Effects of Trehalose Administration in Patients with Mucopolysaccharidosis Type III

  • Authors: Mobini M.1, Radbakhsh S.2, Kubaski F.3, Eshraghi P.4, Vakili S.5, Vakili R.5, Abbasifard M.6, Jamialahmadi T.7, Rajabi O.8, Emami S.9, Tayarani-Najaran Z.10, Rizzo M.11, Eid A.12, Banach M.13, Sahebkar A.14
  • Affiliations:
    1. Faculty of Medicine, Mashhad University of Medical Sciences
    2. Student Research Committee, Mashhad University of Medical Sciences
    3. Department of Genetics, UFRGS, Porto Alegre
    4. Department of Pediatric Diseases, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences
    5. Medical Genetic Research Center, Mashhad University of Medical Sciences
    6. Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, afsanjan University of Medical Sciences
    7. Surgical Oncology Research Center, Mashhad University of Medical Sciences
    8. Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences
    9. Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences
    10. Medical Toxicology Research Center, Mashhad University of Medical Sciences
    11. Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo
    12. Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University
    13. Department of Preventive Cardiology and Lipidology, Medical University of Lodz
    14. Applied Biomedical Research Center, Mashhad University of Medical Sciences
  • Issue: Vol 31, No 20 (2024)
  • Pages: 3033-3042
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://rjpbr.com/0929-8673/article/view/645216
  • DOI: https://doi.org/10.2174/0929867330666230406102555
  • ID: 645216

Cite item

Full Text

Abstract

Background and Aim:Mucopolysaccharidosis type III (MPS III) is a rare autosomal recessive lysosomal storage disease (LSD) caused by a deficiency of lysosomal enzymes required for the catabolism of glycosaminoglycans (GAGs), mainly in the central nervous system. Trehalose has been proposed as a potential therapeutic agent to attenuate neuropathology in MPS III. We conducted a single- arm, open-label study to evaluate the efficacy of trehalose treatment in patients with MPS IIIA and MPS IIIB.

Methods:Five patients with MPS III were enrolled. Trehalose was administrated intravenously (15 g/week) for 12 weeks. Health-related quality of life and cognitive function, serum biomarkers, liver, spleen, and lung imaging were assessed to evaluate trehalose efficacy at baseline and trial end (week 12).

Results:TNO-AZL Preschool children Quality of Life (TAPQOL) scores increased in all patients, and the mean scores for quality of life were increased after the intervention. Serum GAG levels were reduced in all treated patients (however, the differences were not statistically significant). Alanine aminotransferase (ALT) levels were reduced in all patients post-treatment (p=0.0039). The mean levels of aspartate transaminase (AST) were also decreased after 12 weeks of treatment with Trehalose. Decreased serum pro-oxidant-antioxidant balance and increased GPX activity were observed at the end of the study. Decreases in mean splenic length were observed, whereas the liver volume did not change.

Conclusion:Improvements in health-related quality of life and serum biomarkers (GAGs, liver aminotransferase levels, antioxidant status), as well as liver and spleen size, were found following 3 months of trehalose administration in patients with MPS IIIA and MPS IIIB.

About the authors

Moein Mobini

Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Shabnam Radbakhsh

Student Research Committee, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Francyne Kubaski

Department of Genetics, UFRGS, Porto Alegre

Email: info@benthamscience.net

Peyman Eshraghi

Department of Pediatric Diseases, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Saba Vakili

Medical Genetic Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Rahim Vakili

Medical Genetic Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Mitra Abbasifard

Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, afsanjan University of Medical Sciences

Email: info@benthamscience.net

Tannaz Jamialahmadi

Surgical Oncology Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Omid Rajabi

Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Seyed Emami

Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Zahra Tayarani-Najaran

Medical Toxicology Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Manfredi Rizzo

Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo

Email: info@benthamscience.net

Ali Eid

Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University

Email: info@benthamscience.net

Maciej Banach

Department of Preventive Cardiology and Lipidology, Medical University of Lodz

Email: info@benthamscience.net

Amirhossein Sahebkar

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sun, A. Lysosomal storage disease overview. Ann. Transl. Med., 2018, 6(24), 476.. doi: 10.21037/atm.2018.11.39 PMID: 30740407
  2. Parenti, G.; Andria, G.; Ballabio, A. Lysosomal storage diseases: From pathophysiology to therapy. Annu. Rev. Med., 2015, 66(1), 471-486. doi: 10.1146/annurev-med-122313-085916 PMID: 25587658
  3. Andrade, F.; Aldámiz-Echevarría, L.; Llarena, M.; Couce, M.L. Sanfilippo syndrome: Overall review. Pediatr Int, 2015, 57(3), 331-338. doi: 10.1111/ped.12636 PMID: 25851924
  4. Kresse, H. Mucopolysaccharidosis III A (Sanfilippo A disease): Deficiency of a heparin sulfamidase in skin fibroblasts and leucocytes. Biochem. Biophys. Res. Commun., 1973, 54(3), 1111-1118. doi: 10.1016/0006-291X(73)90807-3 PMID: 4201808
  5. von Figura, K. Human alpha-N-acetylglucosaminidase. 1. Purification and properties. Eur. J. Biochem., 1977, 80(2), 523-533. PMID: 411658
  6. Fedele, A. Sanfilippo syndrome: Causes, consequences, and treatments. Appl. Clin. Genet., 2015, 8, 269-281. doi: 10.2147/TACG.S57672 PMID: 26648750
  7. Benetó, N.; Vilageliu, L.; Grinberg, D.; Canals, I. Sanfilippo syndrome: Molecular basis, disease models and therapeutic approaches. Int. J. Mol. Sci., 2020, 21(21), 7819. doi: 10.3390/ijms21217819 PMID: 33105639
  8. Gaffke, L.; Pierzynowska, K.; Piotrowska, E.; Węgrzyn, G. How close are we to therapies for Sanfilippo disease? Metab. Brain Dis., 2018, 33(1), 1-10. doi: 10.1007/s11011-017-0111-4 PMID: 28921412
  9. Luyckx, J.; Baudouin, C. Trehalose: An intriguing disaccharide with potential for medical application in ophthalmology. Clin. Ophthalmol., 2011, 5, 577-581. PMID: 21654884
  10. Colaco, C.; Roser, B. Trehalose-a multifunctional additive for food preservation. Food Packaging and Preservation, 1994, 123-140. doi: 10.1007/978-1-4615-2173-0_7
  11. Emanuele, E. Can trehalose prevent neurodegeneration? Insights from experimental studies. Curr. Drug Targets, 2014, 15(5), 551-557. doi: 10.2174/1389450115666140225104705 PMID: 24568549
  12. Hosseinpour-Moghaddam, K., Caraglia, M., & Sahebkar, A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J. Cell. Physiol.,2018233(9), 6524–6543. doi: 10.1002/jcp.26583
  13. Sahebkar, A.; Khalifeh, M.; Barreto, G.E. Therapeutic potential of trehalose in neurodegenerative diseases: The knowns and unknowns. Neural Regen. Res., 2021, 16(10), 2026-2027. doi: 10.4103/1673-5374.308085 PMID: 33642389
  14. Khalifeh, M.; Barreto, G.E.; Sahebkar, A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. Br. J. Pharmacol., 2019, 176(9), 1173-1189. doi: 10.1111/bph.14623 PMID: 30767205
  15. Khalifeh, M.; Read, M.I.; Barreto, G.E.; Sahebkar, A. Trehalose against Alzheimer’s disease: Insights into a potential therapy. BioEssays, 2020, 42(8), 1900195. doi: 10.1002/bies.201900195 PMID: 32519387
  16. Parkinson-Lawrence, E.J.; Shandala, T.; Prodoehl, M.; Plew, R.; Borlace, G.N.; Brooks, D.A. Lysosomal storage disease: Revealing lysosomal function and physiology. Physiology, 2010, 25(2), 102-115. doi: 10.1152/physiol.00041.2009 PMID: 20430954
  17. a) Rusmini, P.; Cortese, K.; Crippa, V.; Cristofani, R.; Cicardi, M.E.; Ferrari, V.; Vezzoli, G.; Tedesco, B.; Meroni, M.; Messi, E.; Piccolella, M.; Galbiati, M.; Garrè, M.; Morelli, E.; Vaccari, T.; Poletti, A. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy, 2019, 15(4), 631-651. doi: 10.1080/15548627.2018.1535292 PMID: 30335591; b) Mobini, M.; Radbakhsh, S.; Kubaski, F.; Eshraghi, P.; Vakili, S.; Vakili, R.; Khalili, M.; Varesvazirian, M.; Jamialahmadi, T.; Alamdaran, S.; Sayedi, S.; Rajabi, O.; Emami, S.; Reiner, Ž.; Sahebkar, A. Impact of intravenous trehalose administration in patients with niemann–pick disease types A and B. J. Clin. Med., 2022, 11(1), 247. doi: 10.3390/jcm11010247 PMID: 35011993
  18. Lotfi, P.; Tse, D.Y.; Di Ronza, A.; Seymour, M.L.; Martano, G.; Cooper, J.D.; Pereira, F.A.; Passafaro, M.; Wu, S.M.; Sardiello, M. Trehalose reduces retinal degeneration, neuroinflammation and storage burden caused by a lysosomal hydrolase deficiency. Autophagy, 2018, 14(8), 1419-1434. doi: 10.1080/15548627.2018.1474313 PMID: 29916295
  19. Bunge, E.M.; Essink-Bot, M-L.; Kobussen, M.P.; van Suijlekom-Smit, L.W.; Moll, H.A.; Raat, H. Reliability and validity of health status measurement by the TAPQOL. Arch. Dis. Child., 2005, 90(4), 351-358. doi: 10.1136/adc.2003.048645 PMID: 15781921
  20. Kubaski, F.; Mason, R.W.; Nakatomi, A.; Shintaku, H.; Xie, L.; van Vlies, N.N.; Church, H.; Giugliani, R.; Kobayashi, H.; Yamaguchi, S.; Suzuki, Y.; Orii, T.; Fukao, T.; Montaño, A.M.; Tomatsu, S. Newborn screening for mucopolysaccharidoses: A pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J. Inherit. Metab. Dis., 2017, 40(1), 151-158. doi: 10.1007/s10545-016-9981-6 PMID: 27718145
  21. Khan, S.A.; Mason, R.W.; Giugliani, R.; Orii, K.; Fukao, T.; Suzuki, Y.; Yamaguchi, S.; Kobayashi, H.; Orii, T.; Tomatsu, S. Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol. Genet. Metab., 2018, 125(1-2), 44-52. doi: 10.1016/j.ymgme.2018.04.011 PMID: 29779903
  22. Ghayour-Mobarhan, M.; Alamdari, D.H.; Moohebati, M.; Sahebkar, A.; Nematy, M.; Safarian, M.; Azimi-Nezhad, M.; Reza Parizadeh, S.M.; Tavallaie, S.; Koliakos, G.; Ferns, G. Determination of prooxidant--antioxidant balance after acute coronary syndrome using a rapid assay: A pilot study. Angiology, 2009, 60(6), 657-662. doi: 10.1177/0003319709333868 PMID: 19398426
  23. Wagner, V.F.; Northrup, H. Mucopolysaccharidosis Type III. In: GeneReviews(®); Adam, M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Mirzaa, G., Eds.; Seattle (WA): University of Washington, Seattle, 1993.
  24. de Ruijter, J.; Valstar, M.J.; Wijburg, F.A. Mucopolysaccharidosis type III (Sanfilippo Syndrome): Emerging treatment strategies. Curr. Pharm. Biotechnol., 2011, 12(6), 923-930. doi: 10.2174/138920111795542651 PMID: 21235449
  25. Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: A multifunctional molecule. Glycobiology, 2003, 13(4), 17R-27. doi: 10.1093/glycob/cwg047 PMID: 12626396
  26. Jamialahmadi, T.; Emami, F.; Bagheri, R.K.; Alimi, H.; Bioletto, F.; Bo, S.; Aminzadeh, B.; Ansari, M.A.; Ehsani, F.; Rajabi, O.; Ganjali, S.; Banach, M.; Sahebkar, A. The effect of trehalose administration on vascular inflammation in patients with coronary artery disease. Biomed. Pharmacother., 2022, 147, 112632. doi: 10.1016/j.biopha.2022.112632 PMID: 35045351
  27. Zaltzman, R.; Elyoseph, Z.; Lev, N.; Gordon, C.R. Trehalose in machado-joseph disease: Safety, tolerability, and efficacy. Cerebellum, 2020, 19(5), 672-679. doi: 10.1007/s12311-020-01150-6 PMID: 32514820
  28. Sato, S.; Okamoto, K.; Minami, R.; Kohri, H.; Yamamoto, S. Trehalose can be used as a parenteral saccharide source in rabbits. J. Nutr., 1999, 129(1), 158-164. doi: 10.1093/jn/129.1.158 PMID: 9915893
  29. Sweeney, P.; Park, H.; Baumann, M.; Dunlop, J.; Frydman, J.; Kopito, R.; McCampbell, A.; Leblanc, G.; Venkateswaran, A.; Nurmi, A.; Hodgson, R. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl. Neurodegener., 2017, 6(1), 6. doi: 10.1186/s40035-017-0077-5 PMID: 28293421
  30. Cotrina, E.Y.; Santos, L.M.; Rivas, J.; Blasi, D.; Leite, J.P.; Liz, M.A. Targeting transthyretin in Alzheimer's disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer's disease. Eur J Med Chem., 2021, 226, 113847. doi: 10.1016/j.ejmech.2021.113847
  31. Rivero-Ríos, P.; Madero-Pérez, J.; Fernández, B.; Hilfiker, S. Targeting the autophagy/lysosomal degradation pathway in parkinsons disease. Curr. Neuropharmacol., 2016, 14(3), 238-249. doi: 10.2174/1570159X13666151030103027 PMID: 26517050
  32. Tapia, H.; Koshland, D.E. Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr. Biol., 2014, 24(23), 2758-2766. doi: 10.1016/j.cub.2014.10.005 PMID: 25456447
  33. Chen, X.; Li, M.; Li, L.; Xu, S.; Huang, D.; Ju, M.; Huang, J.; Chen, K.; Gu, H. Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Sci. Rep., 2016, 6(1), 28423. doi: 10.1038/srep28423 PMID: 27328819
  34. Zhang, Y.; Higgins, C.B.; Mayer, A.L.; Mysorekar, I.U.; Razani, B.; Graham, M.J.; Hruz, P.W.; DeBosch, B.J. TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose. Autophagy, 2018, 14(11), 1959-1975. doi: 10.1080/15548627.2018.1493044 PMID: 29996716
  35. Wang, Q.; Ren, J. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1. Pharmacol. Res., 2016, 111, 357-373. doi: 10.1016/j.phrs.2016.06.024 PMID: 27363949
  36. Evans, T.D.; Jeong, S.J.; Zhang, X.; Sergin, I.; Razani, B. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy, 2018, 14(4), 724-726. doi: 10.1080/15548627.2018.1434373 PMID: 29394113
  37. Trudel, S.; Trécherel, E.; Gomila, C.; Peltier, M.; Aubignat, M.; Gubler, B.; Morlière, P.; Heard, J.M.; Ausseil, J. Oxidative stress is independent of inflammation in the neurodegenerative sanfilippo syndrome type B. J. Neurosci. Res., 2015, 93(3), 424-432. doi: 10.1002/jnr.23497 PMID: 25332157
  38. Wei, H.; Kim, S.J.; Zhang, Z.; Tsai, P.C.; Wisniewski, K.E.; Mukherjee, A.B. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum. Mol. Genet., 2008, 17(4), 469-477. doi: 10.1093/hmg/ddm324 PMID: 17989065
  39. Mizunoe, Y.; Kobayashi, M.; Sudo, Y.; Watanabe, S.; Yasukawa, H.; Natori, D.; Hoshino, A.; Negishi, A.; Okita, N.; Komatsu, M.; Higami, Y. Trehalose protects against oxidative stress by regulating the Keap1–Nrf2 and autophagy pathways. Redox Biol., 2018, 15, 115-124. doi: 10.1016/j.redox.2017.09.007 PMID: 29241092
  40. Sun, L.; Zhao, Q.; Xiao, Y.; Liu, X.; Li, Y.; Zhang, J.; Pan, J.; Zhang, Z. Trehalose targets Nrf2 signal to alleviate d-galactose induced aging and improve behavioral ability. Biochem. Biophys. Res. Commun., 2020, 521(1), 113-119. doi: 10.1016/j.bbrc.2019.10.088 PMID: 31630800
  41. Lin, C.F.; Kuo, Y.T.; Chen, T.Y.; Chien, C.T. Quercetin-rich guava (Psidium guajava) juice in combination with trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules, 2016, 21(3), 334. doi: 10.3390/molecules21030334 PMID: 26978332
  42. Krawiec, P.; Pac-Kożuchowska, E.; Mełges, B.; Mroczkowska-Juchkiewicz, A.; Skomra, S.; Pawłowska-Kamieniak, A.; Kominek, K. From hypertransaminasemia to mucopolysaccharidosis IIIA. Ital. J. Pediatr., 2014, 40(1), 97. doi: 10.1186/s13052-014-0097-z PMID: 25439061

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers