Biomarkers for Diagnosing and Treating Fetal Growth Restriction


Дәйексөз келтіру

Толық мәтін

Аннотация

Fetal growth restriction (FGR), a common obstetric complication, significantly increases the risks of fetal intrauterine death and neonatal death, and fetuses with growth restriction are prone to cognitive retardation and various diseases in adulthood. The early determination of FGR risk is contentious in clinical research, and few indicators are available for the early prediction and diagnosis of FGR. This review focuses on the prediction and diagnosis of FGR, as well as the significance of biomarkers for FGR, such as those related to gene regulation, apoptosis, mitochondrial function, and inflammation. Although many of these biomarkers are still in the early stages of research, they are good predictors of the threats to fetal health and safety, and they provide new insights for the treatment of FGR.

Авторлар туралы

Mengyao Wu

Hubei Key Laboratory of Natural Products Research and Development, Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, College of Biology Pharmacy, China Three Gorges University

Email: info@benthamscience.net

Junyu He

Basic Medical College of China Three Gorges University, China Three Gorges University

Email: info@benthamscience.net

Yetao Chen

Hubei Key Laboratory of Natural Products Research and Development, Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, College of Biology Pharmacy, China Three Gorges University

Email: info@benthamscience.net

Fangzhu Wan

Hubei Key Laboratory of Natural Products Research and Development, Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, College of Biology Pharmacy, China Three Gorges University

Email: info@benthamscience.net

Hongbo Tang

, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital

Email: info@benthamscience.net

Chenghong Yin

, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital

Email: info@benthamscience.net

Haibo He

Hubei Key Laboratory of Natural Products Research and Development, Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, College of Biology Pharmacy, China Three Gorges University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Huifan Yu

College of Biology and Pharmacy, Hubei University of Medicine

Email: info@benthamscience.net

Chengfu Yuan

Basic Medical College of China Three Gorges University, China Three Gorges University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Blencowe, H.; Krasevec, J.; de Onis, M.; Black, R.E.; An, X.; Stevens, G.A.; Borghi, E.; Hayashi, C.; Estevez, D.; Cegolon, L.; Shiekh, S.; Ponce Hardy, V.; Lawn, J.E.; Cousens, S. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: A systematic analysis. Lancet Glob. Health, 2019, 7(7), e849-e860. doi: 10.1016/S2214-109X(18)30565-5 PMID: 31103470
  2. Sehgal, A.; Alexander, B.T.; Morrison, J.L.; South, A.M. Fetal growth restriction and hypertension in the offspring: mechanistic links and therapeutic directions. J. Pediatr., 2020, 224, 115-123.e2. doi: 10.1016/j.jpeds.2020.05.028 PMID: 32450071
  3. Sharma, A.; Sah, N.; Kannan, S.; Kannan, R.M. Targeted drug delivery for maternal and perinatal health: Challenges and opportunities. Adv. Drug Deliv. Rev., 2021, 177, 113950. doi: 10.1016/j.addr.2021.113950 PMID: 34454979
  4. Damron, D.P. Definition of fetal growth restriction. Am. J. Obstet. Gynecol., 2021, 224(2), 242. doi: 10.1016/j.ajog.2020.09.031 PMID: 32980361
  5. Roeckner, J.T.; Pressman, K.; Odibo, L.; Duncan, J.R.; Odibo, A.O. Outcome-based comparison of SMFM and ISUOG definitions of fetal growth restriction. Ultrasound Obstet. Gynecol., 2021, 57(6), 925-930. doi: 10.1002/uog.23638 PMID: 33798274
  6. Aplin, J.D.; Myers, J.E.; Timms, K.; Westwood, M. Tracking placental development in health and disease. Nat. Rev. Endocrinol., 2020, 16(9), 479-494. doi: 10.1038/s41574-020-0372-6 PMID: 32601352
  7. Schoots, M.H.; Bourgonje, M.F.; Bourgonje, A.R.; Prins, J.R.; van Hoorn, E.G.M.; Abdulle, A.E.; Muller Kobold, A.C.; van der Heide, M.; Hillebrands, J.L.; van Goor, H.; Gordijn, S.J. Oxidative stress biomarkers in fetal growth restriction with and without preeclampsia. Placenta, 2021, 115, 87-96. doi: 10.1016/j.placenta.2021.09.013 PMID: 34583270
  8. Bougea, A. New markers in Parkinson’s disease. Adv. Clin. Chem., 2020, 96, 137-178. doi: 10.1016/bs.acc.2019.12.001 PMID: 32362317
  9. Silver, R.M.; Blue, N.R. Delivery before 39 weeks' gestation for suspected fetal growth restriction: More harm than good?. JAMA, 2021, 326(2), 135-136. doi: 10.1001/jama.2021.8381
  10. Lees, C.C.; Romero, R.; Stampalija, T.; Dall’Asta, A.; DeVore, G.R.; Prefumo, F.; Frusca, T.; Visser, G.H.A.; Hobbins, J.C.; Baschat, A.A.; Bilardo, C.M.; Galan, H.L.; Campbell, S.; Maulik, D.; Figueras, F.; Lee, W.; Unterscheider, J.; Valensise, H.; Da Silva Costa, F.; Salomon, L.J.; Poon, L.C.; Ferrazzi, E.; Mari, G.; Rizzo, G.; Kingdom, J.C.; Kiserud, T.; Hecher, K. The diagnosis and management of suspected fetal growth restriction: An evidence-based approach. Am. J. Obstet. Gynecol., 2022, 226(3), 366-378. doi: 10.1016/j.ajog.2021.11.1357 PMID: 35026129
  11. Nowakowska, B.A.; Pankiewicz, K.; Nowacka, U.; Niemiec, M.; Kozłowski, S.; Issat, T. Genetic background of fetal growth restriction. Int. J. Mol. Sci., 2021, 23(1), 36. doi: 10.3390/ijms23010036 PMID: 35008459
  12. Zhang, Q.; Zhang, C.; Wang, Y.; Zhao, J.; Li, H.; Shen, Q.; Wang, X.; Ni, M.; Ouyang, F.; Vinturache, A.; Chen, H.; Liu, Z. Relationship of maternal obesity and vitamin D concentrations with fetal growth in early pregnancy. Eur. J. Nutr., 2022, 61(2), 915-924. doi: 10.1007/s00394-021-02695-w PMID: 34657185
  13. Street, M.E.; Bernasconi, S. Endocrine-disrupting chemicals in human fetal growth. Int. J. Mol. Sci., 2020, 21(4), 1430. doi: 10.3390/ijms21041430 PMID: 32093249
  14. Kojima, J.; Ono, M.; Kuji, N.; Nishi, H. Human chorionic villous differentiation and placental development. Int. J. Mol. Sci., 2022, 23(14), 8003. doi: 10.3390/ijms23148003 PMID: 35887349
  15. Sheridan, M.A.; Fernando, R.C.; Gardner, L.; Hollinshead, M.S.; Burton, G.J.; Moffett, A.; Turco, M.Y. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat. Protoc., 2020, 15(10), 3441-3463. doi: 10.1038/s41596-020-0381-x PMID: 32908314
  16. Ortega, M.A.; Fraile-Martínez, O.; García-Montero, C.; Sáez, M.A.; Álvarez-Mon, M.A.; Torres-Carranza, D.; Álvarez-Mon, M.; Bujan, J.; García-Honduvilla, N.; Bravo, C.; Guijarro, L.G.; De León-Luis, J.A. The pivotal role of the placenta in normal and pathological pregnancies: A focus on preeclampsia, fetal growth restriction, and maternal chronic venous disease. Cells, 2022, 11(3), 568. doi: 10.3390/cells11030568 PMID: 35159377
  17. Sun, C.; Groom, K.M.; Oyston, C.; Chamley, L.W.; Clark, A.R.; James, J.L. The placenta in fetal growth restriction: What is going wrong? Placenta, 2020, 96, 10-18. doi: 10.1016/j.placenta.2020.05.003 PMID: 32421528
  18. Zhang, l.; Qi, H.B. Interpretation and comparison of fetal growth restriction guidelines in the United Kingdom, the United States, Canada and France. Chin. Electr. J. Obstetri. first Aid., 2018, 7(6), 35-39.
  19. Groom, K.M.; David, A.L. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am. J. Obstet. Gynecol., 2018, 218(2), S829-S840. doi: 10.1016/j.ajog.2017.11.565 PMID: 29229321
  20. Terstappen, F.; Richter, A.E.; Lely, A.T.; Hoebeek, F.E.; Elvan-Taspinar, A.; Bos, A.F.; Ganzevoort, W.; Pels, A.; Lemmers, P.M.; Kooi, E.M.W. Prenatal use of sildenafil in fetal growth restriction and its effect on neonatal tissue oxygenation—a retrospective analysis of hemodynamic data from participants of the dutch sTRIDER trial. Front Pediatr., 2020, 8, 595693. doi: 10.3389/fped.2020.595693 PMID: 33344386
  21. Karaman, S.; Paavonsalo, S.; Heinolainen, K.; Lackman, M.H.; Ranta, A.; Hemanthakumar, K.A.; Kubota, Y.; Alitalo, K. Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J. Exp. Med., 2022, 219(3), e20210565. doi: 10.1084/jem.20210565 PMID: 35050301
  22. Yan, S.; Hu, J.; Li, J.; Wang, P.; Wang, Y.; Wang, Z. PRMT4 drives post-ischemic angiogenesis via YB1/VEGF signaling. J. Mol. Med., 2021, 99(7), 993-1008. doi: 10.1007/s00109-021-02067-1 PMID: 33822264
  23. Bolatai, A.; He, Y.; Wu, N. Vascular endothelial growth factor and its receptors regulation in gestational diabetes mellitus and eclampsia. J. Transl. Med., 2022, 20(1), 400. doi: 10.1186/s12967-022-03603-4 PMID: 36064413
  24. Huang, Z.; Huang, S.; Song, T.; Yin, Y.; Tan, C. Placental angiogenesis in mammals: A review of the regulatory effects of signaling pathways and functional nutrients. Adv. Nutr., 2021, 12(6), 2415-2434. doi: 10.1093/advances/nmab070 PMID: 34167152
  25. Atia, T.A. Placental apoptosis in recurrent miscarriage. Kaohsiung J. Med. Sci., 2017, 33(9), 449-452. doi: 10.1016/j.kjms.2017.06.012 PMID: 28865602
  26. Liu, W.; Li, S.; Zhou, Q.; Fu, Z.; Liu, P.; Cao, X.; Xi, S. 2, 2′, 4, 4′-tetrabromodiphenyl ether induces placental toxicity via activation of p38 MAPK signaling pathway in vivo and in vitro. Ecotoxicol. Environ. Saf., 2022, 244, 114034. doi: 10.1016/j.ecoenv.2022.114034 PMID: 36063615
  27. Bao, J.; Zou, Y.; Liu, Y.; Yuan, L.; Garfield, R.E.; Liu, H. Nicotine protects fetus against LPS-induced fetal growth restriction through ameliorating placental inflammation and vascular development in late pregnancy in rats. Biosci. Rep., 2019, 39(7), BSR20190386. doi: 10.1042/BSR20190386 PMID: 31209145
  28. Pei, J.; Li, Y.; Min, Z.; Dong, Q.; Ruan, J.; Wu, J.; Hua, X. MiR-590-3p and its targets VEGF, PIGF, and MMP9 in early, middle, and late pregnancy: Their longitudinal changes and correlations with risk of fetal growth restriction. Ir. J. Med. Sci., 2022, 191(3), 1251-1257. doi: 10.1007/s11845-021-02664-6 PMID: 34159524
  29. Shi, X.T.; Zhu, H.L.; Xu, X.F.; Xiong, Y.W.; Dai, L.M.; Zhou, G.X.; Liu, W.B.; Zhang, Y.F.; Xu, D.X.; Wang, H. Gestational cadmium exposure impairs placental angiogenesis via activating GC/GR signaling. Ecotoxicol. Environ. Saf., 2021, 224, 112632. doi: 10.1016/j.ecoenv.2021.112632 PMID: 34411824
  30. Rossi, C.; Lees, M.; Mehta, V.; Heikura, T.; Martin, J.; Zachary, I.; Spencer, R.; Peebles, D.M.; Shaw, R.; Karhinen, M.; Yla-Herttuala, S.; David, A.L. Comparison of efficiency and function of vascular endothelial growth factor adenovirus vectors in endothelial cells for gene therapy of placental insufficiency. Hum. Gene Ther., 2020, 31(21-22), 1190-1202. doi: 10.1089/hum.2020.006 PMID: 32988220
  31. Porter, B.; Maulik, D.; Babbar, S.; Schrufer-Poland, T.; Allsworth, J.; Ye, S.Q.; Heruth, D.P.; Lei, T. Maternal plasma soluble neuropilin-1 is downregulated in fetal growth restriction complicated by abnormal umbilical artery Doppler: A pilot study. Ultrasound Obstet. Gynecol., 2021, 58(5), 716-721. doi: 10.1002/uog.23605 PMID: 33533520
  32. Kim, D.K.; Jeong, J.; Lee, D.S.; Hyeon, D.Y.; Park, G.W.; Jeon, S.; Lee, K.B.; Jang, J.Y.; Hwang, D.; Kim, H.M.; Jung, K. PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141+ cancer-associated fibroblasts in pancreatic cancer. Nat. Commun., 2022, 13(1), 6292. doi: 10.1038/s41467-022-33991-6 PMID: 36272973
  33. Manna, C.; Lacconi, V.; Rizzo, G.; De Lorenzo, A.; Massimiani, M. Placental dysfunction in assisted reproductive pregnancies: perinatal, neonatal and adult life outcomes. Int. J. Mol. Sci., 2022, 23(2), 659. doi: 10.3390/ijms23020659 PMID: 35054845
  34. Zuo, Q.; Zou, Y.; Huang, S.; Wang, T.; Xu, Y.; Zhang, T.; Zhang, M.; Ge, Z.; Jiang, Z. Aspirin reduces sFlt-1-mediated apoptosis of trophoblast cells in preeclampsia. Mol. Hum. Reprod., 2021, 27(1), gaaa089. doi: 10.1093/molehr/gaaa089 PMID: 33493277
  35. Matsui, M.; Onoue, K.; Saito, Y. sFlt-1 in chronic kidney disease: Friend or foe? Int. J. Mol. Sci., 2022, 23(22), 14187. doi: 10.3390/ijms232214187 PMID: 36430665
  36. Stepan, H.; Hund, M.; Andraczek, T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia. Hypertension, 2020, 75(4), 918-926. doi: 10.1161/HYPERTENSIONAHA.119.13763 PMID: 32063058
  37. Lecarpentier, E.; Zsengellér, Z.K.; Salahuddin, S.; Covarrubias, A.E.; Lo, A.; Haddad, B.; Thadhani, R.I.; Karumanchi, S.A. Total versus free placental growth factor levels in the pathogenesis of preeclampsia. Hypertension, 2020, 76(3), 875-883. doi: 10.1161/HYPERTENSIONAHA.120.15338 PMID: 32654553
  38. Hendrix, M.L.E.; Bons, J.A.P.; Snellings, R.R.G.; Bekers, O.; van Kuijk, S.M.J.; Spaanderman, M.E.A.; Al-Nasiry, S. Can fetal growth velocity and first trimester maternal biomarkers improve the prediction of small-for-gestational age and adverse neonatal outcome? Fetal Diagn. Ther., 2019, 46(4), 274-284. doi: 10.1159/000499580 PMID: 31067557
  39. Gaccioli, F.; Aye, I.L.M.H.; Sovio, U.; Charnock-Jones, D.S.; Smith, G.C.S. Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers. Am. J. Obstet. Gynecol., 2018, 218(2), S725-S737. doi: 10.1016/j.ajog.2017.12.002 PMID: 29275822
  40. Garcia-Manau, P.; Mendoza, M.; Bonacina, E.; Garrido-Gimenez, C.; Fernandez-Oliva, A.; Zanini, J.; Catalan, M.; Tur, H.; Serrano, B.; Carreras, E. Soluble fms-like tyrosine kinase to placental growth factor ratio in different stages of early-onset fetal growth restriction and small for gestational age. Acta Obstet. Gynecol. Scand., 2021, 100(1), 119-128. doi: 10.1111/aogs.13978 PMID: 32860218
  41. Tan, L.; Chen, Z.; Sun, F.; Zhou, Z.; Zhang, B.; Wang, B.; Chen, J.; Li, M.; Xiao, T.; Neuman, R.I.; Niu, J.; Verdonk, K.; Lu, X.; Zhang, J.V.; Danser, A.H.J.; Yang, Q.; Fan, X. Placental trophoblast-specific overexpression of chemerin induces preeclampsia-like symptoms. Clin. Sci., 2022, 136(4), 257-272. doi: 10.1042/CS20210989 PMID: 35103285
  42. Addis, D.R.; Lambert, J.A.; Ren, C.; Doran, S.; Aggarwal, S.; Jilling, T.; Matalon, S. Vascular endothelial growth factor-121 administration mitigates halogen inhalation-induced pulmonary injury and fetal growth restriction in pregnant mice. J. Am. Heart Assoc., 2020, 9(3), e013238. doi: 10.1161/JAHA.119.013238 PMID: 32009528
  43. Villalaín, C.; Herraiz, I.; Valle, L.; Mendoza, M.; Delgado, J.L.; Vázquez-Fernández, M.; Martínez-Uriarte, J.; Melchor, Í.; Caamiña, S.; Fernández-Oliva, A.; Villar, O.P.; Galindo, A. Maternal and perinatal outcomes associated with extremely high values for the sFlt-1 (Soluble fms-Like Tyrosine Kinase 1)/PlGF (Placental Growth Factor) Ratio. J. Am. Heart Assoc., 2020, 9(7), e015548. doi: 10.1161/JAHA.119.015548 PMID: 32248765
  44. Gaccioli, F.; Sovio, U.; Cook, E.; Hund, M.; Charnock-Jones, D.S.; Smith, G.C.S. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women: A prospective cohort study. Lancet Child Adolesc. Health, 2018, 2(8), 569-581. doi: 10.1016/S2352-4642(18)30129-9 PMID: 30119716
  45. Bonacina, E.; Mendoza, M.; Farràs, A.; Garcia-Manau, P.; Serrano, B.; Hurtado, I.; Ferrer-Oliveras, R.; Illan, L.; Armengol-Alsina, M.; Carreras, E. Angiogenic factors for planning fetal surveillance in fetal growth restriction and small-for-gestational-age fetuses: A prospective observational study. BJOG, 2022, 129(11), 1870-1877. doi: 10.1111/1471-0528.17151 PMID: 35303394
  46. Kluivers, A.C.M.; Biesbroek, A.; Visser, W.; Saleh, L.; Russcher, H.; Danser, A.H.J.; Neuman, R.I. Angiogenic imbalance in pre-eclampsia and fetal growth restriction: enhanced soluble fms-like tyrosine kinase-1 binding or diminished production of placental growth factor? Ultrasound Obstet. Gynecol., 2023, 61(4), 466-473. doi: 10.1002/uog.26088 PMID: 36191149
  47. Gao, W.; Wang, Y.; Yu, S.; Wang, Z.; Ma, T.; Chan, A.M.L.; Chiu, P.K.F.; Ng, C.F.; Wu, D.; Chan, F.L. Endothelial nitric oxide synthase (eNOS)-NO signaling axis functions to promote the growth of prostate cancer stem-like cells. Stem Cell Res. Ther., 2022, 13(1), 188. doi: 10.1186/s13287-022-02864-6 PMID: 35526071
  48. Sutton, E.F.; Gemmel, M.; Powers, R.W. Nitric oxide signaling in pregnancy and preeclampsia. Nitric Oxide, 2020, 95, 55-62. doi: 10.1016/j.niox.2019.11.006 PMID: 31852621
  49. Dai, Y.; Zhang, J.; Liu, R.; Xu, N.; Yan, S.B.; Chen, Y.; Li, T.H. The role and mechanism of asymmetric dimethylarginine in fetal growth restriction via interference with endothelial function and angiogenesis. J. Assist. Reprod. Genet., 2020, 37(5), 1083-1095. doi: 10.1007/s10815-020-01750-5 PMID: 32215825
  50. Tropea, T.; Renshall, L.J.; Nihlen, C.; Weitzberg, E.; Lundberg, J.O.; David, A.L.; Tsatsaris, V.; Stuckey, D.J.; Wareing, M.; Greenwood, S.L.; Sibley, C.P.; Cottrell, E.C. Beetroot juice lowers blood pressure and improves endothelial function in pregnant eNOS −/− mice: importance of nitrate-independent effects. J. Physiol., 2020, 598(18), 4079-4092. doi: 10.1113/JP279655 PMID: 32368787
  51. Mukosera, G.T.; Clark, T.C.; Ngo, L.; Liu, T.; Schroeder, H.; Power, G.G.; Yellon, S.M.; Parast, M.M.; Blood, A.B. Nitric oxide metabolism in the human placenta during aberrant maternal inflammation. J. Physiol., 2020, 598(11), 2223-2241. doi: 10.1113/JP279057 PMID: 32118291
  52. George, H.; Steeves, K.L.; Mercer, G.V.; Aghaei, Z.; Schneider, C.M.; Cahill, L.S. Endothelial nitric oxide deficiency results in abnormal placental metabolism. Placenta, 2022, 128, 36-38. doi: 10.1016/j.placenta.2022.08.013 PMID: 36058049
  53. Montalbán-Loro, R.; Lassi, G.; Lozano-Ureña, A.; Perez-Villalba, A.; Jiménez-Villalba, E.; Charalambous, M.; Vallortigara, G.; Horner, A.E.; Saksida, L.M.; Bussey, T.J.; Trejo, J.L.; Tucci, V.; Ferguson-Smith, A.C.; Ferrón, S.R. Dlk1 dosage regulates hippocampal neurogenesis and cognition. Proc. Natl. Acad. Sci., 2021, 118(11), e2015505118. doi: 10.1073/pnas.2015505118 PMID: 33712542
  54. Finn, J.; Sottoriva, K.; Pajcini, K.V.; Kitajewski, J.K.; Chen, C.; Zhang, W.; Malik, A.B.; Liu, Y. Dlk1-mediated temporal regulation of notch signaling is required for differentiation of alveolar type II to type I cells during repair. Cell Rep., 2019, 26(11), 2942-2954.e5. doi: 10.1016/j.celrep.2019.02.046 PMID: 30865885
  55. Carreras-Badosa, G.; Remesar, X.; Prats-Puig, A.; Xargay-Torrent, S.; Lizarraga-Mollinedo, E.; de Zegher, F.; Ibáñez, L.; Bassols, J.; López-Bermejo, A. Dlk1 expression relates to visceral fat expansion and insulin resistance in male and female rats with postnatal catch-up growth. Pediatr. Res., 2019, 86(2), 195-201. doi: 10.1038/s41390-019-0428-2 PMID: 31091532
  56. Fu, Y.; Hao, X.; Shang, P.; Chamba, Y.; Zhang, B.; Zhang, H. Functional identification of porcine DLK1 during muscle development. Animals, 2022, 12(12), 1523. doi: 10.3390/ani12121523 PMID: 35739860
  57. Hofmeister, R.J.; Rubinacci, S.; Ribeiro, D.M.; Buil, A.; Kutalik, Z.; Delaneau, O. Parent-of-Origin inference for biobanks. Nat. Commun., 2022, 13(1), 6668. doi: 10.1038/s41467-022-34383-6 PMID: 36335127
  58. Weinberg-Shukron, A.; Ben-Yair, R.; Takahashi, N.; Dunjić, M.; Shtrikman, A.; Edwards, C.A.; Ferguson-Smith, A.C.; Stelzer, Y. Balanced gene dosage control rather than parental origin underpins genomic imprinting. Nat. Commun., 2022, 13(1), 4391. doi: 10.1038/s41467-022-32144-z PMID: 35906226
  59. Cleaton, M.A.M.; Dent, C.L.; Howard, M.; Corish, J.A.; Gutteridge, I.; Sovio, U.; Gaccioli, F.; Takahashi, N.; Bauer, S.R.; Charnock-Jones, D.S.; Powell, T.L.; Smith, G.C.S.; Ferguson-Smith, A.C.; Charalambous, M. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat. Genet., 2016, 48(12), 1473-1480. doi: 10.1038/ng.3699 PMID: 27776119
  60. Traustadóttir, G.Á.; Lagoni, L.V.; Ankerstjerne, L.B.S.; Bisgaard, H.C.; Jensen, C.H.; Andersen, D.C. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev., 2019, 46, 17-27. doi: 10.1016/j.cytogfr.2019.03.006 PMID: 30930082
  61. MacDonald, T.M.; Walker, S.P.; Hiscock, R.; Cannon, P.; Harper, A.; Murray, E.; Hui, L.; Dane, K.; Middleton, A.; Kyritsis, V.; de Alwis, N.; Hannan, N.J.; Tong, S.; Kaitu’u-Lino, T.J. Circulating Delta-like homolog 1 (DLK1) at 36 weeks is correlated with birthweight and is of placental origin. Placenta, 2020, 91, 24-30. doi: 10.1016/j.placenta.2020.01.003 PMID: 32174303
  62. Van de Pette, M.; Dimond, A.; Galvão, A.M.; Millership, S.J.; To, W.; Prodani, C.; McNamara, G.; Bruno, L.; Sardini, A.; Webster, Z.; McGinty, J.; French, P.M.W.; Uren, A.G.; Castillo-Fernandez, J.; Watkinson, W.; Ferguson-Smith, A.C.; Merkenschlager, M.; John, R.M.; Kelsey, G.; Fisher, A.G. Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nat. Commun., 2022, 13(1), 2464. doi: 10.1038/s41467-022-30022-2 PMID: 35513363
  63. Lopez-Tello, J.; Schofield, Z.; Kiu, R.; Dalby, M.J.; van Sinderen, D.; Le Gall, G.; Sferruzzi-Perri, A.N.; Hall, L.J. Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice. Cell. Mol. Life Sci., 2022, 79(7), 386. doi: 10.1007/s00018-022-04379-y PMID: 35760917
  64. Pham, A.; Mitanchez, D.; Forhan, A.; Perin, L.; Le Bouc, Y.; Brioude, F.; Sobrier, M.L.; Heude, B.; Netchine, I. Low maternal DLK1 levels at 26 weeks is associated with small for gestational age at birth. Front. Endocrinol. (Lausanne), 2022, 13, 836731. doi: 10.3389/fendo.2022.836731 PMID: 35295988
  65. Field, J.T.; Gordon, J.W. BNIP3 and Nix: Atypical regulators of cell fate. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(10), 119325. doi: 10.1016/j.bbamcr.2022.119325 PMID: 35863652
  66. Choubey, V.; Zeb, A.; Kaasik, A. Molecular mechanisms and regulation of mammalian mitophagy. Cells, 2021, 11(1), 38. doi: 10.3390/cells11010038 PMID: 35011599
  67. Ma, Z.; Wang, D.; Weng, J.; Zhang, S.; Zhang, Y. BNIP3 decreases the LPS-induced inflammation and apoptosis of chondrocytes by promoting the development of autophagy. J. Orthop. Surg. Res., 2020, 15(1), 284. doi: 10.1186/s13018-020-01791-7 PMID: 32723351
  68. Wu, B.; Chen, Y.; Clarke, R.; Akala, E.; Yang, P.; He, B.; Gao, H. AMPK signaling regulates mitophagy and mitochondrial ATP production in human trophoblast cell line BeWo. Frontiers in Bioscience-Landmark, 2022, 27(4), 118. doi: 10.31083/j.fbl2704118 PMID: 35468677
  69. Tang, Z.; Chen, J.; Zhang, Z.; Bi, J.; Xu, R.; Lin, Q.; Wang, Z. HIF-1α activation promotes luteolysis by enhancing ROS levels in the corpus luteum of pseudopregnant rats. Oxid. Med. Cell. Longev., 2021, 2021, 1-11. doi: 10.1155/2021/1764929 PMID: 34512862
  70. Zhou, X.; Zhao, X.; Zhou, W.; Qi, H.; Zhang, H.; Han, T.; Baker, P. Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia. Sci. Rep., 2021, 11(1), 20469. doi: 10.1038/s41598-021-99837-1 PMID: 34650122
  71. Conrad, K.P.; von Versen-Höynck, F.; Baker, V.L. Potential role of the corpus luteum in maternal cardiovascular adaptation to pregnancy and preeclampsia risk. Am. J. Obstet. Gynecol., 2022, 226(5), 683-699. doi: 10.1016/j.ajog.2021.08.018 PMID: 34437863
  72. Zhu, H.L.; Shi, X.T.; Xu, X.F.; Zhou, G.X.; Xiong, Y.W.; Yi, S.J.; Liu, W.B.; Dai, L.M.; Cao, X.L.; Xu, D.X.; Wang, H. Melatonin protects against environmental stress-induced fetal growth restriction via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. Redox Biol., 2021, 40, 101854. doi: 10.1016/j.redox.2021.101854 PMID: 33454563
  73. Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol., 2022, 80, 1-17. doi: 10.1016/j.semcancer.2019.12.008 PMID: 31866476
  74. Wen, E.; Xin, G.; Su, W.; Li, S.; Zhang, Y.; Dong, Y.; Yang, X.; Wan, C.; Chen, Z.; Yu, X.; Zhang, K.; Niu, H.; Huang, W. Activation of TLR4 induces severe acute pancreatitis-associated spleen injury via ROS-disrupted mitophagy pathway. Mol. Immunol., 2022, 142, 63-75. doi: 10.1016/j.molimm.2021.12.012 PMID: 34965485
  75. Chen, G.; Chen, L.; Huang, Y.; Zhu, X.; Yu, Y. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells. Bioengineered, 2022, 13(2), 3620-3633. doi: 10.1080/21655979.2021.1997132 PMID: 34699308
  76. Merech, F.; Hauk, V.; Paparini, D.; Fernandez, L.; Naguila, Z.; Ramhorst, R.; Waschek, J.; Pérez Leirós, C.; Vota, D. Growth impairment, increased placental glucose uptake and altered transplacental transport in VIP deficient pregnancies: Maternal vs. placental contributions. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(10), 166207. doi: 10.1016/j.bbadis.2021.166207 PMID: 34186168
  77. Gupta, M.B.; Jansson, T. Novel roles of mechanistic target of rapamycin signaling in regulating fetal growth†. Biol. Reprod., 2019, 100(4), 872-884. doi: 10.1093/biolre/ioy249 PMID: 30476008
  78. Burton, G.J.; Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol., 2018, 218(2), S745-S761. doi: 10.1016/j.ajog.2017.11.577 PMID: 29422210
  79. Hung, T.H.; Wu, C.P.; Chen, S.F. Differential changes in Akt and AMPK phosphorylation regulating mTOR activity in the placentas of pregnancies complicated by fetal growth restriction and gestational diabetes mellitus with large-for-gestational age infants. Front. Med., 2021, 8, 788969. doi: 10.3389/fmed.2021.788969 PMID: 34938752
  80. Ozmen, A.; Kipmen-Korgun, D.; Korgun, E.T. Rapamycin administration during normal and diabetic pregnancy effects the mTOR and angiogenesis signaling in the rat placenta. J. Gynecol. Obstet. Hum. Reprod., 2019, 48(3), 193-199. doi: 10.1016/j.jogoh.2018.12.003 PMID: 30553049
  81. Dong, J.; Shin, N.; Chen, S.; Lei, J.; Burd, I.; Wang, X. Is there a definite relationship between placental mTOR signaling and fetal growth? Biol. Reprod., 2020, 103(3), 471-486. doi: 10.1093/biolre/ioaa070 PMID: 32401303
  82. Tsuchiya, K.; Tanaka, K.; Tanaka, H.; Maki, S.; Enomoto, N.; Takakura, S.; Nii, M.; Toriyabe, K.; Katsuragi, S.; Ikeda, T. Tadalafil treatment ameliorates hypoxia and alters placental expression of proteins downstream of mTOR signaling in fetal growth restriction. Medicina, 2020, 56(12), 722. doi: 10.3390/medicina56120722 PMID: 33371356
  83. Li, R.; Peng, J.; Zhang, W.; Wu, Y.; Hu, R.; Chen, R.; Gu, W.; Zhang, L.; Qin, L.; Zhong, M.; Chen, L.C.; Sun, Q.; Liu, C. Ambient fine particulate matter exposure disrupts placental autophagy and fetal development in gestational mice. Ecotoxicol. Environ. Saf., 2022, 239, 113680. doi: 10.1016/j.ecoenv.2022.113680 PMID: 35617897
  84. Fang, F.; Xie, S.; Chen, M.; Li, Y.; Yue, J.; Ma, J.; Shu, X.; He, Y.; Xiao, W.; Tian, Z. Advances in NK cell production. Cell. Mol. Immunol., 2022, 19(4), 460-481. doi: 10.1038/s41423-021-00808-3 PMID: 34983953
  85. Mikhailova, V.; Grebenkina, P.; Khokhlova, E.; Davydova, A.; Salloum, Z.; Tyshchuk, E.; Zagainova, V.; Markova, K.; Kogan, I.; Selkov, S.; Sokolov, D. Pro- and anti-inflammatory cytokines in the context of nk cell–trophoblast interactions. Int. J. Mol. Sci., 2022, 23(4), 2387. doi: 10.3390/ijms23042387 PMID: 35216502
  86. Barry, F.; Benart, L.; Robert, L.; Gala, A.; Ferrières-Hoa, A.; Loup, V.; Anahory, T.; Brouillet, S.; Hamamah, S. HLA-C KIR interactions and placental defects: Implications in ART pregnancy issues. Gynécol. Obstét. Fertil. Sénol., 2022, 50(9), 600-609. doi: 10.1016/j.gofs.2022.06.003 PMID: 35724923
  87. Borowski, S.; Tirado-Gonzalez, I.; Freitag, N.; Garcia, M.G.; Barrientos, G.; Blois, S.M. Altered glycosylation contributes to placental dysfunction upon early disruption of the nk cell-dc dynamics. Front. Immunol., 2020, 11, 1316. doi: 10.3389/fimmu.2020.01316 PMID: 32760395
  88. Fu, B.; Zhou, Y.; Ni, X.; Tong, X.; Xu, X.; Dong, Z.; Sun, R.; Tian, Z.; Wei, H. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity, 2017, 47(6), 1100-1113.e6. doi: 10.1016/j.immuni.2017.11.018 PMID: 29262349
  89. Kaur, G.; Porter, C.B.M.; Ashenberg, O.; Lee, J.; Riesenfeld, S.J.; Hofree, M.; Aggelakopoulou, M.; Subramanian, A.; Kuttikkatte, S.B.; Attfield, K.E.; Desel, C.A.E.; Davies, J.L.; Evans, H.G.; Avraham-Davidi, I.; Nguyen, L.T.; Dionne, D.A.; Neumann, A.E.; Jensen, L.T.; Barber, T.R.; Soilleux, E.; Carrington, M.; McVean, G.; Rozenblatt-Rosen, O.; Regev, A.; Fugger, L. Mouse fetal growth restriction through parental and fetal immune gene variation and intercellular communications cascade. Nat. Commun., 2022, 13(1), 4398. doi: 10.1038/s41467-022-32171-w PMID: 35906236
  90. Dang, Y.; Souchet, C.; Moresi, F.; Jeljeli, M.; Raquillet, B.; Nicco, C.; Chouzenoux, S.; Lagoutte, I.; Marcellin, L.; Batteux, F.; Doridot, L. BCG-trained innate immunity leads to fetal growth restriction by altering immune cell profile in the mouse developing placenta. J. Leukoc. Biol., 2022, 111(5), 1009-1020. doi: 10.1002/JLB.4A0720-458RR PMID: 34533228
  91. Depierreux, D.M.; Kieckbusch, J.; Shreeve, N.; Hawkes, D.A.; Marsh, B.; Blelloch, R.; Sharkey, A.; Colucci, F. Beyond maternal tolerance: Education of uterine natural killer cells by maternal MHC drives fetal growth. Front. Immunol., 2022, 13, 808227. doi: 10.3389/fimmu.2022.808227 PMID: 35619712
  92. Takahashi, M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc. Res., 2022, 118(2), 372-385. doi: 10.1093/cvr/cvab010 PMID: 33483732
  93. Park, J.Y.; Jo, S.G.; Lee, H.N.; Choi, J.H.; Lee, Y.J.; Kim, Y.M.; Cho, J.Y.; Lee, S.K.; Park, J.H. Tendril extract of Cucurbita moschata suppresses NLRP3 inflammasome activation in murine macrophages and human trophoblast cells. Int. J. Med. Sci., 2020, 17(8), 1006-1014. doi: 10.7150/ijms.39003 PMID: 32410829
  94. Alfian, I.; Chakraborty, A.; Yong, H.E.J.; Saini, S.; Lau, R.W.K.; Kalionis, B.; Dimitriadis, E.; Alfaidy, N.; Ricardo, S.D.; Samuel, C.S.; Murthi, P. The placental NLRP3 inflammasome and its downstream targets, caspase-1 and interleukin-6, are increased in human fetal growth restriction: Implications for aberrant inflammation-induced trophoblast dysfunction. Cells, 2022, 11(9), 1413. doi: 10.3390/cells11091413 PMID: 35563719
  95. Silva, G.B.; Gierman, L.M.; Rakner, J.J.; Stødle, G.S.; Mundal, S.B.; Thaning, A.J.; Sporsheim, B.; Elschot, M.; Collett, K.; Bjørge, L.; Aune, M.H.; Thomsen, L.C.V.; Iversen, A.C. Cholesterol crystals and NLRP3 mediated inflammation in the uterine wall decidua in normal and preeclamptic pregnancies. Front. Immunol., 2020, 11, 564712. doi: 10.3389/fimmu.2020.564712 PMID: 33117348
  96. Park, S.; Shin, J.; Bae, J.; Han, D.; Park, S.R.; Shin, J.; Lee, S.K.; Park, H.W. SIRT1 alleviates LPS-Induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells, 2020, 9(3), 728. doi: 10.3390/cells9030728 PMID: 32188057
  97. Meihe, L.; Shan, G.; Minchao, K.; Xiaoling, W.; Peng, A.; Xili, W.; Jin, Z.; Huimin, D. The ferroptosis-NLRP1 inflammasome: The vicious cycle of an adverse pregnancy. Front. Cell Dev. Biol., 2021, 9, 707959. doi: 10.3389/fcell.2021.707959 PMID: 34490257
  98. Rogers, L.M.; Serezani, C.H.; Eastman, A.J.; Hasty, A.H.; Englund-Ögge, L.; Jacobsson, B.; Vickers, K.C.; Aronoff, D.M. Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta, 2020, 90, 45-51. doi: 10.1016/j.placenta.2019.12.009 PMID: 32056551
  99. Hirata, Y.; Shimazaki, S.; Suzuki, S.; Henmi, Y.; Komiyama, H.; Kuwayama, T.; Iwata, H.; Karasawa, T.; Takahashi, M.; Takahashi, H.; Shirasuna, K. β-hydroxybutyrate suppresses NLRP3 inflammasome-mediated placental inflammation and lipopolysaccharide-induced fetal absorption. J. Reprod. Immunol., 2021, 148, 103433. doi: 10.1016/j.jri.2021.103433 PMID: 34628106
  100. Motomura, K.; Romero, R.; Garcia-Flores, V.; Leng, Y.; Xu, Y.; Galaz, J.; Slutsky, R.; Levenson, D.; Gomez-Lopez, N. The alarmin interleukin-1α causes preterm birth through the NLRP3 inflammasome. Mol. Hum. Reprod., 2020, 26(9), 712-726. doi: 10.1093/molehr/gaaa054 PMID: 32647859
  101. Mantovani, A.; Byrne, C.D.; Targher, G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. Lancet Gastroenterol. Hepatol., 2022, 7(4), 367-378. doi: 10.1016/S2468-1253(21)00261-2 PMID: 35030323
  102. Zhao, L.; Zheng, X.; Liu, J.; Zheng, R.; Yang, R.; Wang, Y.; Sun, L. PPAR signaling pathway in the first trimester placenta from in vitro fertilization and embryo transfer. Biomed. Pharmacother., 2019, 118, 109251. doi: 10.1016/j.biopha.2019.109251 PMID: 31351426
  103. Zhang, Y.; Huo, Y.; He, W.; Liu, S.; Li, H.; Li, L. Visfatin is regulated by interleukin-6 and affected by the PPAR-γ pathway in BeWo cells. Mol. Med. Rep., 2018, 19(1), 400-406. doi: 10.3892/mmr.2018.9671 PMID: 30483779
  104. Liu, F.; Zhu, W.; Shoaito, H.; Chissey, A.; Degrelle, S.A.; Fournier, T. Mining of combined human placental gene expression data across pregnancy, applied to PPAR signaling pathway. Placenta, 2020, 99, 157-165. doi: 10.1016/j.placenta.2020.07.024 PMID: 32805615
  105. Sundrani, D.P.; Karkhanis, A.R.; Joshi, S.R. Peroxisome proliferator-activated receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med, 2021, 67(1), 24-41. doi: 10.1080/19396368.2020.1858994 PMID: 33719831
  106. Li, J.; Quan, X.; Lei, S.; Chen, G.; Hong, J.; Huang, Z.; Wang, Q.; Song, W.; Yang, X. LncRNA MEG3 alleviates PFOS induced placental cell growth inhibition through its derived miR-770 targeting PTX3. Environ. Pollut., 2022, 293, 118542. doi: 10.1016/j.envpol.2021.118542 PMID: 34801623
  107. Xu, P.; Guo, H.; Wang, H.; Lee, S.C.; Liu, M.; Pan, Y.; Zheng, J.; Zheng, K.; Wang, H.; Xie, Y.; Bai, X.; Liu, Y.; Zhao, M.; Wang, L. Downregulations of placental fatty acid transporters during cadmium-induced fetal growth restriction. Toxicology, 2019, 423, 112-122. doi: 10.1016/j.tox.2019.05.013 PMID: 31152847
  108. Kolben, T.; Rogatsch, E.; Vattai, A.; Hester, A.; Kuhn, C.; Schmoeckel, E.; Mahner, S.; Jeschke, U.; Kolben, T. PPARγ expression is diminished in macrophages of recurrent miscarriage placentas. Int. J. Mol. Sci., 2018, 19(7), 1872. doi: 10.3390/ijms19071872 PMID: 29949879
  109. Fu, L.; Bo, Q.L.; Gan, Y.; Chen, Y.H.; Zhao, H.; Tao, F.B.; Xu, D.X. Association among placental 11β-HSD2, PPAR-γ, and NF-κB p65 in small-for-gestational-age infants: A nested case-control study. Am. J. Reprod. Immunol., 2020, 83(5), e13231. doi: 10.1111/aji.13231 PMID: 32187412
  110. Yamashita, F.; Kaieda, T.; Shimomura, T.; Kawaguchi, M.; Lin, C.Y.; Johnson, M.D.; Tanaka, H.; Kiwaki, T.; Fukushima, T.; Kataoka, H. Role of the polycystic kidney disease domain in matriptase chaperone activity and localization of hepatocyte growth factor activator inhibitor-1. FEBS J., 2022, 289(12), 3422-3439. doi: 10.1111/febs.16348 PMID: 35020274
  111. Zheng, Q.; Yang, Q.; Zhou, J.; Gu, X.; Zhou, H.; Dong, X.; Zhu, H.; Chen, Z. Immune signature-based hepatocellular carcinoma subtypes may provide novel insights into therapy and prognosis predictions. Cancer Cell Int., 2021, 21(1), 330. doi: 10.1186/s12935-021-02033-4 PMID: 34193146
  112. Ko, C.J.; Hsu, T.W.; Wu, S.R.; Lan, S.W.; Hsiao, T.F.; Lin, H.Y.; Lin, H.H.; Tu, H.F.; Lee, C.F.; Huang, C.C.; Chen, M.J.M.; Hsiao, P.W.; Huang, H.P.; Lee, M.S. Inhibition of TMPRSS2 by HAI-2 reduces prostate cancer cell invasion and metastasis. Oncogene, 2020, 39(37), 5950-5963. doi: 10.1038/s41388-020-01413-w PMID: 32778768
  113. Kaitu’u-Lino, T.J.; MacDonald, T.M.; Cannon, P.; Nguyen, T.V.; Hiscock, R.J.; Haan, N.; Myers, J.E.; Hastie, R.; Dane, K.M.; Middleton, A.L.; Bittar, I.; Sferruzzi-Perri, A.N.; Pritchard, N.; Harper, A.; Hannan, N.J.; Kyritsis, V.; Crinis, N.; Hui, L.; Walker, S.P.; Tong, S. Circulating SPINT1 is a biomarker of pregnancies with poor placental function and fetal growth restriction. Nat. Commun., 2020, 11(1), 2411. doi: 10.1038/s41467-020-16346-x PMID: 32415092
  114. Murphy, C.N.; Walker, S.P.; MacDonald, T.M.; Keenan, E.; Hannan, N.J.; Wlodek, M.E.; Myers, J.; Briffa, J.F.; Romano, T.; Roddy Mitchell, A.; Whigham, C.A.; Cannon, P.; Nguyen, T.V.; Kandel, M.; Pritchard, N.; Tong, S.; Kaitu’u-Lino, T.J. Elevated circulating and placental SPINT2 is associated with placental dysfunction. Int. J. Mol. Sci., 2021, 22(14), 7467. doi: 10.3390/ijms22147467 PMID: 34299087
  115. Murphy, C.N.; Cluver, C.A.; Walker, S.P.; Keenan, E.; Hastie, R.; MacDonald, T.M.; Hannan, N.J.; Brownfoot, F.C.; Cannon, P.; Tong, S.; Kaitu’u-Lino, T.J. Circulating SPINT1 Is reduced in a preeclamptic cohort with co-existing fetal growth restriction. J. Clin. Med., 2022, 11(4), 901. doi: 10.3390/jcm11040901 PMID: 35207174

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024