019-0093 PMID: 32304316
  3. Marchix, J.; Catheline, D.; Duby, C.; Monthéan-Boulier, N.; Boissel, F.; Pédrono, F.; Boudry, G.; Legrand, P. Interactive effects of maternal and weaning high linoleic acid intake on hepatic lipid metabolism, oxylipins profile and hepatic steatosis in offspring. J. Nutr. Biochem., 2020, 75, 108241. doi: 10.1016/j.jnutbio.2019.108241 PMID: 31715523
  4. Haggarty, P.; Wood, M.; Ferguson, E.; Hoad, G.; Srikantharajah, A.; Milne, E.; Hamilton, M.; Bhattacharya, S. Fatty acid metabolism in human preimplantation embryos. Hum. Reprod., 2006, 21(3), 766-773. doi: 10.1093/humrep/dei385 PMID: 16311299
  5. Collodel, G.; Castellini, C.; Lee, J.C.Y.; Signorini, C. Relevance of fatty acids to sperm maturation and quality. Oxid. Med. Cell. Longev., 2020, 2020, 1-14. doi: 10.1155/2020/7038124 PMID: 32089776
  6. Matorras, R.; Ruiz, J.I.; Mendoza, R.; Ruiz, N.; Sanjurjo, P.; Rodriguez-Escudero, F.J. Fatty acid composition of fertilization-failed human oocytes. Hum. Reprod., 1998, 13(8), 2227-2230. doi: 10.1093/humrep/13.8.2227 PMID: 9756301
  7. Salas-Huetos, A.; Arvizu, M.; Mínguez-Alarcón, L.; Mitsunami, M.; Ribas-Maynou, J.; Yeste, M.; Ford, J.B.; Souter, I.; Chavarro, J.E. Women’s and men’s intake of omega-3 fatty acids and their food sources and assisted reproductive technology outcomes. Am. J. Obstet. Gynecol., 2022, 227(2), 246.e1-246.e11. doi: 10.1016/j.ajog.2022.03.053 PMID: 35364062
  8. Shrestha, N.; Cuffe, J.S.M.; Holland, O.J.; Perkins, A.V.; McAinch, A.J.; Hryciw, D.H. Linoleic acid increases prostaglandin e2 release and reduces mitochondrial respiration and cell viability in human trophoblast-like cells. Cell. Physiol. Biochem., 2019, 52(1), 94-108. doi: 10.33594/000000007 PMID: 30790507
  9. McKeegan, P.J.; Sturmey, R.G. The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev., 2012, 24(1), 59-67. doi: 10.1071/RD11907 PMID: 22394718
  10. Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fatty Acids, 2018, 132, 41-48. doi: 10.1016/j.plefa.2018.03.004 PMID: 29610056
  11. Haggarty, P. Fatty acid supply to the human fetus. Annu. Rev. Nutr., 2010, 30(1), 237-255. doi: 10.1146/annurev.nutr.012809.104742 PMID: 20438366
  12. Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000. doi: 10.1161/ATVBAHA.110.207449 PMID: 21508345
  13. Naughton, S.S.; Mathai, M.L.; Hryciw, D.H.; McAinch, A.J. Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat., 2016, 125, 90-99. doi: 10.1016/j.prostaglandins.2016.06.003 PMID: 27350414
  14. Islam, A.; Kagawa, Y.; Sharifi, K.; Ebrahimi, M.; Miyazaki, H.; Yasumoto, Y.; Kawamura, S.; Yamamoto, Y.; Sakaguti, S.; Sawada, T.; Tokuda, N.; Sugino, N.; Suzuki, R.; Owada, Y. Fatty acid binding protein 3 is involved in n–3 and n–6 PUFA transport in mouse trophoblasts. J. Nutr., 2014, 144(10), 1509-1516. doi: 10.3945/jn.114.197202 PMID: 25122651
  15. Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med., 2008, 233(6), 674-688. doi: 10.3181/0711-MR-311 PMID: 18408140
  16. Valenzuela, R.; Videla, L.A. The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct., 2011, 2(11), 644-648. doi: 10.1039/c1fo10133a PMID: 22008843
  17. Abdelrahman, M.A.; Osama, H.; Saeed, H.; Madney, Y.M.; Harb, H.S.; Abdelrahim, M.E.A. Impact of n-3 polyunsaturated fatty acid intake in pregnancy on maternal health and birth outcomes: systematic review and meta-analysis from randomized controlled trails. Arch. Gynecol. Obstet., 2022, 307(1), 249-262. doi: 10.1007/s00404-022-06533-0 PMID: 35348829
  18. Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr., 2013, 4(3), 311-312. doi: 10.3945/an.113.003772 PMID: 23674797
  19. Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr. Pap., 2010, 91, 1-166. PMID: 21812367
  20. Zhou, Y.; Khan, H.; Xiao, J.; Cheang, W.S. Effects of arachidonic acid metabolites on cardiovascular health and disease. Int. J. Mol. Sci., 2021, 22(21), 12029. doi: 10.3390/ijms222112029 PMID: 34769460
  21. Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients, 2021, 13(7), 2421. doi: 10.3390/nu13072421 PMID: 34371930
  22. Choque, B.; Catheline, D.; Rioux, V.; Legrand, P. Linoleic acid: Between doubts and certainties. Biochimie, 2014, 96, 14-21. doi: 10.1016/j.biochi.2013.07.012 PMID: 23900039
  23. Jump, D.B. Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol., 2002, 13(2), 155-164. doi: 10.1097/00041433-200204000-00007 PMID: 11891418
  24. Contreras, A.V.; Torres, N.; Tovar, A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv. Nutr., 2013, 4(4), 439-452. doi: 10.3945/an.113.003798 PMID: 23858092
  25. Hashimoto, T.; Cook, W.S.; Qi, C.; Yeldandi, A.V.; Reddy, J.K.; Rao, M.S. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J. Biol. Chem., 2000, 275(37), 28918-28928. doi: 10.1074/jbc.M910350199 PMID: 10844002
  26. Echeverría, F.; Ortiz, M.; Valenzuela, R.; Videla, L.A. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukot. Essent. Fatty Acids, 2016, 114, 28-34. doi: 10.1016/j.plefa.2016.10.001 PMID: 27926461
  27. Sampath, H.; Ntambi, J.M. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr., 2005, 25(1), 317-340. doi: 10.1146/annurev.nutr.25.051804.101917 PMID: 16011470
  28. Yoshikawa, T.; Shimano, H.; Yahagi, N.; Ide, T.; Amemiya-Kudo, M.; Matsuzaka, T.; Nakakuki, M.; Tomita, S.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; Takahashi, A.; Sone, H.; Osuga, J.; Gotoda, T.; Ishibashi, S.; Yamada, N. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J. Biol. Chem., 2002, 277(3), 1705-1711. doi: 10.1074/jbc.M105711200 PMID: 11694526
  29. Feldstein, A.E.; Nobili, V. Biomarkers in nonalcoholic fatty liver disease: a new era in diagnosis and staging of disease in children. J. Pediatr. Gastroenterol. Nutr., 2010, 51(4), 378-379. doi: 10.1097/MPG.0b013e3181ecf3d4 PMID: 20808243
  30. DuBois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Putte, L.B.A.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12(12), 1063-1073. doi: 10.1096/fasebj.12.12.1063 PMID: 9737710
  31. Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther., 2021, 6(1), 94. doi: 10.1038/s41392-020-00443-w PMID: 33637672
  32. Kikut, J.; Komorniak, N.; Ziętek, M.; Palma, J.; Szczuko, M. Inflammation with the participation of arachidonic (AA) and linoleic acid (LA) derivatives (HETEs and HODEs) is necessary in the course of a normal reproductive cycle and pregnancy. J. Reprod. Immunol., 2020, 141, 103177. doi: 10.1016/j.jri.2020.103177 PMID: 32659532
  33. Sun, T.; Li, S.J.; Diao, H.L.; Teng, C.B.; Wang, H.B.; Yang, Z.M. Cyclooxygenases and prostaglandin E synthases in the endometrium of the rhesus monkey during the menstrual cycle. Reproduction, 2004, 127(4), 465-473. doi: 10.1530/rep.1.00121 PMID: 15047937
  34. Sato, K.; Chisaka, H.; Okamura, K.; Challis, J.R.G. Effect of the interaction between lipoxygenase pathway and progesterone on the regulation of hydroxysteroid 11-Beta dehydrogenase 2 in cultured human term placental trophoblasts. Biol. Reprod., 2008, 78(3), 514-520. doi: 10.1095/biolreprod.107.064717 PMID: 18032417
  35. Edwin, S.S.; Romero, R.J.; Munoz, H.; Branch, D.W.; Mitchell, M.D. 5-Hydroxyeicosatetraenoic acid and human parturition. Prostaglandins, 1996, 51(6), 403-412. doi: 10.1016/0090-6980(96)00046-9 PMID: 8873235
  36. Vrachnis, N.; Karavolos, S.; Iliodromiti, Z.; Sifakis, S.; Siristatidis, C.; Mastorakos, G.; Creatsas, G. Review: Impact of mediators present in amniotic fluid on preterm labour. In Vivo, 2012, 26(5), 799-812. PMID: 22949593
  37. Tilley, S.L.; Coffman, T.M.; Koller, B.H. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest., 2001, 108(1), 15-23. doi: 10.1172/JCI200113416 PMID: 11435451
  38. Narumiya, S.; FitzGerald, G.A. Genetic and pharmacological analysis of prostanoid receptor function. J. Clin. Invest., 2001, 108(1), 25-30. doi: 10.1172/JCI200113455 PMID: 11435452
  39. Rossi, A.; Kapahi, P.; Natoli, G.; Takahashi, T.; Chen, Y.; Karin, M.; Santoro, M.G. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature, 2000, 403(6765), 103-108. doi: 10.1038/47520 PMID: 10638762
  40. Umamaheswaran, S.; Dasari, S.K.; Yang, P.; Lutgendorf, S.K.; Sood, A.K. Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev., 2018, 37(2-3), 203-211. doi: 10.1007/s10555-018-9741-1 PMID: 29948328
  41. Esparvarinha, M.; Madadi, S.; Aslanian-Kalkhoran, L.; Nickho, H.; Dolati, S.; Pia, H.; Danaii, S.; Taghavi, S.; Yousefi, M. Dominant immune cells in pregnancy and pregnancy complications: T helper cells (TH1/TH2, TH17/Treg cells), NK cells, MDSCs, and the immune checkpoints. Cell Biol. Int., 2023, 47(3), 507-519. doi: 10.1002/cbin.11955 PMID: 36335635
  42. Musso, G.; Cassader, M.; Paschetta, E.; Gambino, R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology, 2018, 155(2), 282-302.e8. doi: 10.1053/j.gastro.2018.06.031 PMID: 29906416
  43. Simopoulos, A.P. Evolutionary aspects of the dietary omega-6:omega-3 fatty acid ratio: medical implications. World Rev. Nutr. Diet., 2009, 100, 1-21. doi: 10.1159/000235706 PMID: 19696523
  44. Ramsden, C.E.; Ringel, A.; Feldstein, A.E.; Taha, A.Y.; MacIntosh, B.A.; Hibbeln, J.R.; Majchrzak-Hong, S.F.; Faurot, K.R.; Rapoport, S.I.; Cheon, Y.; Chung, Y.M.; Berk, M.; Douglas Mann, J. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot. Essent. Fatty Acids, 2012, 87(4-5), 135-141. doi: 10.1016/j.plefa.2012.08.004 PMID: 22959954
  45. Warner, D.; Vatsalya, V.; Zirnheld, K.H.; Warner, J.B.; Hardesty, J.E.; Umhau, J.C.; McClain, C.J.; Maddipati, K.; Kirpich, I.A. Linoleic acid-derived oxylipins differentiate early stage alcoholic hepatitis from mild alcohol-associated liver injury. Hepatol. Commun., 2021, 5(6), 947-960. doi: 10.1002/hep4.1686 PMID: 34141982
  46. Welch, B.M.; Keil, A.P.; van ’t Erve, T.J.; Deterding, L.J.; Williams, J.G.; Lih, F.B.; Cantonwine, D.E.; McElrath, T.F.; Ferguson, K.K. Longitudinal profiles of plasma eicosanoids during pregnancy and size for gestational age at delivery: A nested case-control study. PLoS Med., 2020, 17(8), e1003271. doi: 10.1371/journal.pmed.1003271 PMID: 32797061
  47. Jones, H.N.; Woollett, L.A.; Barbour, N.; Prasad, P.D.; Powell, T.L.; Jansson, T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J., 2009, 23(1), 271-278. doi: 10.1096/fj.08-116889 PMID: 18827021
  48. Pantham, P.; Aye, I.L.M.H.; Powell, T.L. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta, 2015, 36(7), 709-715. doi: 10.1016/j.placenta.2015.04.006 PMID: 25972077
  49. Crawford, M.A. Placental delivery of arachidonic and docosahexaenoic acids: implications for the lipid nutrition of preterm infants. Am. J. Clin. Nutr., 2000, 71(1)(Suppl.), 275S-284S. doi: 10.1093/ajcn/71.1.275S PMID: 10617983
  50. Larqué, E.; Demmelmair, H.; Gil-Sánchez, A.; Prieto-Sánchez, M.T.; Blanco, J.E.; Pagán, A.; Faber, F.L.; Zamora, S.; Parrilla, J.J.; Koletzko, B. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr., 2011, 94(6)(Suppl.), S1908-S1913. doi: 10.3945/ajcn.110.001230 PMID: 21562082
  51. Lager, S.; Powell, T.L. Regulation of nutrient transport across the placenta. J. Pregnancy, 2012, 2012, 1-14. doi: 10.1155/2012/179827 PMID: 23304511
  52. Cunningham, P.; McDermott, L. Long chain PUFA transport in human term placenta. J. Nutr., 2009, 139(4), 636-639. doi: 10.3945/jn.108.098608 PMID: 19225129
  53. Tian, L.; Dong, S.S.; Hu, J.; Yao, J.J.; Yan, P.S. The effect of maternal obesity on fatty acid transporter expression and lipid metabolism in the full-term placenta of lean breed swine. J. Anim. Physiol. Anim. Nutr. (Berl.), 2018, 102(1), e242-e253. doi: 10.1111/jpn.12735 PMID: 28508539
  54. Cinelli, G.; Fabrizi, M.; Ravà, L.; Ciofi degli Atti, M.; Vernocchi, P.; Vallone, C.; Pietrantoni, E.; Lanciotti, R.; Signore, F.; Manco, M. Influence of maternal obesity and gestational weight gain on maternal and foetal lipid profile. Nutrients, 2016, 8(6), 368. doi: 10.3390/nu8060368 PMID: 27314385
  55. Basak, S.; Duttaroy, A.K. Maternal PUFAs, placental epigenetics, and their relevance to fetal growth and brain development. Reprod. Sci., 2022. PMID: 35676498
  56. Mani, I.; Dwarkanath, P.; Thomas, T.; Thomas, A.; Kurpad, A.V. Maternal fat and fatty acid intake and birth outcomes in a South Indian population. Int. J. Epidemiol., 2016, 45(2), 523-531. doi: 10.1093/ije/dyw010 PMID: 27013336
  57. Parra-Cabrera, S.; Stein, A.D.; Wang, M.; Martorell, R.; Rivera, J.; Ramakrishnan, U. Dietary intakes of polyunsaturated fatty acids among pregnant Mexican women. Matern. Child Nutr., 2011, 7(2), 140-147. doi: 10.1111/j.1740-8709.2010.00254.x PMID: 21410881
  58. Zhang, J.; Wang, C.; Gao, Y.; Li, L.; Man, Q.; Song, P.; Meng, L.; Du, Z.Y.; Miles, E.A.; Lie, Ø.; Calder, P.C.; Frøyland, L. Different intakes of n-3 fatty acids among pregnant women in 3 regions of China with contrasting dietary patterns are reflected in maternal but not in umbilical erythrocyte phosphatidylcholine fatty acid composition. Nutr. Res., 2013, 33(8), 613-621. doi: 10.1016/j.nutres.2013.05.009 PMID: 23890350
  59. Barrera, C.; Valenzuela, R.; Chamorro, R.; Bascuñán, K.; Sandoval, J.; Sabag, N.; Valenzuela, F.; Valencia, M.P.; Puigrredon, C.; Valenzuela, A. The impact of maternal diet during pregnancy and lactation on the fatty acid composition of erythrocytes and breast milk of chilean women. Nutrients, 2018, 10(7), 839. doi: 10.3390/nu10070839 PMID: 29958393
  60. Bourre, J. Handbook of Neurochemistry and Molecular Neurobiology; Springer: Cham, 2009.
  61. Lassek, W.D.; Gaulin, S.J.C. Linoleic and docosahexaenoic acids in human milk have opposite relationships with cognitive test performance in a sample of 28 countries. Prostaglandins Leukot. Essent. Fatty Acids, 2014, 91(5), 195-201. doi: 10.1016/j.plefa.2014.07.017 PMID: 25172360
  62. Lassek, W.D.; Gaulin, S.J.C. Maternal milk DHA content predicts cognitive performance in a sample of 28 nations. Matern. Child Nutr., 2015, 11(4), 773-779. doi: 10.1111/mcn.12060 PMID: 23795772
  63. Green, P.; Gispan-Herman, I.; Yadid, G. Increased arachidonic acid concentration in the brain of Flinders Sensitive Line rats, an animal model of depression. J. Lipid Res., 2005, 46(6), 1093-1096. doi: 10.1194/jlr.C500003-JLR200 PMID: 15805551
  64. Rao, J.S.; Ertley, R.N.; DeMar, J.C., Jr; Rapoport, S.I.; Bazinet, R.P.; Lee, H-J. Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol. Psychiatry, 2007, 12(2), 151-157. doi: 10.1038/sj.mp.4001887 PMID: 16983392
  65. Taha, A.Y. Linoleic acid–good or bad for the brain? NPJ Sci. Food, 2020, 4(1), 1. doi: 10.1038/s41538-019-0061-9 PMID: 31909187
  66. Horrobin, D.F. Phospholipid metabolism and depression: the possible roles of phospholipase A2 and coenzyme A-independent transacylase. Hum. Psychopharmacol., 2001, 16(1), 45-52. doi: 10.1002/hup.182 PMID: 12404597
  67. Sakayori, N.; Tokuda, H.; Yoshizaki, K.; Kawashima, H.; Innis, S.M.; Shibata, H.; Osumi, N. Maternal nutritional imbalance between linoleic acid and alpha-linolenic acid increases offspring’s anxious behavior with a sex-dependent manner in mice. Tohoku J. Exp. Med., 2016, 240(1), 31-37. doi: 10.1620/tjem.240.31 PMID: 27558477
  68. Kim, H.; Kim, H.; Lee, E.; Kim, Y.; Ha, E.H.; Chang, N. Association between maternal intake of n-6 to n-3 fatty acid ratio during pregnancy and infant neurodevelopment at 6 months of age: results of the MOCEH cohort study. Nutr. J., 2017, 16(1), 23. doi: 10.1186/s12937-017-0242-9 PMID: 28420388
  69. Bernard, J.Y.; Armand, M.; Garcia, C.; Forhan, A.; De Agostini, M.; Charles, M.A.; Heude, B. The association between linoleic acid levels in colostrum and child cognition at 2 and 3 y in the EDEN cohort. Pediatr. Res., 2015, 77(6), 829-835. doi: 10.1038/pr.2015.50 PMID: 25760551
  70. Bernard, J.Y.; Armand, M.; Peyre, H.; Garcia, C.; Forhan, A.; De Agostini, M.; Charles, M.A.; Heude, B. EDEN Mother-Child Cohort Study Group (Etude des Déterminants pré- et postnatals précoces du développement et de la santé de l’Enfant). Breastfeeding, polyunsaturated fatty acid levels in colostrum and child intelligence quotient at age 5-6 years. J. Pediatr., 2017, 183, 43-50.e3. doi: 10.1016/j.jpeds.2016.12.039 PMID: 28081886
  71. Steenweg-de Graaff, J.; Tiemeier, H.; Ghassabian, A.; Rijlaarsdam, J.; Jaddoe, V.W.V.; Verhulst, F.C.; Roza, S.J. Maternal fatty acid status during pregnancy and child autistic traits. Am. J. Epidemiol., 2016, 183(9), 792-799. doi: 10.1093/aje/kwv263 PMID: 27052119
  72. Massiera, F.; Barbry, P.; Guesnet, P.; Joly, A.; Luquet, S.; Moreilhon-Brest, C.; Mohsen-Kanson, T.; Amri, E.Z.; Ailhaud, G. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J. Lipid Res., 2010, 51(8), 2352-2361. doi: 10.1194/jlr.M006866 PMID: 20410018
  73. Moon, R.J.; Harvey, N.C.; Robinson, S.M.; Ntani, G.; Davies, J.H.; Inskip, H.M.; Godfrey, K.M.; Dennison, E.M.; Calder, P.C.; Cooper, C.; Group, S.W.S.S. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J. Clin. Endocrinol. Metab., 2013, 98(1), 299-307. doi: 10.1210/jc.2012-2482 PMID: 23162098
  74. Wahab, R.J.; Jaddoe, V.W.V.; Mezzoiuso, A.G.; Gaillard, R. Maternal polyunsaturated fatty acid concentrations during pregnancy and childhood liver fat accumulation. Clin. Nutr., 2022, 41(4), 847-854. doi: 10.1016/j.clnu.2022.02.012 PMID: 35263694
  75. Ortiz, M.; Sánchez, F.; Álvarez, D.; Flores, C.; Salas-Pérez, F.; Valenzuela, R.; Cantin, C.; Leiva, A.; Crisosto, N.; Maliqueo, M. Association between maternal obesity, essential fatty acids and biomarkers of fetal liver function. Prostaglandins Leukot. Essent. Fatty Acids, 2023, 190, 102541. doi: 10.1016/j.plefa.2023.102541 PMID: 36736061
  76. Newton, K.P.; Lavine, J.E.; Wilson, L.; Behling, C.; Vos, M.B.; Molleston, J.P.; Rosenthal, P.; Miloh, T.; Fishbein, M.H.; Jain, A.K.; Murray, K.F.; Schwimmer, J.B. Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN). Alanine aminotransferase and gamma-glutamyl transpeptidase predict histologic improvement in pediatric nonalcoholic steatohepatitis. Hepatology, 2021, 73(3), 937-951. doi: 10.1002/hep.31317 PMID: 32416645
  77. Grant, W.F.; Gillingham, M.B.; Batra, A.K.; Fewkes, N.M.; Comstock, S.M.; Takahashi, D.; Braun, T.P.; Grove, K.L.; Friedman, J.E.; Marks, D.L. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates. PLoS One, 2011, 6(2), e17261. doi: 10.1371/journal.pone.0017261 PMID: 21364873
  78. De Oliveira Cipriano Torres, D.; Dos Santos, A.C.O.; Silva, A.K.S.E.; Leite, J.I.A.; De Souza, J.R.B.; Beltrão, E.I.C.; Peixoto, C.A. Effect of maternal diet rich in omega-6 and omega-9 fatty acids on the liver of LDL receptor-deficient mouse offspring. Birth Defects Res. B Dev. Reprod. Toxicol., 2010, 89(2), 164-170. doi: 10.1002/bdrb.20240 PMID: 20437476
  79. Kelsall, C.J.; Hoile, S.P.; Irvine, N.A.; Masoodi, M.; Torrens, C.; Lillycrop, K.A.; Calder, P.C.; Clough, G.F.; Hanson, M.A.; Burdge, G.C. Vascular dysfunction induced in offspring by maternal dietary fat involves altered arterial polyunsaturated fatty acid biosynthesis. PLoS One, 2012, 7(4), e34492. doi: 10.1371/journal.pone.0034492 PMID: 22509311
  80. Taylor, P.D.; Khan, I.Y.; Hanson, M.A.; Poston, L. Impaired EDHF-mediated vasodilatation in adult offspring of rats exposed to a fat-rich diet in pregnancy. J. Physiol., 2004, 558(3), 943-951. doi: 10.1113/jphysiol.2002.018879 PMID: 15194731
  81. Armitage, J.A.; Lakasing, L.; Taylor, P.D.; Balachandran, A.A.; Jensen, R.I.; Dekou, V.; Ashton, N.; Nyengaard, J.R.; Poston, L. Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J. Physiol., 2005, 565(1), 171-184. doi: 10.1113/jphysiol.2005.084947 PMID: 15774514
  82. Shrestha, N.; Sleep, S.L.; Cuffe, J.S.M.; Holland, O.J.; Perkins, A.V.; Yau, S.Y.; McAinch, A.J.; Hryciw, D.H. Role of omega-6 and omega-3 fatty acids in fetal programming. Clin. Exp. Pharmacol. Physiol., 2020, 47(5), 907-915. doi: 10.1111/1440-1681.13244 PMID: 31883131
  83. Shrestha, N.; Cuffe, J.S.M.; Holland, O.J.; Bulmer, A.C.; Hill, M.; Perkins, A.V.; Muhlhausler, B.S.; McAinch, A.J.; Hryciw, D.H. Elevated maternal linoleic acid reduces circulating leptin concentrations, cholesterol levels and male fetal survival in a rat model. J. Physiol., 2019, 597(13), 3349-3361. doi: 10.1113/JP277583 PMID: 31124126
  84. Fountain, E.D.; Mao, J.; Whyte, J.J.; Mueller, K.E.; Ellersieck, M.R.; Will, M.J.; Roberts, R.M.; MacDonald, R.; Rosenfeld, C.S. Effects of diets enriched in omega-3 and omega-6 polyunsaturated fatty acids on offspring sex-ratio and maternal behavior in mice. Biol. Reprod., 2008, 78(2), 211-217. doi: 10.1095/biolreprod.107.065003 PMID: 17928632
  85. Shrestha, N.; Holland, O.J.; Kent, N.L.; Perkins, A.V.; McAinch, A.J.; Cuffe, J.S.M.; Hryciw, D.H. Maternal high linoleic acid alters placental fatty acid composition. Nutrients, 2020, 12(8), 2183. doi: 10.3390/nu12082183 PMID: 32717842
  86. Draycott, S.A.V.; Liu, G.; Daniel, Z.C.; Elmes, M.J.; Muhlhausler, B.S.; Langley-Evans, S.C. Maternal dietary ratio of linoleic acid to alpha-linolenic acid during pregnancy has sex-specific effects on placental and fetal weights in the rat. Nutr. Metab. (Lond.), 2019, 16(1), 1. doi: 10.1186/s12986-018-0330-7 PMID: 30622622
  87. Shrestha, N.; Sleep, S.L.; Cuffe, J.S.M.; Holland, O.J.; McAinch, A.J.; Dekker Nitert, M.; Hryciw, D.H. Pregnancy and diet-related changes in the maternal gut microbiota following exposure to an elevated linoleic acid diet. Am. J. Physiol. Endocrinol. Metab., 2020, 318(2), E276-E285. doi: 10.1152/ajpendo.00265.2019 PMID: 31846371

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024