Does each Component of Reactive Oxygen Species have a Dual Role in the Tumor Microenvironment?


Cite item

Full Text

Abstract

:Reactive oxygen species (ROS) are a class of highly reactive oxidizing molecules, including superoxide anion (O2 •−) and hydrogen peroxide (H2O2), among others. Moderate levels of ROS play a crucial role in regulating cellular signaling and maintaining cellular functions. However, abnormal ROS levels or persistent oxidative stress can lead to changes in the tumor microenvironment (TME) that favor cancer development. This review provides an overview of ROS generation, structure, and properties, as well as their effects on various components of the TME. Contrary to previous studies, our findings reveal a dual effect of ROS on different components of the TME, whereby ROS can either enhance or inhibit certain factors, ultimately leading to the promotion or suppression of the TME. For example, H2O2 has dual effects on immune cells and non-- cellular components within the TME, while O2 •− has dual effects on T cells and fibroblasts. Furthermore, each component demonstrates distinct mechanisms of action and ranges of influence. In the final section of the article, we summarize the current clinical applications of ROS in cancer treatment and identify certain limitations associated with existing therapeutic approaches. Therefore, this review aims to provide a comprehensive understanding of ROS, highlighting their dual effects on different components of the TME, and exploring the potential clinical applications that may pave the way for future treatment and prevention strategies.

About the authors

Siyu Hao

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy,, Southwest Medical University

Email: info@benthamscience.net

Dan Cai

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Shuang Gou

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Yan Li

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Lin Liu

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Xiaolong Tang

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Yu Chen

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Yueshui Zhao

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Jing Shen

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Xu Wu

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Mingxing Li

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Meijuan Chen

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Xiaobing Li

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Yuhong Sun

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Li Gu

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Wanping Li

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Fang Wang

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Chi Cho

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Email: info@benthamscience.net

Zhangang Xiao

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Author for correspondence.
Email: info@benthamscience.net

Fukuan Du

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol., 2020, 30(16), R921-R925. doi: 10.1016/j.cub.2020.06.081 PMID: 32810447
  2. Deepak, K.G.K.; Vempati, R.; Nagaraju, G.P.; Dasari, V.R.; S, N.; Rao, D.N.; Malla, R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res., 2020, 153, 104683. doi: 10.1016/j.phrs.2020.104683 PMID: 32050092
  3. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  4. Weinberg, F.; Hamanaka, R.; Wheaton, W.W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G.M.; Budinger, G.R.S.; Chandel, N.S. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA, 2010, 107(19), 8788-8793. doi: 10.1073/pnas.1003428107 PMID: 20421486
  5. Kong, H.; Chandel, N.S. Regulation of redox balance in cancer and T cells. J. Biol. Chem., 2018, 293(20), 7499-7507. doi: 10.1074/jbc.TM117.000257 PMID: 29282291
  6. Martinez-Outschoorn, U.E.; Balliet, R.M.; Rivadeneira, D.; Chiavarina, B.; Pavlides, S.; Wang, C.; Whitaker-Menezes, D.; Daumer, K.; Lin, Z.; Witkiewicz, A.; Flomenberg, N.; Howell, A.; Pestell, R.; Knudsen, E.; Sotgia, F.; Lisanti, M.P. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution. Cell Cycle, 2010, 9(16), 3276-3296. doi: 10.4161/cc.9.16.12553 PMID: 20814239
  7. Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol., 2018, 80, 50-64. doi: 10.1016/j.semcdb.2017.05.023 PMID: 28587975
  8. Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002 PMID: 27666517
  9. Weinberg, F.; Ramnath, N.; Nagrath, D. Reactive oxygen species in the tumor microenvironment: An overview. Cancers (Basel), 2019, 11(8), 1191. doi: 10.3390/cancers11081191 PMID: 31426364
  10. Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164. doi: 10.1016/j.freeradbiomed.2017.01.004 PMID: 28088622
  11. Kirtonia, A.; Sethi, G.; Garg, M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci., 2020, 77(22), 4459-4483. doi: 10.1007/s00018-020-03536-5 PMID: 32358622
  12. Halliwell, B. Oxidative stress and cancer: have we moved forward? Biochem. J., 2007, 401(1), 1-11. doi: 10.1042/BJ20061131 PMID: 17150040
  13. Nakazawa, M.S.; Keith, B.; Simon, M.C. Oxygen availability and metabolic adaptations. Nat. Rev. Cancer, 2016, 16(10), 663-673. doi: 10.1038/nrc.2016.84 PMID: 27658636
  14. Xiao, Z.; Dai, Z.; Locasale, J.W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun., 2019, 10(1), 3763. doi: 10.1038/s41467-019-11738-0 PMID: 31434891
  15. Kumar, S.; Sharife, H.; Kreisel, T.; Mogilevsky, M.; Bar-Lev, L.; Grunewald, M.; Aizenshtein, E.; Karni, R.; Paldor, I.; Shlomi, T.; Keshet, E. Intra-tumoral metabolic zonation and resultant phenotypic diversification are dictated by blood vessel proximity. Cell Metab., 2019, 30(1), 201-211.e6. doi: 10.1016/j.cmet.2019.04.003 PMID: 31056286
  16. Velayutham, M.; Hemann, C.; Zweier, J.L. Removal of H2O2 and generation of superoxide radical: Role of cytochrome c and NADH. Free Radic. Biol. Med., 2011, 51(1), 160-170. doi: 10.1016/j.freeradbiomed.2011.04.007 PMID: 21545835
  17. Edmondson, D. Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Curr. Pharm. Des., 2014, 20(2), 155-160. doi: 10.2174/13816128113190990406 PMID: 23701542
  18. Loschen, G.; Azzi, A.; Richter, C.; Flohé, L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett., 1974, 42(1), 68-72. doi: 10.1016/0014-5793(74)80281-4 PMID: 4859511
  19. Buettner, G.R.; Ng, C.F.; Wang, M.; Rodgers, V.G.J.; Schafer, F.Q. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic. Biol. Med., 2006, 41(8), 1338-1350. doi: 10.1016/j.freeradbiomed.2006.07.015 PMID: 17015180
  20. Roscoe, J.M.; Sevier, C.S. Pathways for sensing and responding to hydrogen peroxide at the endoplasmic reticulum. Cells, 2020, 9(10), 2314. doi: 10.3390/cells9102314 PMID: 33080949
  21. Aviello, G.; Knaus, U.G. NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol., 2018, 11(4), 1011-1023. doi: 10.1038/s41385-018-0021-8 PMID: 29743611
  22. Sirokmány, G.; Geiszt, M. The relationship of NADPH oxidases and heme peroxidases: Fallin’ in and out. Front. Immunol., 2019, 10, 394. doi: 10.3389/fimmu.2019.00394 PMID: 30891045
  23. Bienert, G.P.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta Biomembr., 2006, 1758(8), 994-1003. doi: 10.1016/j.bbamem.2006.02.015 PMID: 16566894
  24. Lefèvre, C.T.; Bennet, M.; Landau, L.; Vach, P.; Pignol, D.; Bazylinski, D.A.; Frankel, R.B.; Klumpp, S.; Faivre, D. Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys. J., 2014, 107(2), 527-538. doi: 10.1016/j.bpj.2014.05.043 PMID: 25028894
  25. Katakwar, P.; Metgud, R.; Naik, S.; Mittal, R. Oxidative stress marker in oral cancer: A review. J. Cancer Res. Ther., 2016, 12(2), 438-446. doi: 10.4103/0973-1482.151935 PMID: 27461591
  26. Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2014, 2, 535-562. doi: 10.1016/j.redox.2014.02.006 PMID: 24634836
  27. Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry, 2010, 49(5), 835-842. doi: 10.1021/bi9020378 PMID: 20050630
  28. Tochigi, M.; Inoue, T.; Suzuki-Karasaki, M.; Ochiai, T.; Ra, C.; Suzuki-Karasaki, Y. Hydrogen peroxide induces cell death in human TRAIL-resistant melanoma through intracellular superoxide generation. Int. J. Oncol., 2013, 42(3), 863-872. doi: 10.3892/ijo.2013.1769 PMID: 23314732
  29. Okamoto, M.; Reddy, J.K.; Oyasu, R. Tumorigenic conversion of a non-tumorigenic rat urothelial cell line by overexpression of H2O2-generating peroxisomal fatty acyl-CoA oxidase. Int. J. Cancer, 1997, 70(6), 716-721. doi: 10.1002/(SICI)1097-0215(19970317)70:63.0.CO;2-7 PMID: 9096654
  30. Hirst, J.; Carroll, J.; Fearnley, I.M.; Shannon, R.J.; Walker, J.E. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta Bioenerg., 2003, 1604(3), 135-150. doi: 10.1016/S0005-2728(03)00059-8 PMID: 12837546
  31. Sazanov, L.A. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry, 2007, 46(9), 2275-2288. doi: 10.1021/bi602508x PMID: 17274631
  32. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13. doi: 10.1042/BJ20081386 PMID: 19061483
  33. Kussmaul, L.; Hirst, J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7607-7612. doi: 10.1073/pnas.0510977103 PMID: 16682634
  34. Chance, B.; Hollunger, G. The interaction of energy and electron transfer reactions in mitochondria. I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J. Biol. Chem., 1961, 236(5), 1534-1543. doi: 10.1016/S0021-9258(18)64210-3 PMID: 13692277
  35. Cino, M.; Del Maestro, R.F. Generation of hydrogen peroxide by brain mitochondria: The effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys., 1989, 269(2), 623-638. doi: 10.1016/0003-9861(89)90148-3 PMID: 2919886
  36. Hunte, C.; Palsdottir, H.; Trumpower, B.L. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett., 2003, 545(1), 39-46. doi: 10.1016/S0014-5793(03)00391-0 PMID: 12788490
  37. Dröse, S.; Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol., 2012, 748, 145-169. doi: 10.1007/978-1-4614-3573-0_6 PMID: 22729857
  38. Cadenas, E.; Boveris, A.; Ragan, C.I.; Stoppani, A.O.M. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys., 1977, 180(2), 248-257. doi: 10.1016/0003-9861(77)90035-2 PMID: 195520
  39. Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide ion: Generation and chemical implications. Chem. Rev., 2016, 116(5), 3029-3085. doi: 10.1021/acs.chemrev.5b00407 PMID: 26875845
  40. Dietzel, P.D.C.; Kremer, R.K.; Jansen, M. Tetraorganylammonium superoxide compounds: close to unperturbed superoxide ions in the solid state. J. Am. Chem. Soc., 2004, 126(14), 4689-4696. doi: 10.1021/ja039880i PMID: 15070387
  41. Okada, F.; Kobayashi, M.; Tanaka, H.; Kobayashi, T.; Tazawa, H.; Iuchi, Y.; Onuma, K.; Hosokawa, M.; Dinauer, M.C.; Hunt, N.H. The role of nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species in the acquisition of metastatic ability of tumor cells. Am. J. Pathol., 2006, 169(1), 294-302. doi: 10.2353/ajpath.2006.060073 PMID: 16816381
  42. Liu, R.; Li, B.; Qiu, M. Elevated superoxide production by active H-ras enhances human lung WI-38VA-13 cell proliferation, migration and resistance to TNF-α. Oncogene, 2001, 20(12), 1486-1496. doi: 10.1038/sj.onc.1204214 PMID: 11313892
  43. Chaudhuri, J.; Chowdhury, A.A.; Biswas, N.; Manna, A.; Chatterjee, S.; Mukherjee, T.; Chaudhuri, U.; Jaisankar, P.; Bandyopadhyay, S. Superoxide activates mTOR–eIF4E–Bax route to induce enhanced apoptosis in leukemic cells. Apoptosis, 2014, 19(1), 135-148. doi: 10.1007/s10495-013-0904-9 PMID: 24052408
  44. Thomas, C.; Mackey, M.M.; Diaz, A.A.; Cox, D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep., 2009, 14(3), 102-108. doi: 10.1179/135100009X392566 PMID: 19490751
  45. Chen, S.; Schopfer, P. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur. J. Biochem., 1999, 260(3), 726-735. doi: 10.1046/j.1432-1327.1999.00199.x PMID: 10103001
  46. Babior, B.M. Phagocytes and oxidative stress. Am. J. Med., 2000, 109(1), 33-44. doi: 10.1016/S0002-9343(00)00481-2 PMID: 10936476
  47. Wright, R.M.; McManaman, J.L.; Repine, J.E. Alcohol-induced breast cancer: a proposed mechanism. Free Radic. Biol. Med., 1999, 26(3-4), 348-354. doi: 10.1016/S0891-5849(98)00204-4 PMID: 9895226
  48. Malins, D.C.; Gunselman, S.J.; Holmes, E.H.; Polissar, N.L. The etiology of breast cancer characteristic alterations in hydroxyl radical-induced DNA base lesions during oncogenesis with potential for evaluating incidence risk. Cancer, 1993, 71(10), 3036-3043. doi: 10.1002/1097-0142(19930515)71:103.0.CO;2-P PMID: 8387875
  49. Wang, Z.; Li, S.; Cao, Y.; Tian, X.; Zeng, R.; Liao, D.F.; Cao, D. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid. Med. Cell. Longev., 2016, 1-15. doi: 10.1155/2016/9875298 PMID: 26823956
  50. Sumkhemthong, S.; Prompetchara, E.; Chanvorachote, P.; Chaotham, C. Cisplatin-induced hydroxyl radicals mediate pro-survival autophagy in human lung cancer H460 cells. Biol. Res., 2021, 54(1), 22. doi: 10.1186/s40659-021-00346-2 PMID: 34321115
  51. Ren, J.G.; Xia, H.L.; Just, T.; Dai, Y.R. Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett., 2001, 488(3), 123-132. doi: 10.1016/S0014-5793(00)02377-2 PMID: 11163758
  52. Tarr, M.; Valenzeno, D.P. Singlet oxygen: the relevance of extracellular production mechanisms to oxidative stress in vivo. Photochem. Photobiol. Sci., 2003, 2(4), 355-361. doi: 10.1039/b211778a PMID: 12760529
  53. Dogra, V.; Kim, C. Singlet oxygen metabolism: From genesis to signaling. Front. Plant Sci., 2020, 10, 1640. doi: 10.3389/fpls.2019.01640 PMID: 31969891
  54. Di Mascio, P.; Martinez, G.R.; Miyamoto, S.; Ronsein, G.E.; Medeiros, M.H.G.; Cadet, J. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev., 2019, 119(3), 2043-2086. doi: 10.1021/acs.chemrev.8b00554 PMID: 30721030
  55. Homma, T.; Kobayashi, S.; Fujii, J. Induction of ferroptosis by singlet oxygen generated from naphthalene endoperoxide. Biochem. Biophys. Res. Commun., 2019, 518(3), 519-525. doi: 10.1016/j.bbrc.2019.08.073 PMID: 31445701
  56. Bauer, G. HOCl-dependent singlet oxygen and hydroxyl radical generation modulate and induce apoptosis of malignant cells. Anticancer Res., 2013, 33(9), 3589-3602. PMID: 24023284
  57. Bauer, G. Autoamplificatory singlet oxygen generation sensitizes tumor cells for intercellular apoptosis-inducing signaling. Mech. Ageing Dev., 2018, 172, 59-77. doi: 10.1016/j.mad.2017.11.005 PMID: 29137940
  58. Klotz, L.O.; Kröncke, K.D.; Sies, H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem. Photobiol. Sci., 2003, 2(2), 88-94. doi: 10.1039/b210750c PMID: 12664966
  59. Kuang, D.M.; Zhao, Q.; Peng, C.; Xu, J.; Zhang, J.P.; Wu, C.; Zheng, L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med., 2009, 206(6), 1327-1337. doi: 10.1084/jem.20082173 PMID: 19451266
  60. Kryczek, I.; Zou, L.; Rodriguez, P.; Zhu, G.; Wei, S.; Mottram, P.; Brumlik, M.; Cheng, P.; Curiel, T.; Myers, L.; Lackner, A.; Alvarez, X.; Ochoa, A.; Chen, L.; Zou, W. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med., 2006, 203(4), 871-881. doi: 10.1084/jem.20050930 PMID: 16606666
  61. Tan, H.Y.; Wang, N.; Zhang, C.; Chan, Y.T.; Yuen, M.F.; Feng, Y. Lysyl oxidase-like 4 fosters an immunosuppressive microenvironment during hepatocarcinogenesis. Hepatology, 2021, 73(6), 2326-2341. doi: 10.1002/hep.31600 PMID: 33068461
  62. Izawa, S.; Mimura, K.; Watanabe, M.; Maruyama, T.; Kawaguchi, Y.; Fujii, H.; Kono, K. Increased prevalence of tumor-infiltrating regulatory T cells is closely related to their lower sensitivity to H2O2-induced apoptosis in gastric and esophageal cancer. Cancer Immunol. Immunother., 2013, 62(1), 161-170. doi: 10.1007/s00262-012-1327-0 PMID: 22865268
  63. Sakaguchi, S.; Ono, M.; Setoguchi, R.; Yagi, H.; Hori, S.; Fehervari, Z.; Shimizu, J.; Takahashi, T.; Nomura, T. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev., 2006, 212(1), 8-27. doi: 10.1111/j.0105-2896.2006.00427.x PMID: 16903903
  64. Beyer, M.; Schultze, J.L. Regulatory T cells in cancer. Blood, 2006, 108(3), 804-811. doi: 10.1182/blood-2006-02-002774 PMID: 16861339
  65. Kono, K.; Salazar-Onfray, F.; Petersson, M.; Hansson, J.; Masucci, G.; Wasserman, K.; Nakazawa, T.; Anderson, P.; Kiessling, R. Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur. J. Immunol., 1996, 26(6), 1308-1313. doi: 10.1002/eji.1830260620 PMID: 8647210
  66. Tao, B.; Shi, J.; Shuai, S.; Zhou, H.; Zhang, H.; Li, B.; Wang, X.; Li, G.; He, H.; Zhong, J. CYB561D2 up-regulation activates STAT3 to induce immunosuppression and aggression in gliomas. J. Transl. Med., 2021, 19(1), 338. doi: 10.1186/s12967-021-02987-z PMID: 34372858
  67. Cousin, C.; Aubatin, A.; Le Gouvello, S.; Apetoh, L.; Castellano, F.; Molinier-Frenkel, V. The immunosuppressive enzyme IL4I1 promotes FoxP3 + regulatory T lymphocyte differentiation. Eur. J. Immunol., 2015, 45(6), 1772-1782. doi: 10.1002/eji.201445000 PMID: 25778793
  68. Boulland, M.L.; Marquet, J.; Molinier-Frenkel, V.; Möller, P.; Guiter, C.; Lasoudris, F.; Copie-Bergman, C.; Baia, M.; Gaulard, P.; Leroy, K.; Castellano, F. Human IL4I1 is a secreted l-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood, 2007, 110(1), 220-227. doi: 10.1182/blood-2006-07-036210 PMID: 17356132
  69. Lockhart, D.C.; Chan, A.K.; Mak, S.; Joo, H.G.; Daust, H.A.; Carritte, A.; Douville, C.C.; Goedegebuure, P.S.; Eberlein, T.J. Loss of T-cell receptor-CD3ζ and T-cell function in tumor-infiltrating lymphocytes but not in tumor-associated lymphocytes in ovarian carcinoma. Surgery, 2001, 129(6), 749-756. doi: 10.1067/msy.2001.114554 PMID: 11391375
  70. Bronte, V.; Serafini, P.; De Santo, C.; Marigo, I.; Tosello, V.; Mazzoni, A.; Segal, D.M.; Staib, C.; Lowel, M.; Sutter, G.; Colombo, M.P.; Zanovello, P. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol., 2003, 170(1), 270-278. doi: 10.4049/jimmunol.170.1.270 PMID: 12496409
  71. Mao, Y.; Poschke, I.; Wennerberg, E.; Pico de Coaña, Y.; Egyhazi Brage, S.; Schultz, I.; Hansson, J.; Masucci, G.; Lundqvist, A.; Kiessling, R. Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res., 2013, 73(13), 3877-3887. doi: 10.1158/0008-5472.CAN-12-4115 PMID: 23633486
  72. Wang, L.; Lu, Z.; Zhao, J.; Schank, M.; Cao, D.; Dang, X.; Nguyen, L.N.; Nguyen, L.N.T.; Khanal, S.; Zhang, J.; Wu, X.Y.; El Gazzar, M.; Ning, S.; Moorman, J.P.; Yao, Z.Q. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell, 2021, 20(12), e13513. doi: 10.1111/acel.13513 PMID: 34752684
  73. Glorieux, C.; Xia, X.; He, Y.Q.; Hu, Y.; Cremer, K.; Robert, A.; Liu, J.; Wang, F.; Ling, J.; Chiao, P.J.; Huang, P. Regulation of PD-L1 expression in K-ras-driven cancers through ROS-mediated FGFR1 signaling. Redox Biol., 2021, 38, 101780. doi: 10.1016/j.redox.2020.101780 PMID: 33171331
  74. Thorne, K.J.; Svvennsen, R.J.; Franks, D. Role of hydrogen peroxide in the cytotoxic reaction of T lymphocytes. Clin. Exp. Immunol., 1980, 39(2), 486-495. PMID: 6248285
  75. Freund, E.; Liedtke, K.R.; van der Linde, J.; Metelmann, H.R.; Heidecke, C.D.; Partecke, L.I.; Bekeschus, S. Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo. Sci. Rep., 2019, 9(1), 634. doi: 10.1038/s41598-018-37169-3 PMID: 30679720
  76. Lu, C.; Zhou, F.; Wu, S.; Liu, L.; Xing, D. Phototherapy-induced antitumor immunity: Long-term tumor suppression effects via photoinactivation of respiratory chain oxidase-triggered superoxide anion burst. Antioxid. Redox Signal., 2016, 24(5), 249-262. doi: 10.1089/ars.2015.6334 PMID: 26413929
  77. Wang, Y.; Sun, X.; Han, Y.; Wang, K.; Cheng, L.; Sun, Y.; Besenbacher, F.; Yu, M. Au@MnSe 2 core–shell nanoagent enabling immediate generation of hydroxyl radicals and simultaneous glutathione deletion free of pre-reaction for chemodynamic-photothermo-photocatalytic therapy with significant immune response. Adv. Healthc. Mater., 2022, 11(14), 2200041. doi: 10.1002/adhm.202200041 PMID: 35481899
  78. Zhao, X.; Wan, X.; Huang, T.; Yao, S.; Wang, S.; Ding, Y.; Zhao, Y.; Li, Z.; Li, L. Acidity-responsive nanocages as robust reactive oxygen species generators with butterfly effects for maximizing oxidative damage and enhancing cancer therapy. J. Colloid Interface Sci., 2022, 618, 270-282. doi: 10.1016/j.jcis.2022.03.084 PMID: 35339963
  79. Farber, C.M.; Liebes, L.F.; Kanganis, D.N.; Silber, R. Human B lymphocytes show greater susceptibility to H2O2 toxicity than T lymphocytes. J. Immunol., 1984, 132(5), 2543-2546. doi: 10.4049/jimmunol.132.5.2543 PMID: 6609202
  80. Silber, R.; Stahl, R.L.; Farber, C.M.; Kanganis, D.; Astrow, A.; Liebes, L.F. Chronic lymphocytic leukemia lymphocytes: membrane anomalies and H2O2 vulnerability. Blood Cells, 1984, 10(2-3), 233-239. PMID: 6336165
  81. Izawa, S.; Kono, K.; Mimura, K.; Kawaguchi, Y.; Watanabe, M.; Maruyama, T.; Fujii, H. H2O2 production within tumor microenvironment inversely correlated with infiltration of CD56dim NK cells in gastric and esophageal cancer: possible mechanisms of NK cell dysfunction. Cancer Immunol. Immunother., 2011, 60(12), 1801-1810. doi: 10.1007/s00262-011-1082-7 PMID: 21811786
  82. Klopotowska, M.; Bajor, M.; Graczyk-Jarzynka, A.; Kraft, A.; Pilch, Z.; Zhylko, A.; Firczuk, M.; Baranowska, I.; Lazniewski, M.; Plewczynski, D.; Goral, A.; Soroczynska, K.; Domagala, J.; Marhelava, K.; Slusarczyk, A.; Retecki, K.; Ramji, K.; Krawczyk, M.; Temples, M.N.; Sharma, B.; Lachota, M.; Netskar, H.; Malmberg, K.J.; Zagozdzon, R.; Winiarska, M. PRDX-1 supports the survival and antitumor activity of primary and CAR-modified nk cells under oxidative stress. Cancer Immunol. Res., 2022, 10(2), 228-244. doi: 10.1158/2326-6066.CIR-20-1023 PMID: 34853030
  83. Zhou, X.; Zhao, R.; Schwarz, K.; Mangeat, M.; Schwarz, E.C.; Hamed, M.; Bogeski, I.; Helms, V.; Rieger, H.; Qu, B. Bystander cells enhance NK cytotoxic efficiency by reducing search time. Sci. Rep., 2017, 7(1), 44357. doi: 10.1038/srep44357 PMID: 28287155
  84. Upadhyay, S.; Vaish, S.; Dhiman, M. Hydrogen peroxide-induced oxidative stress and its impact on innate immune responses in lung carcinoma A549 cells. Mol. Cell. Biochem., 2019, 450(1-2), 135-147. doi: 10.1007/s11010-018-3380-2 PMID: 29938378
  85. Li, F.; Kitajima, S.; Kohno, S.; Yoshida, A.; Tange, S.; Sasaki, S.; Okada, N.; Nishimoto, Y.; Muranaka, H.; Nagatani, N.; Suzuki, M.; Masuda, S.; Thai, T.C.; Nishiuchi, T.; Tanaka, T.; Barbie, D.A.; Mukaida, N.; Takahashi, C. Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Res., 2019, 79(15), 3903-3915. doi: 10.1158/0008-5472.CAN-18-3604 PMID: 31189648
  86. Sang, Y.; Deng, Q.; Cao, F.; Liu, Z.; You, Y.; Liu, H.; Ren, J.; Qu, X. Remodeling macrophages by an iron nanotrap for tumor growth suppression. ACS Nano, 2021, 15(12), 19298-19309. doi: 10.1021/acsnano.1c05392 PMID: 34783526
  87. Martinez-Marin, D.; Jarvis, C.; Nelius, T.; de Riese, W.; Volpert, O.V.; Filleur, S. PEDF increases the tumoricidal activity of macrophages towards prostate cancer cells in vitro. PLoS One, 2017, 12(4), e0174968. doi: 10.1371/journal.pone.0174968 PMID: 28403150
  88. Zuo, W.; Chen, W.; Liu, J.; Huang, S.; Chen, L.; Liu, Q.; Liu, N.; Jin, Q.; Li, Y.; Wang, P.; Zhu, X. Macrophage-mimic hollow mesoporous fe-based nanocatalysts for self-amplified chemodynamic therapy and metastasis inhibition via tumor microenvironment remodeling. ACS Appl. Mater. Interfaces, 2022, 14(4), 5053-5065. doi: 10.1021/acsami.1c22432 PMID: 35040616
  89. Ishihara, Y.; Fujii, T.; Iijima, H.; Saito, K.; Matsunaga, K. The role of neutrophils as cytotoxic cells in lung metastasis: suppression of tumor cell metastasis by a biological response modifier (PSK). In vivo, 1998, 12(2), 175-182. PMID: 9627799
  90. Rosen, G.M.; Pou, S.; Ramos, C.L.; Cohen, M.S.; Britigan, B.E. Free radicals and phagocytic cells. FASEB J., 1995, 9(2), 200-209. doi: 10.1096/fasebj.9.2.7540156 PMID: 7540156
  91. Murphy, M.S.C.; Britigan, B.E.; Hassett, D.J.; Rosen, G.M. Phagocytes, O2 reduction, and hydroxyl radical. Clin. Infect. Dis., 1988, 10(6), 1088-1096. doi: 10.1093/clinids/10.6.1088 PMID: 2849797
  92. Butcher, L.D.; den Hartog, G.; Ernst, P.B.; Crowe, S.E. Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis. Cell. Mol. Gastroenterol. Hepatol., 2017, 3(3), 316-322. doi: 10.1016/j.jcmgh.2017.02.002 PMID: 28462373
  93. Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev., 2004, 56(4), 549-580. doi: 10.1124/pr.56.4.3 PMID: 15602010
  94. Arneth, B. Tumor microenvironment. Medicina (Kaunas), 2019, 56(1), 15. doi: 10.3390/medicina56010015 PMID: 31906017
  95. Zeng, Y.; Opeskin, K.; Horvath, L.G.; Sutherland, R.L.; Williams, E.D. Lymphatic vessel density and lymph node metastasis in prostate cancer. Prostate, 2005, 65(3), 222-230. doi: 10.1002/pros.20288 PMID: 15948136
  96. Jennbacken, K.; Vallbo, C.; Wang, W.; Damber, J.E. Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis. Prostate, 2005, 65(2), 110-116. doi: 10.1002/pros.20276 PMID: 15880525
  97. Muders, M.H.; Zhang, H.; Wang, E.; Tindall, D.J.; Datta, K. Vascular endothelial growth factor-C protects prostate cancer cells from oxidative stress by the activation of mammalian target of rapamycin complex-2 and AKT-1. Cancer Res., 2009, 69(15), 6042-6048. doi: 10.1158/0008-5472.CAN-09-0552 PMID: 19638584
  98. Abumaree, M.H.; Hakami, M.; Abomaray, F.M.; Alshabibi, M.A.; Kalionis, B.; Al Jumah, M.A.; AlAskar, A.S. Human chorionic villous mesenchymal stem/stromal cells modify the effects of oxidative stress on endothelial cell functions. Placenta, 2017, 59, 74-86. doi: 10.1016/j.placenta.2017.05.001 PMID: 28502524
  99. Basmaeil, Y.; Al Subayyil, A.; Abumaree, M.; Khatlani, T. Conditions mimicking the cancer microenvironment modulate the functional outcome of human chorionic villus mesenchymal stem/stromal cells in vitro. Front. Cell Dev. Biol., 2021, 9, 650125. doi: 10.3389/fcell.2021.650125 PMID: 34235143
  100. Zhu, J.W.; Yu, B.M.; Ji, Y.B.; Zheng, M.H.; Li, D.H. Upregulation of vascular endothelial growth factor by hydrogen peroxide in human colon cancer. World J. Gastroenterol., 2002, 8(1), 153-157. doi: 10.3748/wjg.v8.i1.153 PMID: 11833093
  101. Culp, W.D.; Neal, R.; Massey, R.; Egevad, L.; Pisa, P.; Garland, D. Proteomic analysis of tumor establishment and growth in the B16-F10 mouse melanoma model. J. Proteome Res., 2006, 5(6), 1332-1343. doi: 10.1021/pr060059q PMID: 16739985
  102. Du, X.; Xu, Q.; Pan, D.; Xu, D.; Niu, B.; Hong, W.; Zhang, R.; Li, X.; Chen, S. HIC-5 in cancer-associated fibroblasts contributes to esophageal squamous cell carcinoma progression. Cell Death Dis., 2019, 10(12), 873. doi: 10.1038/s41419-019-2114-z PMID: 31740661
  103. Martinez-Outschoorn, U.E.; Balliet, R.M.; Lin, Z.; Whitaker-Menezes, D.; Howell, A.; Sotgia, F.; Lisanti, M.P. Hereditary ovarian cancer and two-compartment tumor metabolism. Cell Cycle, 2012, 11(22), 4152-4166. doi: 10.4161/cc.22226 PMID: 23047606
  104. Toullec, A.; Gerald, D.; Despouy, G.; Bourachot, B.; Cardon, M.; Lefort, S.; Richardson, M.; Rigaill, G.; Parrini, M.C.; Lucchesi, C.; Bellanger, D.; Stern, M.H.; Dubois, T.; Sastre-Garau, X.; Delattre, O.; Vincent-Salomon, A.; Mechta-Grigoriou, F. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol. Med., 2010, 2(6), 211-230. doi: 10.1002/emmm.201000073 PMID: 20535745
  105. Balliet, R.M.; Capparelli, C.; Guido, C.; Pestell, T.G.; Martinez-Outschoorn, U.E.; Lin, Z.; Whitaker-Menezes, D.; Chiavarina, B.; Pestell, R.G.; Howell, A.; Sotgia, F.; Lisanti, M.P. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth. Cell Cycle, 2011, 10(23), 4065-4073. doi: 10.4161/cc.10.23.18254 PMID: 22129993
  106. Liang, L.; Li, W.; Li, X.; Jin, X.; Liao, Q.; Li, Y.; Zhou, Y. ‘Reverse Warburg effect’ of cancer-associated fibroblasts (Review). Int. J. Oncol., 2022, 60(6), 67. doi: 10.3892/ijo.2022.5357 PMID: 35425996
  107. Jezierska-Drutel, A.; Rosenzweig, S.A.; Neumann, C.A. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res., 2013, 119, 107-125. doi: 10.1016/B978-0-12-407190-2.00003-4 PMID: 23870510
  108. Martinez-Outschoorn, U.E.; Lin, Z.; Trimmer, C.; Flomenberg, N.; Wang, C.; Pavlides, S.; Pestell, R.G.; Howell, A.; Sotgia, F.; Lisanti, M.P. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect. Cell Cycle, 2011, 10(15), 2504-2520. doi: 10.4161/cc.10.15.16585 PMID: 21778829
  109. Lisanti, M.P.; Martinez-Outschoorn, U.E.; Lin, Z.; Pavlides, S.; Whitaker-Menezes, D.; Pestell, R.G.; Howell, A.; Sotgia, F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis. Cell Cycle, 2011, 10(15), 2440-2449. doi: 10.4161/cc.10.15.16870 PMID: 21734470
  110. Hsieh, C.L.; Liu, C.M.; Chen, H.A.; Yang, S.T.; Shigemura, K.; Kitagawa, K.; Yamamichi, F.; Fujisawa, M.; Liu, Y.R.; Lee, W.H.; Chen, K.C.; Shen, C.N.; Lin, C.C.; Chung, L.W.K.; Sung, S.Y. Reactive oxygen species–mediated switching expression of MMP-3 in stromal fibroblasts and cancer cells during prostate cancer progression. Sci. Rep., 2017, 7(1), 9065. doi: 10.1038/s41598-017-08835-9 PMID: 28831065
  111. Martinez-Outschoorn, U.E.; Trimmer, C.; Lin, Z.; Whitaker-Menezes, D.; Chiavarina, B.; Zhou, J.; Wang, C.; Pavlides, S.; Martinez-Cantarin, M.P.; Capozza, F.; Witkiewicz, A.K.; Flomenberg, N.; Howell, A.; Pestell, R.G.; Caro, J.; Lisanti, M.P.; Sotgia, F. Autophagy in cancer associated fibroblasts promotes tumor cell survival. Cell Cycle, 2010, 9(17), 3515-3533. doi: 10.4161/cc.9.17.12928 PMID: 20855962
  112. Trimmer, C.; Sotgia, F.; Whitaker-Menezes, D.; Balliet, R.M.; Eaton, G.; Martinez-Outschoorn, U.E.; Pavlides, S.; Howell, A.; Iozzo, R.V.; Pestell, R.G.; Scherer, P.E.; Capozza, F.; Lisanti, M.P. Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment. Cancer Biol. Ther., 2011, 11(4), 383-394. doi: 10.4161/cbt.11.4.14101 PMID: 21150282
  113. Golden, B.O.; Griess, B.; Mir, S.; Fitzgerald, M.; Kuperwasser, C.; Domann, F.; Teoh-Fitzgerald, M. Extracellular superoxide dismutase inhibits hepatocyte growth factor-mediated breast cancer-fibroblast interactions. Oncotarget, 2017, 8(64), 107390-107408. doi: 10.18632/oncotarget.22379 PMID: 29296173
  114. Abdian, N.; Ghasemi-Dehkordi, P.; Hashemzadeh-Chaleshtori, M.; Ganji-Arjenaki, M.; Doosti, A.; Amiri, B. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). Cell Tissue Bank., 2015, 16(4), 487-495. doi: 10.1007/s10561-015-9494-9 PMID: 25605061
  115. Ma, C.; Bower, K.A.; Chen, G.; Shi, X.; Ke, Z.J.; Luo, J. Interaction between ERK and GSK3beta mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells. J. Biol. Chem., 2008, 283(14), 9248-9256. doi: 10.1074/jbc.M707316200 PMID: 18263590
  116. Wang, Z.; Zheng, R.; Fu, S.; Chen, Y.; Duan, G.; Qin, D.; Liu, G. Role of superoxide anion on the proliferation and c-Ha- ras or p53 expression in prostate cancer cell line PC3. Urol. Res., 1998, 26(5), 349-353. doi: 10.1007/s002400050068 PMID: 9840345
  117. Arnold, R.S.; Shi, J.; Murad, E.; Whalen, A.M.; Sun, C.Q.; Polavarapu, R.; Parthasarathy, S.; Petros, J.A.; Lambeth, J.D. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5550-5555. doi: 10.1073/pnas.101505898 PMID: 11331784
  118. Arbiser, J.L.; Petros, J.; Klafter, R.; Govindajaran, B.; McLaughlin, E.R.; Brown, L.F.; Cohen, C.; Moses, M.; Kilroy, S.; Arnold, R.S.; Lambeth, J.D. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 715-720. doi: 10.1073/pnas.022630199 PMID: 11805326
  119. Kuroki, M.; Voest, E.E.; Amano, S.; Beerepoot, L.V.; Takashima, S.; Tolentino, M.; Kim, R.Y.; Rohan, R.M.; Colby, K.A.; Yeo, K.T.; Adamis, A.P. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J. Clin. Invest., 1996, 98(7), 1667-1675. doi: 10.1172/JCI118962 PMID: 8833917
  120. Maehata, Y.; Ozawa, S.; Kobayashi, K.; Kato, Y.; Yoshino, F.; Miyamoto, C.; Izukuri, K.; Kubota, E.; Hata, R.I.; Lee, M.C.I. Reactive oxygen species (ROS) reduce the expression of BRAK/CXCL14 in human head and neck squamous cell carcinoma cells. Free Radic. Res., 2010, 44(8), 913-924. doi: 10.3109/10715762.2010.490836 PMID: 20815772
  121. Kang, D.H.; Lee, D.J.; Lee, K.W.; Park, Y.S.; Lee, J.Y.; Lee, S.H.; Koh, Y.J.; Koh, G.Y.; Choi, C.; Yu, D.Y.; Kim, J.; Kang, S.W. Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Mol. Cell, 2011, 44(4), 545-558. doi: 10.1016/j.molcel.2011.08.040 PMID: 22099303
  122. Pez, F.; Dayan, F.; Durivault, J.; Kaniewski, B.; Aimond, G.; Le Provost, G.S.; Deux, B.; Clézardin, P.; Sommer, P.; Pouysségur, J.; Reynaud, C. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res., 2011, 71(5), 1647-1657. doi: 10.1158/0008-5472.CAN-10-1516 PMID: 21239473
  123. Payne, S.L.; Fogelgren, B.; Hess, A.R.; Seftor, E.A.; Wiley, E.L.; Fong, S.F.T.; Csiszar, K.; Hendrix, M.J.C.; Kirschmann, D.A. Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res., 2005, 65(24), 11429-11436. doi: 10.1158/0008-5472.CAN-05-1274 PMID: 16357151
  124. Milla Sanabria, L.; Rodríguez, M.E.; Cogno, I.S.; Rumie Vittar, N.B.; Pansa, M.F.; Lamberti, M.J.; Rivarola, V.A. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim. Biophys. Acta, 2013, 1835(1), 36-45. PMID: 23046998
  125. Burlaka, A.P.; Ganusevich, I.I.; Lozovska, Y.V.; Lukianova, N.Y.; Chekhun, V.F. Redox-regulation of gelatinases during growth of cisplatin-sensitive and resistant Guerin carcinoma. Exp. Oncol., 2015, 37(1), 36-39. doi: 10.31768/2312-8852.2015.37(1):36-39 PMID: 25804229
  126. Ma, Z.; Liu, X.; Zhang, Q.; Yu, Z.; Gao, D. Carvedilol suppresses malignant proliferation of mammary epithelial cells through inhibition of the ROS-mediated PI3K/AKT signaling pathway. Oncol. Rep., 2019, 41(2), 811-818. PMID: 30483797
  127. Wang, Y.J.; Yang, M.C.; Pan, M.H. Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage. Food Chem. Toxicol., 2008, 46(12), 3739-3748. doi: 10.1016/j.fct.2008.09.064 PMID: 18951944
  128. Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L., Jr; Valanis, B.; Williams, J.H., Jr; Barnhart, S.; Hammar, S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med., 1996, 334(18), 1150-1155. doi: 10.1056/NEJM199605023341802 PMID: 8602180
  129. Klein, E.A.; Thompson, I.M., Jr; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; Karp, D.D.; Lieber, M.M.; Walther, P.J.; Klotz, L.; Parsons, J.K.; Chin, J.L.; Darke, A.K.; Lippman, S.M.; Goodman, G.E.; Meyskens, F.L., Jr; Baker, L.H. Vitamin E and the risk of prostate cancer. JAMA, 2011, 306(14), 1549-1556. doi: 10.1001/jama.2011.1437 PMID: 21990298
  130. Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med., 1994, 330(15), 1029-1035. doi: 10.1056/NEJM199404143301501 PMID: 8127329
  131. Singh, A.; Boldin-Adamsky, S.; Thimmulappa, R.K.; Rath, S.K.; Ashush, H.; Coulter, J.; Blackford, A.; Goodman, S.N.; Bunz, F.; Watson, W.H.; Gabrielson, E.; Feinstein, E.; Biswal, S. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res., 2008, 68(19), 7975-7984. doi: 10.1158/0008-5472.CAN-08-1401 PMID: 18829555
  132. DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; Scrimieri, F.; Winter, J.M.; Hruban, R.H.; Iacobuzio-Donahue, C.; Kern, S.E.; Blair, I.A.; Tuveson, D.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475(7354), 106-109. doi: 10.1038/nature10189 PMID: 21734707
  133. Bauer, A.K.; Cho, H.Y.; Miller-DeGraff, L.; Walker, C.; Helms, K.; Fostel, J.; Yamamoto, M.; Kleeberger, S.R. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice. PLoS One, 2011, 6(10), e26590. doi: 10.1371/journal.pone.0026590 PMID: 22039513
  134. Watson, J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol., 2013, 3(1), 120144. doi: 10.1098/rsob.120144 PMID: 23303309
  135. Guo, L.; Tan, K.; Wang, H.; Zhang, X. Pterostilbene inhibits hepatocellular carcinoma through p53/SOD2/ROS-mediated mitochondrial apoptosis. Oncol. Rep., 2016, 36(6), 3233-3240. doi: 10.3892/or.2016.5151 PMID: 27748853
  136. Zou, J.; Zhang, Y.; Sun, J.; Wang, X.; Tu, H.; Geng, S.; Liu, R.; Chen, Y.; Bi, Z. Deoxyelephantopin induces reactive oxygen species-mediated apoptosis and autophagy in human osteosarcoma cells. Cell. Physiol. Biochem., 2017, 42(5), 1812-1821. doi: 10.1159/000479537 PMID: 28750364
  137. Renaudin, X. Reactive oxygen species and DNA damage response in cancer. Int. Rev. Cell Mol. Biol., 2021, 364, 139-161. doi: 10.1016/bs.ircmb.2021.04.001 PMID: 34507782
  138. Jackson, A.L.; Loeb, L.A. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res., 2001, 477(1-2), 7-21. doi: 10.1016/S0027-5107(01)00091-4 PMID: 11376682
  139. Xia, X.; Yang, X.; Huang, P.; Yan, D. ROS-responsive nanoparticles formed from RGD–epothilone b conjugate for targeted cancer therapy. ACS Appl. Mater. Interfaces, 2020, 12(16), 18301-18308. doi: 10.1021/acsami.0c00650 PMID: 32242653
  140. Zhang, Z.; Lu, Z.; Yuan, Q.; Zhang, C.; Tang, Y. ROS-Responsive and active targeted drug delivery based on conjugated polymer nanoparticles for synergistic chemo-/photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(9), 2240-2248. doi: 10.1039/D0TB02996C PMID: 33596297
  141. Yun, K.; Guo, J.; Zhu, R.; Wang, T.; Zhang, X.; Pan, H.; Pan, W. Design of ROS-responsive hyaluronic acid–methotrexate conjugates for synergistic chemo-photothermal therapy for cancer. Mol. Pharm., 2022, 19(9), 3323-3335. doi: 10.1021/acs.molpharmaceut.2c00472 PMID: 35900105
  142. Mokwena, M.G.; Kruger, C.A.; Ivan, M.T.; Heidi, A. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagn. Photodyn. Ther., 2018, 22, 147-154. doi: 10.1016/j.pdpdt.2018.03.006 PMID: 29588217
  143. Li, S.Y.; Cheng, H.; Qiu, W.X.; Zhang, L.; Wan, S.S.; Zeng, J.Y.; Zhang, X.Z. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials, 2017, 142, 149-161. doi: 10.1016/j.biomaterials.2017.07.026 PMID: 28735175
  144. Baldea, I.; Giurgiu, L.; Teacoe, I.D.; Olteanu, D.E.; Olteanu, F.C.; Clichici, S.; Filip, G.A. Photodynamic therapy in melanoma - where do we stand? Curr. Med. Chem., 2019, 25(40), 5540-5563. doi: 10.2174/0929867325666171226115626 PMID: 29278205
  145. Ming, H.; Li, B.; Tian, H.; Zhou, L.; Jiang, J.; Zhang, T.; Qiao, L.; Wu, P.; Nice, E.C.; Zhang, W.; He, W.; Huang, C.; Zhang, H. A minimalist and robust chemo-photothermal nanoplatform capable of augmenting autophagy-modulated immune response against breast cancer. Mater. Today Bio, 2022, 15, 100289. doi: 10.1016/j.mtbio.2022.100289 PMID: 35634171
  146. Wang, C.; Wang, J.; Zhang, X.; Yu, S.; Wen, D.; Hu, Q.; Ye, Y.; Bomba, H.; Hu, X.; Liu, Z.; Dotti, G.; Gu, Z. In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med., 2018, 10(429), eaan3682. doi: 10.1126/scitranslmed.aan3682 PMID: 29467299
  147. Paduch, R.; Kandefer-Szerszeń, M.; Piersiak, T. The importance of release of proinflammatory cytokines, ROS, and NO in different stages of colon carcinoma growth and metastasis after treatment with cytotoxic drugs. Oncol. Res., 2009, 18(9), 419-436. doi: 10.3727/096504010X12671222663593 PMID: 20524400
  148. Jezierska-Drutel, A.; Attaran, S.; Hopkins, B.L.; Skoko, J.J.; Rosenzweig, S.A.; Neumann, C.A. The peroxidase PRDX1 inhibits the activated phenotype in mammary fibroblasts through regulating c-Jun N-terminal kinases. BMC Cancer, 2019, 19(1), 812. doi: 10.1186/s12885-019-6031-4 PMID: 31419957
  149. Letchoumy, P.V.; Chandra Mohan, K.V.P.; Stegeman, J.J.; Gelboin, H.V.; Hara, Y.; Nagini, S. in vitro antioxidative potential of lactoferrin and black tea polyphenols and protective effects in vivo on carcinogen activation, DNA damage, proliferation, invasion, and angiogenesis during experimental oral carcinogenesis. Oncol. Res., 2008, 17(5), 193-203. doi: 10.3727/096504008786111365 PMID: 18980016
  150. Horinaka, A.; Sakurai, D.; Ihara, F.; Makita, Y.; Kunii, N.; Motohashi, S.; Nakayama, T.; Okamoto, Y. Invariant NKT cells are resistant to circulating CD15+ myeloid-derived suppressor cells in patients with head and neck cancer. Cancer Sci., 2016, 107(3), 207-216. doi: 10.1111/cas.12866 PMID: 26679292
  151. Lasoudris, F.; Cousin, C.; Prevost-Blondel, A.; Martin-Garcia, N.; Abd-Alsamad, I.; Ortonne, N.; Farcet, J.P.; Castellano, F.; Molinier-Frenkel, V. IL4I1: an inhibitor of the CD8+ antitumor T-cell response in vivo. Eur. J. Immunol., 2011, 41(6), 1629-1638. doi: 10.1002/eji.201041119 PMID: 21469114
  152. Otsuji, M.; Kimura, Y.; Aoe, T.; Okamoto, Y.; Saito, T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific T-cell responses. Proc. Natl. Acad. Sci. USA, 1996, 93(23), 13119-13124. doi: 10.1073/pnas.93.23.13119 PMID: 8917554
  153. Kwon, D.; Choi, I.H. Hydrogen peroxide upregulates TNF-related apoptosis-inducing ligand (TRAIL) expression in human astroglial cells, and augments apoptosis of T cells. Yonsei Med. J., 2006, 47(4), 551-557. doi: 10.3349/ymj.2006.47.4.551 PMID: 16941746
  154. Kitamura, T.; Doughty-Shenton, D.; Cassetta, L.; Fragkogianni, S.; Brownlie, D.; Kato, Y.; Carragher, N.; Pollard, J.W. Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer. Front. Immunol., 2018, 8, 2004. doi: 10.3389/fimmu.2017.02004 PMID: 29387063
  155. Qiu, J.; Zhang, T.; Zhu, X.; Yang, C.; Wang, Y.; Zhou, N.; Ju, B.; Zhou, T.; Deng, G.; Qiu, C. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int. J. Mol. Sci., 2019, 21(1), 131. doi: 10.3390/ijms21010131 PMID: 31878204
  156. Si, L.; Fu, J.; Liu, W.; Hayashi, T.; Nie, Y.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Onodera, S.; Ikejima, T. Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol. Cell. Biochem., 2020, 463(1-2), 189-201. doi: 10.1007/s11010-019-03640-6 PMID: 31612353
  157. Lin, H.; Liu, X.; Yu, J.; Hua, F.; Hu, Z. Antioxidant N-acetylcysteine attenuates hepatocarcinogenesis by inhibiting ROS/ER stress in TLR2 deficient mouse. PLoS One, 2013, 8(10), e74130. doi: 10.1371/journal.pone.0074130 PMID: 24098333
  158. Nishikawa, M.; Hashida, M.; Takakura, Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv. Drug Deliv. Rev., 2009, 61(4), 319-326. doi: 10.1016/j.addr.2009.01.001 PMID: 19385054
  159. Zhang, Q.; Huang, Y.; Yang, R.; Mu, J.; Zhou, Z.; Sun, M. Poly-antioxidants for enhanced anti-miR-155 delivery and synergistic therapy of metastatic breast cancer. Biomater. Sci., 2022, 10(13), 3637-3646. doi: 10.1039/D1BM02022F PMID: 35648436
  160. Travassos, I.O.; Mello-Andrade, F.; Caldeira, R.P.; Pires, W.C.; da Silva, P.F.F.; Correa, R.S.; Teixeira, T.; Martins-Oliveira, A.; Batista, A.A.; de Silveira-Lacerda, E.P. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J. Biol. Inorg. Chem., 2021, 26(4), 385-401. doi: 10.1007/s00775-021-01862-y PMID: 33837856
  161. Factor, V.M.; Laskowska, D.; Jensen, M.R.; Woitach, J.T.; Popescu, N.C.; Thorgeirsson, S.S. Vitamin E reduces chromosomal damage and inhibits hepatic tumor formation in a transgenic mouse model. Proc. Natl. Acad. Sci. USA, 2000, 97(5), 2196-2201. doi: 10.1073/pnas.040428797 PMID: 10681450
  162. Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother., 2004, 58(2), 100-110. doi: 10.1016/j.biopha.2003.12.006 PMID: 14992791
  163. Nishikawa, M.; Hyoudou, K.; Kobayashi, Y.; Umeyama, Y.; Takakura, Y.; Hashida, M. Inhibition of metastatic tumor growth by targeted delivery of antioxidant enzymes. J. Control. Release, 2005, 109(1-3), 101-107. doi: 10.1016/j.jconrel.2005.09.017 PMID: 16256238
  164. Xu, G.; Yu, B.; Wang, R.; Jiang, J.; Wen, F.; Shi, X. Astragalin flavonoid inhibits proliferation in human lung carcinoma cells mediated via induction of caspase-dependent intrinsic pathway, ROS production, cell migration and invasion inhibition and targeting JAK/STAT signalling pathway. Cell. Mol. Biol., 2021, 67(2), 44-49. doi: 10.14715/cmb/2021.67.2.7 PMID: 34817340
  165. Phan, T.N.; Kim, O.; Ha, M.T.; Hwangbo, C.; Min, B.S.; Lee, J.H. Albanol B from mulberries exerts anti-cancer effect through mitochondria ROS production in lung cancer cells and suppresses in vivo tumor growth. Int. J. Mol. Sci., 2020, 21(24), 9502. doi: 10.3390/ijms21249502 PMID: 33327489
  166. Jia, X.B.; Zhang, Q.; Xu, L.; Yao, W.J.; Wei, L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol. Res., 2021, 54(1), 7. doi: 10.1186/s40659-021-00330-w PMID: 33653412
  167. Qu, X.; Sheng, J.; Shen, L.; Su, J.; Xu, Y.; Xie, Q.; Wu, Y.; Zhang, X.; Sun, L. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS. PLoS One, 2017, 12(3), e0173712. doi: 10.1371/journal.pone.0173712 PMID: 28301876
  168. Schluterman, M.K.; Chapman, S.L.; Korpanty, G.; Ozumi, K.; Fukai, T.; Yanagisawa, H.; Brekken, R.A. Loss of fibulin-5 binding to β1 integrins inhibits tumor growth by increasing the level of ROS. Dis. Model. Mech., 2010, 3(5-6), 333-342. doi: 10.1242/dmm.003707 PMID: 20197418
  169. Li, D.; Kou, Y.; Gao, Y.; Liu, S.; Yang, P.; Hasegawa, T.; Su, R.; Guo, J.; Li, M. Oxaliplatin induces the PARP1-mediated parthanatos in oral squamous cell carcinoma by increasing production of ROS. Aging (Albany NY), 2021, 13(3), 4242-4257. doi: 10.18632/aging.202386 PMID: 33495407
  170. Zhou, L.; Yang, C.; Zhong, W.; Wang, Q.; Zhang, D.; Zhang, J.; Xie, S.; Xu, M. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells. Biochem. Pharmacol., 2021, 193, 114813. doi: 10.1016/j.bcp.2021.114813 PMID: 34673014
  171. Chen, Y.C.; Shen, S.C.; Chow, J.M.; Ko, C.; Tseng, S.W. Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int. J. Oncol., 2004, 25(3), 661-670. doi: 10.3892/ijo.25.3.661 PMID: 15289867
  172. Li, Y.; Zhou, Y.; Wang, M.; Lin, X.; Zhang, Y.; Laurent, I.; Zhong, Y.; Li, J. Ampelopsin inhibits breast cancer cell growth through mitochondrial apoptosis pathway. Biol. Pharm. Bull., 2021, 44(11), 1738-1745. doi: 10.1248/bpb.b21-00470 PMID: 34470980
  173. Alam, M.; Hasan, G.M.; Ansari, M.M.; Sharma, R.; Yadav, D.K.; Hassan, M.I. Therapeutic implications and clinical manifestations of thymoquinone. Phytochemistry, 2022, 200, 113213. doi: 10.1016/j.phytochem.2022.113213 PMID: 35472482
  174. Ko, C.H.; Shen, S.C.; Yang, L.Y.; Lin, C.W.; Chen, Y.C. Gossypol reduction of tumor growth through ROS-dependent mitochondria pathway in human colorectal carcinoma cells. Int. J. Cancer, 2007, 121(8), 1670-1679. doi: 10.1002/ijc.22910 PMID: 17597109
  175. Wang, M.; Li, K.; Zou, Z.; Li, L.; Zhu, L.; Wang, Q.; Gao, W.; Wang, Y.; Huang, W.; Liu, R.; Yao, K.; Liu, Q. Piperidine nitroxide Tempol enhances cisplatin-induced apoptosis in ovarian cancer cells. Oncol. Lett., 2018, 16(4), 4847-4854. doi: 10.3892/ol.2018.9289 PMID: 30250550
  176. Zou, Z.W.; Liu, T.; Li, Y.; Chen, P.; Peng, X.; Ma, C.; Zhang, W.J.; Li, P.D. Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biol., 2018, 16, 226-236. doi: 10.1016/j.redox.2018.02.025 PMID: 29525603
  177. Jeon, H.; Jin, Y.; Myung, C.S.; Heo, K.S. Ginsenoside-Rg2 exerts anti-cancer effects through ROS-mediated AMPK activation associated mitochondrial damage and oxidation in MCF-7 cells. Arch. Pharm. Res., 2021, 44(7), 702-712. doi: 10.1007/s12272-021-01345-3 PMID: 34302638
  178. Biswas, S.; Zhao, X.; Mone, A.P.; Mo, X.; Vargo, M.; Jarjoura, D.; Byrd, J.C.; Muthusamy, N. Arsenic trioxide and ascorbic acid demonstrate promising activity against primary human CLL cells in vitro. Leuk. Res., 2010, 34(7), 925-931. doi: 10.1016/j.leukres.2010.01.020 PMID: 20171736

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers