Targeting TYK2 for Fighting Diseases: Recent Advance of TYK2 Inhibitors


Cite item

Full Text

Abstract

TYK2 (tyrosine-protein kinase 2) is a non-receptor protein kinase belonging to the JAK family and is closely associated with various diseases, such as psoriasis, inflammatory bowel disease, systemic lupus erythematosus. TYK2 activates the downstream proteins STAT1-5 by participating in the signal transduction of immune factors such as IL-12, IL-23, and IL-10, resulting in immune expression. The activity of the inhibitor TYK2 can effectively block the transduction of excessive immune signals and treat diseases. TYK2 inhibitors are divided into two types of inhibitors according to the different binding sites. One is a TYK2 inhibitor that binds to JH2 and inhibits its activity through an allosteric mechanism. The representative inhibitor is BMS-986165, developed by Bristol-Myers Squibb. The other class binds to the JH1 adenosine triphosphate (ATP) site and prevents the catalytic activity of the kinase by blocking ATP and downstream phosphorylation. This paper mainly introduces the protein structure, signaling pathway, synthesis, structure-activity relationship and clinical research of TYK2 inhibitors.

About the authors

Si-Shi Du

College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology

Email: info@benthamscience.net

Yu-Qing Fang

College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology

Email: info@benthamscience.net

Wen Zhang

College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology

Email: info@benthamscience.net

Guo-Wu Rao

College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ciechanowicz, P.; Rakowska, A.; Sikora, M.; Rudnicka, L. JAK-inhibitors in dermatology: current evidence and future applications. J. Dermatolog. Treat., 2019, 30(7), 648-658. doi: 10.1080/09546634.2018.1546043 PMID: 30433838
  2. Serra López-Matencio, J.M.; Morell Baladrón, A.; Castañeda, S. JAK-STAT inhibitors for the treatment of immunomediated diseases. Med. Clin., 2019, 152(9), 353-360. PMID: 30527218
  3. Xu, P.; Shen, P.; Yu, B.; Xu, X.; Ge, R.; Cheng, X.; Chen, Q.; Bian, J.; Li, Z.; Wang, J. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur. J. Med. Chem., 2020, 192, 112155. doi: 10.1016/j.ejmech.2020.112155 PMID: 32120325
  4. Shaw, M.H.; Boyartchuk, V.; Wong, S.; Karaghiosoff, M.; Ragimbeau, J.; Pellegrini, S.; Muller, M.; Dietrich, W.F.; Yap, G.S. A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11594-11599. doi: 10.1073/pnas.1930781100 PMID: 14500783
  5. Sobhkhez, M.; Hansen, T.; Iliev, D.B.; Skjesol, A.; Jørgensen, J.B. The Atlantic salmon protein tyrosine kinase Tyk2: Molecular cloning, modulation of expression and function. Dev. Comp. Immunol., 2013, 41(4), 553-563. doi: 10.1016/j.dci.2013.07.008 PMID: 23872231
  6. Roskoski, R.Jr. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol. Res., 2016, 111, 784-803. doi: 10.1016/j.phrs.2016.07.038 PMID: 27473820
  7. Saharinen, P.; Vihinen, M.; Silvennoinen, O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol. Biol. Cell, 2003, 14(4), 1448-1459. doi: 10.1091/mbc.e02-06-0342 PMID: 12686600
  8. Min, X.; Ungureanu, D.; Maxwell, S.; Hammarén, H.; Thibault, S.; Hillert, E.K.; Ayres, M.; Greenfield, B.; Eksterowicz, J.; Gabel, C.; Walker, N.; Silvennoinen, O.; Wang, Z. Structural and functional characterization of the JH2 pseudokinase domain of JAK Family Tyrosine Kinase 2 (TYK2). J. Biol. Chem., 2015, 290(45), 27261-27270. doi: 10.1074/jbc.M115.672048 PMID: 26359499
  9. Ferrao, R.; Lupardus, P.J. The janus kinase (JAK) FERM and SH2 domains: Bringing specificity to JAK–receptor interactions. Front. Endocrinol., 2017, 8, 71. doi: 10.3389/fendo.2017.00071 PMID: 28458652
  10. Lupardus, P.J.; Ultsch, M.; Wallweber, H.; Bir Kohli, P.; Johnson, A.R.; Eigenbrot, C. Structure of the pseudokinase–kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc. Natl. Acad. Sci. USA, 2014, 111(22), 8025-8030. doi: 10.1073/pnas.1401180111 PMID: 24843152
  11. Strobl, B.; Stoiber, D.; Sexl, V.; Mueller, M. Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front. Biosci., 2011, 16(9), 3214-3232. PMID: 21622231
  12. Raivola, J.; Haikarainen, T.; Silvennoinen, O. Characterization of JAK1 pseudokinase domain in cytokine signaling. Cancers, 2019, 12(1), 78. doi: 10.3390/cancers12010078 PMID: 31892268
  13. Silvennoinen, O.; Ungureanu, D.; Niranjan, Y.; Hammaren, H.; Bandaranayake, R.; Hubbard, S.R. New insights into the structure and function of the pseudokinase domain in JAK2. Biochem. Soc. Trans., 2013, 41(4), 1002-1007. doi: 10.1042/BST20130005 PMID: 23863170
  14. Hadjadj, J.; Frémond, M.L.; Neven, B. Emerging Place of JAK inhibitors in the treatment of inborn errors of immunity. Front. Immunol., 2021, 12, 717388. doi: 10.3389/fimmu.2021.717388 PMID: 34603291
  15. De Smedt, R.; Morscio, J.; Goossens, S.; Van Vlierberghe, P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev., 2019, 38, 100591. doi: 10.1016/j.blre.2019.100591 PMID: 31353059
  16. Hin Tang, J.J.; Hao Thng, D.K.; Lim, J.J.; Toh, T.B. JAK/STAT signaling in hepatocellular carcinoma. Hepat. Oncol., 2020, 7(1), HEP18. doi: 10.2217/hep-2020-0001 PMID: 32273976
  17. Mohanty, S.K.; Yagiz, K.; Pradhan, D.; Luthringer, D.J.; Amin, M.B.; Alkan, S.; Cinar, B. STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer. Oncotarget, 2017, 8(49), 85997-86010. doi: 10.18632/oncotarget.20844 PMID: 29156772
  18. Ruan, Z.; Yang, X.; Cheng, W. OCT4 accelerates tumorigenesis through activating JAK/STAT signaling in ovarian cancer side population cells. Cancer Manag. Res., 2018, 11, 389-399. doi: 10.2147/CMAR.S180418 PMID: 30643464
  19. Mascareno, E.; Siddiqui, M.A.Q. The role of Jak/STAT signaling in heart tissue renin-angiotensin system. Mol. Cell. Biochem., 2000, 212(1/2), 171-175. doi: 10.1023/A:1007157126806 PMID: 11108148
  20. Booz, G.W.; Day, J.N.E.; Baker, K.M. Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J. Mol. Cell. Cardiol., 2002, 34(11), 1443-1453. doi: 10.1006/jmcc.2002.2076 PMID: 12431443
  21. García-Melendo, C.; Cubiró, X.; Puig, L. Janus kinase inhibitors in dermatology: Part 2: Applications in psoriasis, atopic dermatitis, and other dermatoses. Actas. Dermosifiliogr (Engl Ed)., 2021, S0001-7310(21), 00006-5.
  22. Wang, L.; Hu, Y.; Song, B.; Xiong, Y.; Wang, J.; Chen, D. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm. Res., 2021, 70(7), 753-764. doi: 10.1007/s00011-021-01482-x PMID: 34212215
  23. Sperti, M.; Malavolta, M.; Ciniero, G.; Borrelli, S.; Cavaglià, M.; Muscat, S.; Tuszynski, J.A.; Afeltra, A.; Margiotta, D.P.E.; Navarini, L. JAK inhibitors in immune-mediated rheumatic diseases: From a molecular perspective to clinical studies. J. Mol. Graph. Model., 2021, 104, 107789. doi: 10.1016/j.jmgm.2020.107789 PMID: 33472140
  24. Babon, J.J.; Lucet, I.S.; Murphy, J.M.; Nicola, N.A.; Varghese, L.N. The molecular regulation of Janus kinase (JAK) activation. Biochem. J., 2014, 462(1), 1-13. doi: 10.1042/BJ20140712 PMID: 25057888
  25. Shuai, K.; Schindler, C.; Prezioso, V.R.; Darnell, J.E., Jr Activation of transcription by IFN-gamma: Tyrosine phosphorylation of a 91-kD DNA binding protein. Science, 1992, 258(5089), 1808-1812. doi: 10.1126/science.1281555 PMID: 1281555
  26. Mitchell, T.J.; John, S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology, 2005, 114(3), 301-312. doi: 10.1111/j.1365-2567.2005.02091.x PMID: 15720432
  27. Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol., 2014, 14(1), 36-49. doi: 10.1038/nri3581 PMID: 24362405
  28. Li, S.; Gong, M.; Zhao, F.; Shao, J.; Xie, Y.; Zhang, Y.; Chang, H.; Type, I. Type I Interferons: Distinct biological activities and current applications for viral infection. Cell. Physiol. Biochem., 2018, 51(5), 2377-2396. doi: 10.1159/000495897 PMID: 30537741
  29. Gallucci, S.; Meka, S.; Gamero, A.M. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine, 2021, 146, 155633. doi: 10.1016/j.cyto.2021.155633 PMID: 34340046
  30. Karjalainen, A.; Shoebridge, S.; Krunic, M.; Simonović, N.; Tebb, G.; Macho-Maschler, S.; Strobl, B.; Müller, M. TYK2 in tumor immunosurveillance. Cancers, 2020, 12(1), 150. doi: 10.3390/cancers12010150 PMID: 31936322
  31. Uzé, G.; Schreiber, G.; Piehler, J.; Pellegrini, S. The receptor of the type I interferon family. Curr. Top. Microbiol. Immunol., 2007, 316, 71-95. doi: 10.1007/978-3-540-71329-6_5 PMID: 17969444
  32. Gauzzi, M.C.; Barbieri, G.; Richter, M.F.; Uzé, G.; Ling, L.; Fellous, M.; Pellegrini, S. The amino-terminal region of Tyk2 sustains the level of interferon α receptor 1, a component of the interferon α/β receptor. Proc. Natl. Acad. Sci. USA, 1997, 94(22), 11839-11844. doi: 10.1073/pnas.94.22.11839 PMID: 9342324
  33. Ragimbeau, J.; Dondi, E.; Alcover, A.; Eid, P.; Uzé, G.; Pellegrini, S. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J., 2003, 22(3), 537-547. doi: 10.1093/emboj/cdg038 PMID: 12554654
  34. Shimoda, K.; Kato, K.; Aoki, K.; Matsuda, T.; Miyamoto, A.; Shibamori, M.; Yamashita, M.; Numata, A.; Takase, K.; Kobayashi, S.; Shibata, S.; Asano, Y.; Gondo, H.; Sekiguchi, K.; Nakayama, K.; Nakayama, T.; Okamura, T.; Okamura, S.; Niho, Y.; Nakayama, K. Tyk2 plays a restricted role in IFN-alpha signaling, although it is required for IL-12-mediated T cell function. Immunity, 2000, 13(4), 561-571. doi: 10.1016/S1074-7613(00)00055-8 PMID: 11070174
  35. Rani, M.R.S.; Gauzzi, C.; Pellegrini, S.; Fish, E.N.; Wei, T.; Ransohoff, R.M. Induction of beta-R1/I-TAC by interferon-beta requires catalytically active TYK2. J. Biol. Chem., 1999, 274(4), 1891-1897. doi: 10.1074/jbc.274.4.1891 PMID: 9890942
  36. Rani, M.R.S.; Pandalai, S.; Shrock, J.; Almasan, A.; Ransohoff, R.M. Requirement of catalytically active Tyk2 and accessory signals for the induction of TRAIL mRNA by IFN-beta. J. Interferon Cytokine Res., 2007, 27(9), 767-780. doi: 10.1089/jir.2007.0005 PMID: 17892398
  37. Thompson, A.; Orr, S.J. Emerging IL-12 family cytokines in the fight against fungal infections. Cytokine, 2018, 111, 398-407. doi: 10.1016/j.cyto.2018.05.019 PMID: 29793796
  38. Zelante, T.; Bozza, S.; De, L.A.; D'Angelo, C.; Bonifazi, P.; Moretti, S.; Giovannini, G.; Bistoni, F.; Romani, L. Th17 cells in the setting of Aspergillus infection and pathology. Med Mycol., 2009, 47(Suppl 1), S162-9.
  39. Haines, C.J.; Chen, Y.; Blumenschein, W.M.; Jain, R.; Chang, C.; Joyce-Shaikh, B.; Porth, K.; Boniface, K.; Mattson, J.; Basham, B.; Anderton, S.M.; McClanahan, T.K.; Sadekova, S.; Cua, D.J.; McGeachy, M.J. Autoimmune memory T helper 17 cell function and expansion are dependent on interleukin-23. Cell Rep., 2013, 3(5), 1378-1388. doi: 10.1016/j.celrep.2013.03.035 PMID: 23623497
  40. Lucas, S.; Ghilardi, N.; Li, J.; de Sauvage, F.J. IL-27 regulates IL-12 responsiveness of naïve CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15047-15052. doi: 10.1073/pnas.2536517100 PMID: 14657353
  41. Pflanz, S.; Timans, J.C.; Cheung, J.; Rosales, R.; Kanzler, H.; Gilbert, J.; Hibbert, L.; Churakova, T.; Travis, M.; Vaisberg, E.; Blumenschein, W.M.; Mattson, J.D.; Wagner, J.L.; To, W.; Zurawski, S.; McClanahan, T.K.; Gorman, D.M.; Bazan, J.F.; de Waal Malefyt, R.; Rennick, D.; Kastelein, R.A. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity, 2002, 16(6), 779-790. doi: 10.1016/S1074-7613(02)00324-2 PMID: 12121660
  42. Chyuan, I.T.; Lai, J.H. New insights into the IL-12 and IL-23: From a molecular basis to clinical application in immune-mediated inflammation and cancers. Biochem. Pharmacol., 2020, 175, 113928. doi: 10.1016/j.bcp.2020.113928 PMID: 32217101
  43. Floss, D.M.; Klöcker, T.; Schröder, J.; Lamertz, L.; Mrotzek, S.; Strobl, B.; Hermanns, H.; Scheller, J. Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases. Mol. Biol. Cell, 2016, 27(14), 2301-2316. doi: 10.1091/mbc.E14-12-1645 PMID: 27193299
  44. Liberman, A.C.; Refojo, D.; Arzt, E. Cytokine signaling/transcription factor cross-talk in T cell activation and Th1-Th2 differentiation. Arch. Immunol. Ther. Exp., 2003, 51(6), 351-365. PMID: 14692657
  45. Lederer, J.A.; Perez, V.L.; DesRoches, L.; Kim, S.M.; Abbas, A.K.; Lichtman, A.H. Cytokine transcriptional events during helper T cell subset differentiation. J. Exp. Med., 1996, 184(2), 397-406. doi: 10.1084/jem.184.2.397 PMID: 8760793
  46. Liu, J.; Cao, S.; Kim, S.; Chung, E.; Homma, Y.; Guan, X.; Jimenez, V.; Ma, X. Interleukin-12: an update on its immunological activities, signaling and regulation of gene expression. Curr. Immunol. Rev., 2005, 1(2), 119-137. doi: 10.2174/1573395054065115 PMID: 21037949
  47. Vignali, D.A.A.; Kuchroo, V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol., 2012, 13(8), 722-728. doi: 10.1038/ni.2366 PMID: 22814351
  48. Chang, J.T.; Segal, B.M.; Nakanishi, K.; Okamura, H.; Shevach, E.M. The costimulatory effect of IL-18 on the induction of antigen-specific IFN-γ production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor β2 subunit. Eur. J. Immunol., 2000, 30(4), 1113-1119. doi: 10.1002/(SICI)1521-4141(200004)30:43.0.CO;2-P PMID: 10760800
  49. Ishizaki, M.; Muromoto, R.; Akimoto, T.; Sekine, Y.; Kon, S.; Diwan, M.; Maeda, H.; Togi, S.; Shimoda, K.; Oritani, K.; Matsuda, T. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. Int. Immunol., 2014, 26(5), 257-267. doi: 10.1093/intimm/dxt062 PMID: 24345760
  50. Simon, L.S.; Taylor, P.C.; Choy, E.H.; Sebba, A.; Quebe, A.; Knopp, K.L.; Porreca, F. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. Semin. Arthritis Rheum., 2021, 51(1), 278-284. doi: 10.1016/j.semarthrit.2020.10.008 PMID: 33412435
  51. Muromoto, R.; Shimoda, K.; Oritani, K.; Matsuda, T. Therapeutic advantage of Tyk2 inhibition for treating autoimmune and chronic inflammatory diseases. Biol. Pharm. Bull., 2021, 44(11), 1585-1592. doi: 10.1248/bpb.b21-00609 PMID: 34719635
  52. Mannino, M.H.; Zhu, Z.; Xiao, H.; Bai, Q.; Wakefield, M.R.; Fang, Y. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett., 2015, 367(2), 103-107. doi: 10.1016/j.canlet.2015.07.009 PMID: 26188281
  53. Übel, C.; Mousset, S.; Trufa, D.; Sirbu, H.; Finotto, S. Establishing the role of tyrosine kinase 2 in cancer. OncoImmunology, 2013, 2(1), e22840. doi: 10.4161/onci.22840 PMID: 23482926
  54. Prchal-Murphy, M.; Witalisz-Siepracka, A.; Bednarik, K.T.; Putz, E.M.; Gotthardt, D.; Meissl, K.; Sexl, V.; Müller, M.; Strobl, B. In vivo tumor surveillance by NK cells requires TYK2 but not TYK2 kinase activity. OncoImmunology, 2015, 4(11), e1047579. doi: 10.1080/2162402X.2015.1047579 PMID: 26451322
  55. Qin, W.; Godec, A.; Zhang, X.; Zhu, C.; Shao, J.; Tao, Y.; Bu, X.; Hirbe, A.C. TYK2 promotes malignant peripheral nerve sheath tumor progression through inhibition of cell death. Cancer Med., 2019, 8(11), 5232-5241. doi: 10.1002/cam4.2386 PMID: 31278855
  56. Wöss, K.; Simonović, N.; Strobl, B.; Macho-Maschler, S.; Müller, M. TYK2: An upstream kinase of STATs in cancer. Cancers (Basel), 2019, 11(11), 1728. doi: 10.3390/cancers11111728 PMID: 31694222
  57. Silver, D.L.; Naora, H.; Liu, J.; Cheng, W.; Montell, D.J. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res., 2004, 64(10), 3550-3558. doi: 10.1158/0008-5472.CAN-03-3959 PMID: 15150111
  58. Song, X.C.; Fu, G.; Yang, X.; Jiang, Z.; Wang, Y.; Zhou, G.W. Protein expression profiling of breast cancer cells by dissociable antibody microarray (DAMA) staining. Mol. Cell. Proteomics, 2008, 7(1), 163-169. doi: 10.1074/mcp.M700115-MCP200 PMID: 17934210
  59. Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and therapy of psoriasis. Nature, 2007, 445(7130), 866-873. doi: 10.1038/nature05663 PMID: 17314973
  60. van der Fits, L.; Mourits, S.; Voerman, J.S.A.; Kant, M.; Boon, L.; Laman, J.D.; Cornelissen, F.; Mus, A.M.; Florencia, E.; Prens, E.P.; Lubberts, E. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol., 2009, 182(9), 5836-5845. doi: 10.4049/jimmunol.0802999 PMID: 19380832
  61. Balogh, E.A.; Bashyam, A.M.; Ghamrawi, R.I.; Feldman, S.R. Emerging systemic drugs in the treatment of plaque psoriasis. Expert Opin. Emerg. Drugs, 2020, 25(2), 89-100. doi: 10.1080/14728214.2020.1745773 PMID: 32192366
  62. Liu, S.; Ma, H.; Zhang, H.; Deng, C.; Xin, P. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clin. Immunol., 2021, 230, 108793. doi: 10.1016/j.clim.2021.108793 PMID: 34242749
  63. Peng, Y.; Chen, B.; Sheng, X.; Qian, Y. Polymorphisms in IRF5 and TYK2 genes are associated with rheumatoid arthritis in a Chinese Han population. Med. Sci. Monit., 2021, 27, e928455. doi: 10.12659/MSM.928455 PMID: 33583939
  64. Diogo, D.; Bastarache, L.; Liao, K.P.; Graham, R.R.; Fulton, R.S.; Greenberg, J.D.; Eyre, S.; Bowes, J.; Cui, J.; Lee, A.; Pappas, D.A.; Kremer, J.M.; Barton, A.; Coenen, M.J.H.; Franke, B.; Kiemeney, L.A.; Mariette, X.; Richard-Miceli, C.; Canhão, H.; Fonseca, J.E.; de Vries, N.; Tak, P.P.; Crusius, J.B.A.; Nurmohamed, M.T.; Kurreeman, F.; Mikuls, T.R.; Okada, Y.; Stahl, E.A.; Larson, D.E.; Deluca, T.L.; O’Laughlin, M.; Fronick, C.C.; Fulton, L.L.; Kosoy, R.; Ransom, M.; Bhangale, T.R.; Ortmann, W.; Cagan, A.; Gainer, V.; Karlson, E.W.; Kohane, I.; Murphy, S.N.; Martin, J.; Zhernakova, A.; Klareskog, L.; Padyukov, L.; Worthington, J.; Mardis, E.R.; Seldin, M.F.; Gregersen, P.K.; Behrens, T.; Raychaudhuri, S.; Denny, J.C.; Plenge, R.M. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One, 2015, 10(4), e0122271. doi: 10.1371/journal.pone.0122271 PMID: 25849893
  65. Faust, A.H.; Halpern, L.F.; Danoff-Burg, S.; Cross, R.K. Psychosocial factors contributing to inflammatory bowel disease activity and health-related quality of life. Gastroenterol. Hepatol., 2012, 8(3), 173-181. PMID: 22675279
  66. de Souza, H.S.P.; Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(1), 13-27. doi: 10.1038/nrgastro.2015.186 PMID: 26627550
  67. Roda, G.; Dal Buono, A.; Argollo, M.; Danese, S. JAK selectivity: More precision less troubles. Expert Rev. Gastroenterol. Hepatol., 2020, 14(9), 789-796. doi: 10.1080/17474124.2020.1780120 PMID: 32520647
  68. Danese, S.; Argollo, M.; Le Berre, C.; Peyrin-Biroulet, L. JAK selectivity for inflammatory bowel disease treatment: does it clinically matter? Gut, 2019, 68(10), 1893-1899. doi: 10.1136/gutjnl-2019-318448 PMID: 31227590
  69. McKeon, K.P.; Jiang, S.H. Treatment of systemic lupus erythematosus. Aust. Prescr., 2020, 43(3), 85-90. doi: 10.18773/austprescr.2020.022 PMID: 32675909
  70. Pawlak-Buś, K.; Schmidt, W.; Leszczyński, P. Lack of association between serum interleukin-23 and interleukin-27 levels and disease activity in patients with active systemic lupus erythematosus. J. Clin. Med., 2021, 10(20), 4788. doi: 10.3390/jcm10204788 PMID: 34682911
  71. Bengtsson, A.A.; Sturfelt, G.; Truedsson, L.; Blomberg, J.; Alm, G.; Vallin, H.; Rönnblom, L. Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus, 2000, 9(9), 664-671. doi: 10.1191/096120300674499064 PMID: 11199920
  72. Sigurdsson, S.; Nordmark, G.; Göring, H.H.H.; Lindroos, K.; Wiman, A.C.; Sturfelt, G.; Jönsen, A.; Rantapää-Dahlqvist, S.; Möller, B.; Kere, J.; Koskenmies, S.; Widén, E.; Eloranta, M.L.; Julkunen, H.; Kristjansdottir, H.; Steinsson, K.; Alm, G.; Rönnblom, L.; Syvänen, A.C. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet., 2005, 76(3), 528-537. doi: 10.1086/428480 PMID: 15657875
  73. Sharabi, A. Updates on clinical trials in systemic lupus erythematosus. Curr. Rheumatol. Rep., 2021, 23(7), 57. doi: 10.1007/s11926-021-01014-w PMID: 34212269
  74. Mallone, R.; Eizirik, D.L. Presumption of innocence for beta cells: Why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia, 2020, 63(10), 1999-2006. doi: 10.1007/s00125-020-05176-7 PMID: 32894310
  75. Op de Beeck, A.; Eizirik, D.L. Viral infections in type 1 diabetes mellitus-why the β cells? Nat. Rev. Endocrinol., 2016, 12(5), 263-273. doi: 10.1038/nrendo.2016.30 PMID: 27020257
  76. Marroqui, L.; Dos Santos, R.S.; Fløyel, T.; Grieco, F.A.; Santin, I.; Op de beeck, A.; Marselli, L.; Marchetti, P.; Pociot, F.; Eizirik, D.L. TYK2, a candidate gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes, 2015, 64(11), 3808-3817. doi: 10.2337/db15-0362 PMID: 26239055
  77. Toms, A.V.; Deshpande, A.; McNally, R.; Jeong, Y.; Rogers, J.M.; Kim, C.U.; Gruner, S.M.; Ficarro, S.B.; Marto, J.A.; Sattler, M.; Griffin, J.D.; Eck, M.J. Structure of a pseudokinase-domain switch that controls oncogenic activation of Jak kinases. Nat. Struct. Mol. Biol., 2013, 20(10), 1221-1223. doi: 10.1038/nsmb.2673 PMID: 24013208
  78. Saharinen, P.; Silvennoinen, O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J. Biol. Chem., 2002, 277(49), 47954-47963. doi: 10.1074/jbc.M205156200 PMID: 12351625
  79. Tokarski, J.S.; Zupa-Fernandez, A.; Tredup, J.A.; Pike, K.; Chang, C.; Xie, D.; Cheng, L.; Pedicord, D.; Muckelbauer, J.; Johnson, S.R.; Wu, S.; Edavettal, S.C.; Hong, Y.; Witmer, M.R.; Elkin, L.L.; Blat, Y.; Pitts, W.J.; Weinstein, D.S.; Burke, J.R. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes is blocked by pharmacological stabilization of its pseudokinase domain. J. Biol. Chem., 2015, 290(17), 11061-11074. doi: 10.1074/jbc.M114.619502 PMID: 25762719
  80. Burke, J.R.; Cheng, L.; Gillooly, K.M.; Strnad, J.; Zupa-Fernandez, A.; Catlett, I.M.; Zhang, Y.; Heimrich, E.M.; McIntyre, K.W.; Cunningham, M.D.; Carman, J.A.; Zhou, X.; Banas, D.; Chaudhry, C.; Li, S.; D'Arienzo, C.; Chimalakonda, A.; Yang, X.; Xie, J.H.; Pang, J.; Zhao, Q.; Rose, S.M.; Huang, J.; Moslin, R.M.; Wrobleski, S.T.; Weinstein, D.S.; Salter-Cid, L.M. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci. Transl. Med., 2019, 11(502), eaaw1736. doi: 10.1126/scitranslmed.aaw1736
  81. Nogueira, M.; Puig, L.; Torres, T. JAK inhibitors for treatment of psoriasis: Focus on selective TYK2 inhibitors. Drugs, 2020, 80(4), 341-352. doi: 10.1007/s40265-020-01261-8 PMID: 32020553
  82. Wrobleski, S.T.; Moslin, R.; Lin, S.; Zhang, Y.; Spergel, S.; Kempson, J.; Tokarski, J.S.; Strnad, J.; Zupa-Fernandez, A.; Cheng, L.; Shuster, D.; Gillooly, K.; Yang, X.; Heimrich, E.; McIntyre, K.W.; Chaudhry, C.; Khan, J.; Ruzanov, M.; Tredup, J.; Mulligan, D.; Xie, D.; Sun, H.; Huang, C.; D’Arienzo, C.; Aranibar, N.; Chiney, M.; Chimalakonda, A.; Pitts, W.J.; Lombardo, L.; Carter, P.H.; Burke, J.R.; Weinstein, D.S. Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J. Med. Chem., 2019, 62(20), 8973-8995. doi: 10.1021/acs.jmedchem.9b00444 PMID: 31318208
  83. Catlett, I.; Aras, U.; Liu, Y.; Bei, D.; Girgis, I.; Murthy, B.; Hon-czarenko, M.; Rose, S. ln: Rheumatology Proceedings of the Annual European Congress of Rheumatology, Madrid, Spain. June 14-17,2017, p. 859.
  84. Papp, K.; Gordon, K.; Thaçi, D.; Morita, A.; Gooderham, M.; Foley, P.; Girgis, I.G.; Kundu, S.; Banerjee, S. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N. Engl. J. Med., 2018, 379(14), 1313-1321. doi: 10.1056/NEJMoa1806382 PMID: 30205746
  85. Jiang, L.; Li, Z.; Rui, L. Leptin stimulates both JAK2-dependent and JAK2-independent signaling pathways. J. Biol. Chem., 2008, 283(42), 28066-28073. doi: 10.1074/jbc.M805545200 PMID: 18718905
  86. Liu, C.; Lin, J.; Langevine, C.; Smith, D.; Li, J.; Tokarski, J.S.; Khan, J.; Ruzanov, M.; Strnad, J.; Zupa-Fernandez, A.; Cheng, L.; Gillooly, K.M.; Shuster, D.; Zhang, Y.; Thankappan, A.; McIntyre, K.W.; Chaudhry, C.; Elzinga, P.A.; Chiney, M.; Chimalakonda, A.; Lombardo, L.J.; Macor, J.E.; Carter, P.H.; Burke, J.R.; Weinstein, D.S. Discovery of BMS-986202: A Clinical Tyk2 inhibitor that binds to Tyk2 JH2. J. Med. Chem., 2021, 64(1), 677-694. doi: 10.1021/acs.jmedchem.0c01698 PMID: 33370104
  87. Nash, O.; Omotuyi, O.; Lee, J.; Kwon, B.M.; Ogbadu, L. Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling. J. Mol. Model., 2015, 21(11), 280. doi: 10.1007/s00894-015-2821-z PMID: 26442513
  88. Gu, J.; Wang, Y.; Gu, X. Evolutionary analysis for functional divergence of Jak protein kinase domains and tissue-specific genes. J. Mol. Evol., 2002, 54(6), 725-733. doi: 10.1007/s00239-001-0072-3 PMID: 12029354
  89. Page, K.M.; Suarez-Farinas, M.; Suprun, M.; Zhang, W.; Garcet, S.; Fuentes-Duculan, J.; Li, X.; Scaramozza, M.; Kieras, E.; Banfield, C.; Clark, J.D.; Fensome, A.; Krueger, J.G.; Peeva, E. Molecular and cellular responses to the TYK2/JAK1 inhibitor PF-06700841 reveal reduction of skin inflammation in plaque psoriasis. J. Invest. Dermatol., 2020, 140(8), 1546-1555.e4. doi: 10.1016/j.jid.2019.11.027 PMID: 31972249
  90. Tehlirian, C.; Singh, R.S.P.; Pradhan, V.; Roberts, E.S.; Tarabar, S.; Peeva, E.; Vincent, M.S.; Gale, J.D. Oral tyrosine kinase 2 inhibitor PF-06826647 demonstrates efficacy and an acceptable safety profile in participants with moderate-to-severe plaque psoriasis in a phase 2b, randomized, double-blind, placebo-controlled study. J. Am. Acad. Dermatol., 2022, S0190-9622(22), 00552-7.
  91. Fensome, A.; Ambler, C.M.; Arnold, E.; Banker, M.E.; Brown, M.F.; Chrencik, J.; Clark, J.D.; Dowty, M.E.; Efremov, I.V.; Flick, A.; Gerstenberger, B.S.; Gopalsamy, A.; Hayward, M.M.; Hegen, M.; Hollingshead, B.D.; Jussif, J.; Knafels, J.D.; Limburg, D.C.; Lin, D.; Lin, T.H.; Pierce, B.S.; Saiah, E.; Sharma, R.; Symanowicz, P.T.; Telliez, J.B.; Trujillo, J.I.; Vajdos, F.F.; Vincent, F.; Wan, Z.K.; Xing, L.; Yang, X.; Yang, X.; Zhang, L. Dual Inhibition of TYK2 and JAK1 for the Treatment of Autoimmune Diseases: Discovery of (( S )-2,2-Difluorocyclopropyl)((1 R, 5 S )-3-(2-((1-methyl-1 H -pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo3.2.1octan-8-yl)methanone (PF-06700841). J. Med. Chem., 2018, 61(19), 8597-8612. doi: 10.1021/acs.jmedchem.8b00917 PMID: 30113844
  92. Banfield, C.; Scaramozza, M.; Zhang, W.; Kieras, E.; Page, K.M.; Fensome, A.; Vincent, M.; Dowty, M.E.; Goteti, K.; Winkle, P.J.; Peeva, E. The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J. Clin. Pharmacol., 2018, 58(4), 434-447. doi: 10.1002/jcph.1046 PMID: 29266308
  93. Forman, S.B.; Pariser, D.M.; Poulin, Y.; Vincent, M.S.; Gilbert, S.A.; Kieras, E.M.; Qiu, R.; Yu, D.; Papacharalambous, J.; Tehlirian, C.; Peeva, E. TYK2/JAK1 Inhibitor PF-06700841 in patients with plaque psoriasis: Phase IIa, randomized, double-blind, placebo-controlled trial. J. Invest. Dermatol., 2020, 140(12), 2359-2370.e5. doi: 10.1016/j.jid.2020.03.962 PMID: 32311398
  94. Danese, S.; Peyrin-Biroulet, L. Selective tyrosine kinase 2 inhibition for treatment of inflammatory bowel disease: New hope on the rise. Inflamm. Bowel Dis., 2021, 27(12), 2023-2030. doi: 10.1093/ibd/izab135 PMID: 34089259
  95. Jo, C.E.; Gooderham, M.; Beecker, J. TYK 2 inhibitors for the treatment of dermatologic conditions: The evolution of JAK inhibitors. Int. J. Dermatol., 2022, 61(2), 139-147. doi: 10.1111/ijd.15605 PMID: 33929045
  96. Singh, R.S.P.; Pradhan, V.; Roberts, E.S.; Scaramozza, M.; Kieras, E.; Gale, J.D.; Peeva, E.; Vincent, M.S.; Banerjee, A.; Fensome, A.; Dowty, M.E.; Winkle, P.; Tehlirian, C. Safety and pharmacokinetics of the oral TYK2 inhibitor PF-06826647: A phase I, randomized, double-blind, placebo-controlled, dose-escalation study. Clin. Transl. Sci., 2021, 14(2), 671-682. doi: 10.1111/cts.12929 PMID: 33290616
  97. Gerstenberger, B.S.; Ambler, C.; Arnold, E.P.; Banker, M.E.; Brown, M.F.; Clark, J.D.; Dermenci, A.; Dowty, M.E.; Fensome, A.; Fish, S.; Hayward, M.M.; Hegen, M.; Hollingshead, B.D.; Knafels, J.D.; Lin, D.W.; Lin, T.H.; Owen, D.R.; Saiah, E.; Sharma, R.; Vajdos, F.F.; Xing, L.; Yang, X.; Yang, X.; Wright, S.W. Discovery of tyrosine kinase 2 (TYK2) inhibitor (PF-06826647) for the treatment of autoimmune diseases. J. Med. Chem., 2020, 63(22), 13561-13577. doi: 10.1021/acs.jmedchem.0c00948 PMID: 32787094
  98. Krueger, J.G.; McInnes, I.B.; Blauvelt, A. Tyrosine kinase 2 and Janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J. Am. Acad. Dermatol., 2022, 86(1), 148-157. doi: 10.1016/j.jaad.2021.06.869 PMID: 34224773
  99. Tanaka, Y.; Okumura, H.; Kim, S.; Dorey, J.; Wojciechowski, P.; Chorąży, J.; Kato, D.; Schultz, N.M. Comparative efficacy and safety of peficitinib versus tofacitinib and baricitinib for treatment of rheumatoid arthritis: A systematic review and network meta-analysis. Rheumatol. Ther., 2021, 8(2), 729-750. doi: 10.1007/s40744-021-00284-1 PMID: 33725321
  100. Kaneko, Y. Efficacy and safety of peficitinib in rheumatoid arthritis. Mod. Rheumatol., 2020, 30(5), 773-778. doi: 10.1080/14397595.2020.1794103 PMID: 32643492
  101. Hamaguchi, H.; Amano, Y.; Moritomo, A.; Shirakami, S.; Nakajima, Y.; Nakai, K.; Nomura, N.; Ito, M.; Higashi, Y.; Inoue, T. Discovery and structural characterization of peficitinib (ASP015K) as a novel and potent JAK inhibitor. Bioorg. Med. Chem., 2018, 26(18), 4971-4983. doi: 10.1016/j.bmc.2018.08.005 PMID: 30145050
  102. Akahane, K.; Li, Z.; Etchin, J.; Berezovskaya, A.; Gjini, E.; Masse, C.E.; Miao, W.; Rocnik, J.; Kapeller, R.; Greenwood, J.R.; Tiv, H.; Sanda, T.; Weinstock, D.M.; Look, A.T. Anti-leukaemic activity of the TYK2 selective inhibitor NDI-031301 in T-cell acute lymphoblastic leukaemia. Br. J. Haematol., 2017, 177(2), 271-282. doi: 10.1111/bjh.14563 PMID: 28295194
  103. Norman, P. Selective JAK1 inhibitor and selective Tyk2 inhibitor patents. Expert Opin. Ther. Pat., 2012, 22(10), 1233-1249. doi: 10.1517/13543776.2012.723693 PMID: 22971156
  104. Yogo, T.; Nagamiya, H.; Seto, M.; Sasaki, S.; Shih-Chung, H.; Ohba, Y.; Tokunaga, N.; Lee, G.N.; Rhim, C.Y.; Yoon, C.H.; Cho, S.Y.; Skene, R.; Yamamoto, S.; Satou, Y.; Kuno, M.; Miyazaki, T.; Nakagawa, H.; Okabe, A.; Marui, S.; Aso, K.; Yoshida, M. Structure-based design and synthesis of 3-amino-1,5-dihydro-4 H -pyrazolopyridin-4-one derivatives as tyrosine kinase 2 inhibitors. J. Med. Chem., 2016, 59(2), 733-749. doi: 10.1021/acs.jmedchem.5b01857 PMID: 26701356
  105. He, X.; Chen, X.; Zhang, H.; Xie, T.; Ye, X.Y. Selective Tyk2 inhibitors as potential therapeutic agents: a patent review (2015–2018). Expert Opin. Ther. Pat., 2019, 29(2), 137-149. doi: 10.1080/13543776.2019.1567713 PMID: 30621465
  106. Gonzalez Lopez de Turiso, F.; Guckian, K. Selective TYK2 inhibitors as potential therapeutic agents: A patent review (2019–2021). Expert Opin. Ther. Pat., 2022, 32(4), 365-379. doi: 10.1080/13543776.2022.2026927 PMID: 35001782
  107. Dymock, B.W.; See, C.S. Inhibitors of JAK2 and JAK3: an update on the patent literature 2010 – 2012. Expert Opin. Ther. Pat., 2013, 23(4), 449-501. doi: 10.1517/13543776.2013.765862 PMID: 23367873
  108. Kettle, J.G.; Åstrand, A.; Catley, M.; Grimster, N.P.; Nilsson, M.; Su, Q.; Woessner, R. Inhibitors of JAK-family kinases: An update on the patent literature 2013-2015, part 1. Expert Opin. Ther. Pat., 2017, 27(2), 127-143. doi: 10.1080/13543776.2017.1252753 PMID: 27774824

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers