Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation
- 作者: Zhong H.1, Liu H.2, Liu H.3
-
隶属关系:
- College of Pharmaceutical Sciences, Zhejiang University
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University
- Faculty of Applied Science, Macao Polytechnic University
- 期: 卷 31, 编号 20 (2024)
- 页面: 2855-2871
- 栏目: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/645207
- DOI: https://doi.org/10.2174/0929867330666230409145247
- ID: 645207
如何引用文章
全文:
详细
Tau dysfunction has a close association with many neurodegenerative diseases, which are collectively referred to as tauopathies. Neurofibrillary tangles (NFTs) formed by misfolding and aggregation of tau are the main pathological process of tauopathy. Therefore, uncovering the misfolding and aggregation mechanism of tau protein will help to reveal the pathogenic mechanism of tauopathies. Molecular dynamics (MD) simulation is well suited for studying the dynamic process of protein structure changes. It provides detailed information on protein structure changes over time at the atomic resolution. At the same time, MD simulation can also simulate various conditions conveniently. Based on these advantages, MD simulations are widely used to study conformational transition problems such as protein misfolding and aggregation. Here, we summarized the structural features of tau, the factors affecting its misfolding and aggregation, and the applications of MD simulations in the study of tau misfolding and aggregation.
作者简介
Haiyang Zhong
College of Pharmaceutical Sciences, Zhejiang University
Email: info@benthamscience.net
Hongli Liu
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University
Email: info@benthamscience.net
Huanxiang Liu
Faculty of Applied Science, Macao Polytechnic University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA, 1975, 72(5), 1858-1862. doi: 10.1073/pnas.72.5.1858 PMID: 1057175
- Kosik, K.S. The molecular and cellular biology of tau. Brain Pathol., 1993, 3(1), 39-43. doi: 10.1111/j.1750-3639.1993.tb00724.x PMID: 8269082
- Gustke, N.; Trinczek, B.; Biernat, J.; Mandelkow, E.M.; Mandelkow, E. Domains of tau protein and interactions with microtubules. Biochemistry, 1994, 33(32), 9511-9522. doi: 10.1021/bi00198a017 PMID: 8068626
- Andreadis, A. Misregulation of tau alternative splicing in neurodegeneration and dementia. Prog. Mol. Subcell. Biol., 2006, 44, 89-107. doi: 10.1007/978-3-540-34449-0_5 PMID: 17076266
- Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimers disease. Neuron, 1989, 3(4), 519-526. doi: 10.1016/0896-6273(89)90210-9 PMID: 2484340
- Lee, V.M.Y.; Goedert, M.; Trojanowski, J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci., 2001, 24(1), 1121-1159. doi: 10.1146/annurev.neuro.24.1.1121 PMID: 11520930
- Morris, M.; Maeda, S.; Vossel, K.; Mucke, L. The many faces of tau. Neuron, 2011, 70(3), 410-426. doi: 10.1016/j.neuron.2011.04.009 PMID: 21555069
- Cleveland, D.W.; Hwo, S.Y.; Kirschner, M.W. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol., 1977, 116(2), 227-247. doi: 10.1016/0022-2836(77)90214-5 PMID: 146092
- Skrabana, R.; Sevcik, J.; Novak, M. Intrinsically disordered proteins in the neurodegenerative processes: formation of tau protein paired helical filaments and their analysis. Cell. Mol. Neurobiol., 2006, 26(7-8), 1083-1095. doi: 10.1007/s10571-006-9083-3 PMID: 16779670
- Jeganathan, S.; von Bergen, M.; Brutlach, H.; Steinhoff, H.J.; Mandelkow, E. Global hairpin folding of tau in solution. Biochemistry, 2006, 45(7), 2283-2293. doi: 10.1021/bi0521543 PMID: 16475817
- Irwin, D.J.; Cohen, T.J.; Grossman, M.; Arnold, S.E.; Xie, S.X.; Lee, V.M.Y.; Trojanowski, J.Q. Acetylated tau, a novel pathological signature in Alzheimers disease and other tauopathies. Brain, 2012, 135(3), 807-818. doi: 10.1093/brain/aws013 PMID: 22366796
- Alonso, A.C.; Grundke-Iqbal, I.; Iqbal, K. Alzheimers disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med., 1996, 2(7), 783-787. doi: 10.1038/nm0796-783 PMID: 8673924
- Haase, C.; Stieler, J.T.; Arendt, T.; Holzer, M. Pseudophosphorylation of tau protein alters its ability for self-aggregation. J. Neurochem., 2004, 88(6), 1509-1520. doi: 10.1046/j.1471-4159.2003.02287.x PMID: 15009652
- Huvent, I.; Kamah, A.; Cantrelle, F.X.; Barois, N.; Slomianny, C.; Smet-Nocca, C.; Landrieu, I.; Lippens, G. A functional fragment of Tau forms fibers without the need for an intermolecular cysteine bridge. Biochem. Biophys. Res. Commun., 2014, 445(2), 299-303. doi: 10.1016/j.bbrc.2014.01.161 PMID: 24502945
- Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimers disease. Nature, 2017, 547(7662), 185-190. doi: 10.1038/nature23002 PMID: 28678775
- Falcon, B.; Zhang, W.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Vidal, R.; Crowther, R.A.; Ghetti, B.; Scheres, S.H.W.; Goedert, M. Structures of filaments from Picks disease reveal a novel tau protein fold. Nature, 2018, 561(7721), 137-140. doi: 10.1038/s41586-018-0454-y PMID: 30158706
- Falcon, B.; Zivanov, J.; Zhang, W.; Murzin, A.G.; Garringer, H.J.; Vidal, R.; Crowther, R.A.; Newell, K.L.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature, 2019, 568(7752), 420-423. doi: 10.1038/s41586-019-1026-5 PMID: 30894745
- Zhang, W.; Falcon, B.; Murzin, A.G.; Fan, J.; Crowther, R.A.; Goedert, M.; Scheres, S.H.W. Heparin-induced tau filaments are polymorphic and differ from those in Alzheimers and Picks diseases. eLife, 2019, 8, e43584. doi: 10.7554/eLife.43584 PMID: 30720432
- Auer, I.A.; Schmidt, M.L.; Lee, V.M.Y.; Curry, B.; Suzuki, K.; Shin, R.W.; Pentchev, P.G.; Carstea, E.D.; Trojanowski, J.Q. Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimers disease. Acta Neuropathol., 1995, 90(6), 547-551. doi: 10.1007/BF00318566 PMID: 8615074
- Goedert, M.; Klug, A.; Crowther, R.A. Tau protein, the paired helical filament and Alzheimers disease. J. Alzheimers Dis., 2006, 9(s3)(Suppl.), 195-207. doi: 10.3233/JAD-2006-9S323 PMID: 16914859
- Goedert, M.; Klug, A. Tau protein and the paired helical filament of Alzheimers disease. Brain Res. Bull., 1999, 50(5-6), 469-470. doi: 10.1016/S0361-9230(99)00138-0 PMID: 10643488
- Yang, L.; Ksiezak-Reding, H. Ubiquitin immunoreactivity of paired helical filaments differs in Alzheimers disease and corticobasal degeneration. Acta Neuropathol., 1998, 96(5), 520-526. doi: 10.1007/s004010050928 PMID: 9829817
- Morris, R.G.; Kopelman, M.D. The memory deficits in Alzheimer-type dementia: a review. Q. J. Exp. Psychol. A, 1986, 38(4), 575-602. doi: 10.1080/14640748608401615 PMID: 3544082
- Alzheimers disease facts and figures. Alzheimers Dement., 2022, 18(4), 700-789. doi: 10.1002/alz.12638 PMID: 35289055
- Ittner, L.M.; Götz, J. Amyloid-β and tau-a toxic pas de deux in Alzheimers disease. Nat. Rev. Neurosci., 2011, 12(2), 67-72. doi: 10.1038/nrn2967 PMID: 21193853
- Hardy, J.A.; Higgins, G.A. Alzheimers disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185. doi: 10.1126/science.1566067 PMID: 1566067
- Aisen, P.S.; Saumier, D.; Briand, R.; Laurin, J.; Gervais, F.; Tremblay, P.; Garceau, D. A Phase II study targeting amyloid- with 3APS in mild-to-moderate Alzheimer disease. Neurology, 2006, 67(10), 1757-1763. doi: 10.1212/01.wnl.0000244346.08950.64 PMID: 17082468
- Wilcock, G.K.; Black, S.E.; Hendrix, S.B.; Zavitz, K.H.; Swabb, E.A.; Laughlin, M.A. Efficacy and safety of tarenflurbil in mild to moderate Alzheimers disease: a randomised phase II trial. Lancet Neurol., 2008, 7(6), 483-493. doi: 10.1016/S1474-4422(08)70090-5 PMID: 18450517
- Ryan, J.M.; Grundman, M. Anti-amyloid-β immunotherapy in Alzheimers disease: ACC-001 clinical trials are ongoing. J. Alzheimers Dis., 2009, 17(2), 243-243. doi: 10.3233/JAD-2009-1118 PMID: 19502708
- Mudher, A.; Lovestone, S. Alzheimers disease-do tauists and baptists finally shake hands? Trends Neurosci., 2002, 25(1), 22-26. doi: 10.1016/S0166-2236(00)02031-2 PMID: 11801334
- Arriagada, P.V.; Marzloff, K.; Hyman, B.T. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimers disease. Neurology, 1992, 42(9), 1681-1688. doi: 10.1212/WNL.42.9.1681 PMID: 1307688
- Goedert, M.; Eisenberg, D.S.; Crowther, R.A. Propagation of tau aggregates and neurodegeneration. Annu. Rev. Neurosci., 2017, 40(1), 189-210. doi: 10.1146/annurev-neuro-072116-031153 PMID: 28772101
- Li, C.; Götz, J. Tau-based therapies in neurodegeneration: opportunities and challenges. Nat. Rev. Drug Discov., 2017, 16(12), 863-883. doi: 10.1038/nrd.2017.155 PMID: 28983098
- de Calignon, A.; Polydoro, M.; Suárez-Calvet, M.; William, C.; Adamowicz, D.H.; Kopeikina, K.J.; Pitstick, R.; Sahara, N.; Ashe, K.H.; Carlson, G.A.; Spires-Jones, T.L.; Hyman, B.T. Propagation of tau pathology in a model of early Alzheimers disease. Neuron, 2012, 73(4), 685-697. doi: 10.1016/j.neuron.2011.11.033 PMID: 22365544
- Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1986, 83(11), 4044-4048. doi: 10.1073/pnas.83.11.4044 PMID: 2424016
- Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75(1), 333-366. doi: 10.1146/annurev.biochem.75.101304.123901 PMID: 16756495
- Hofrichter, J.; Ross, P.D.; Eaton, W.A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc. Natl. Acad. Sci. USA, 1974, 71(12), 4864-4868. doi: 10.1073/pnas.71.12.4864 PMID: 4531026
- Lee, C.C.; Nayak, A.; Sethuraman, A.; Belfort, G.; McRae, G.J. A three-stage kinetic model of amyloid fibrillation. Biophys. J., 2007, 92(10), 3448-3458. doi: 10.1529/biophysj.106.098608 PMID: 17325005
- Nguyen, P.H.; Li, M.S.; Stock, G.; Straub, J.E.; Thirumalai, D. Monomer adds to preformed structured oligomers of Aβ-peptides by a two-stage docklock mechanism. Proc. Natl. Acad. Sci. USA, 2007, 104(1), 111-116. doi: 10.1073/pnas.0607440104 PMID: 17190811
- Lee, H.E.; Lim, D.; Lee, J.Y.; Lim, S.M.; Pae, A.N. Recent tau-targeted clinical strategies for the treatment of Alzheimers disease. Future Med. Chem., 2019, 11(15), 1845-1848. doi: 10.4155/fmc-2019-0151 PMID: 31517533
- Jucker, M.; Walker, L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 2013, 501(7465), 45-51. doi: 10.1038/nature12481 PMID: 24005412
- Lasagna-Reeves, C.A.; Castillo-Carranza, D.L.; Sengupta, U.; Sarmiento, J.; Troncoso, J.; Jackson, G.R.; Kayed, R. Identification of oligomers at early stages of tau aggregation in Alzheimers disease. FASEB J., 2012, 26(5), 1946-1959. doi: 10.1096/fj.11-199851 PMID: 22253473
- Sharma, A.M.; Thomas, T.L.; Woodard, D.R.; Kashmer, O.M.; Diamond, M.I. Tau monomer encodes strains. eLife, 2018, 7, e37813. doi: 10.7554/eLife.37813 PMID: 30526844
- Schweers, O.; Mandelkow, E.M.; Biernat, J.; Mandelkow, E. Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc. Natl. Acad. Sci. USA, 1995, 92(18), 8463-8467. doi: 10.1073/pnas.92.18.8463 PMID: 7667312
- Ghosh, P.; Vaidya, A.; Kumar, A.; Rangachari, V. Determination of critical nucleation number for a single nucleation amyloid-β aggregation model. Math. Biosci., 2016, 273, 70-79. doi: 10.1016/j.mbs.2015.12.004 PMID: 26774039
- von Bergen, M.; Friedhoff, P.; Biernat, J.; Heberle, J.; Mandelkow, E.M.; Mandelkow, E. Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif ( 306 VQIVYK 311 ) forming β structure. Proc. Natl. Acad. Sci. USA, 2000, 97(10), 5129-5134. doi: 10.1073/pnas.97.10.5129 PMID: 10805776
- Daebel, V.; Chinnathambi, S.; Biernat, J.; Schwalbe, M.; Habenstein, B.; Loquet, A.; Akoury, E.; Tepper, K.; Müller, H.; Baldus, M.; Griesinger, C.; Zweckstetter, M.; Mandelkow, E.; Vijayan, V.; Lange, A. β-Sheet core of tau paired helical filaments revealed by solid-state NMR. J. Am. Chem. Soc., 2012, 134(34), 13982-13989. doi: 10.1021/ja305470p PMID: 22862303
- Seidler, P.M.; Boyer, D.R.; Rodriguez, J.A.; Sawaya, M.R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D.S. Structure-based inhibitors of tau aggregation. Nat. Chem., 2018, 10(2), 170-176. doi: 10.1038/nchem.2889 PMID: 29359764
- von Bergen, M.; Barghorn, S.; Jeganathan, S.; Mandelkow, E.M.; Mandelkow, E. Spectroscopic approaches to the conformation of tau protein in solution and in paired helical filaments. Neurodegener. Dis., 2006, 3(4-5), 197-206. doi: 10.1159/000095257 PMID: 17047358
- Liu, H.; Zhong, H.; Xu, Z.; Zhang, Q.; Shah, S.J.A.; Liu, H.; Yao, X. The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Phys. Chem. Chem. Phys., 2020, 22(19), 10968-10980. doi: 10.1039/C9CP06954B PMID: 32392276
- von Bergen, M.; Barghorn, S.; Li, L.; Marx, A.; Biernat, J.; Mandelkow, E.M.; Mandelkow, E. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. J. Biol. Chem., 2001, 276(51), 48165-48174. doi: 10.1074/jbc.M105196200 PMID: 11606569
- Ganguly, P.; Do, T.D.; Larini, L.; LaPointe, N.E.; Sercel, A.J.; Shade, M.F.; Feinstein, S.C.; Bowers, M.T.; Shea, J.E. Tau assembly: The dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J. Phys. Chem. B, 2015, 119(13), 4582-4593. doi: 10.1021/acs.jpcb.5b00175 PMID: 25775228
- Schwalbe, M.; Kadavath, H.; Biernat, J.; Ozenne, V.; Blackledge, M.; Mandelkow, E.; Zweckstetter, M. Structural impact of tau phosphorylation at threonine 231. Structure, 2015, 23(8), 1448-1458. doi: 10.1016/j.str.2015.06.002 PMID: 26165593
- Martin, L.; Latypova, X.; Terro, F. Post-translational modifications of tau protein: Implications for Alzheimers disease. Neurochem. Int., 2011, 58(4), 458-471. doi: 10.1016/j.neuint.2010.12.023 PMID: 21215781
- Gong, C.X.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K. Post-translational modifications of tau protein in Alzheimers disease. J. Neural Transm., 2005, 112(6), 813-838. doi: 10.1007/s00702-004-0221-0 PMID: 15517432
- Wesseling, H.; Mair, W.; Kumar, M.; Schlaffner, C.N.; Tang, S.; Beerepoot, P.; Fatou, B.; Guise, A.J.; Cheng, L.; Takeda, S.; Muntel, J.; Rotunno, M.S.; Dujardin, S.; Davies, P.; Kosik, K.S.; Miller, B.L.; Berretta, S.; Hedreen, J.C.; Grinberg, L.T.; Seeley, W.W.; Hyman, B.T.; Steen, H.; Steen, J.A. Tau PTM profiles identify patient heterogeneity and stages of Alzheimers disease. Cell, 2020, 183(6), 1699-1713.e13. doi: 10.1016/j.cell.2020.10.029 PMID: 33188775
- Craven, K.M.; Kochen, W.R.; Hernandez, C.M.; Flinn, J.M. Zinc exacerbates tau pathology in a tau mouse model. J. Alzheimers Dis., 2018, 64(2), 617-630. doi: 10.3233/JAD-180151 PMID: 29914030
- Goedert, M.; Jakes, R.; Spillantini, M.G.; Hasegawa, M.; Smith, M.J.; Crowther, R.A. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature, 1996, 383(6600), 550-553. doi: 10.1038/383550a0 PMID: 8849730
- Haj-Yahya, M.; Lashuel, H.A. Protein semisynthesis protein semisynthesis provides access to tau disease-associated post-translational modifications (PTMs) and paves the way to deciphering the tau PTM code in health and diseased states. J. Am. Chem. Soc., 2018, 140(21), 6611-6621. doi: 10.1021/jacs.8b02668 PMID: 29684271
- Alonso, A.C.; Zaidi, T.; Novak, M.; Grundke-Iqbal, I.; Iqbal, K. Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. USA, 2001, 98(12), 6923-6928. doi: 10.1073/pnas.121119298 PMID: 11381127
- Cohen, T.J.; Guo, J.L.; Hurtado, D.E.; Kwong, L.K.; Mills, I.P.; Trojanowski, J.Q.; Lee, V.M.Y. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun., 2011, 2(1), 252. doi: 10.1038/ncomms1255 PMID: 21427723
- Thomas, S.N.; Funk, K.E.; Wan, Y.; Liao, Z.; Davies, P.; Kuret, J.; Yang, A.J. Dual modification of Alzheimers disease PHF-tau protein by lysine methylation and ubiquitylation: A mass spectrometry approach. Acta Neuropathol., 2012, 123(1), 105-117. doi: 10.1007/s00401-011-0893-0 PMID: 22033876
- Arnold, C.S.; Johnson, G.W.; Cole, R.N.; Dong, D.L.Y.; Lee, M.; Hart, G.W. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem., 1996, 271(46), 28741-28744. doi: 10.1074/jbc.271.46.28741 PMID: 8910513
- Dorval, V.; Fraser, P.E. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and α-synuclein. J. Biol. Chem., 2006, 281(15), 9919-9924. doi: 10.1074/jbc.M510127200 PMID: 16464864
- Hanger, D.P.; Anderton, B.H.; Noble, W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med., 2009, 15(3), 112-119. doi: 10.1016/j.molmed.2009.01.003 PMID: 19246243
- Hasegawa, M.; Jakes, R.; Crowther, R.A.; Lee, V.M.Y.; Ihara, Y.; Goedert, M. Characterization of mAb AP422, a novel phosphorylation-dependent monoclonal antibody against tau protein. FEBS Lett., 1996, 384(1), 25-30. doi: 10.1016/0014-5793(96)00271-2 PMID: 8797796
- Wada, Y.; Ishiguro, K.; Itoh, T.J.; Uchida, T.; Hotani, H.; Saito, T.; Kishimoto, T.; Hisanaga, S. Microtubule-stimulated phosphorylation of tau at Ser202 and Thr205 by cdk5 decreases its microtubule nucleation activity. J. Biochem., 1998, 124(4), 738-746. doi: 10.1093/oxfordjournals.jbchem.a022174 PMID: 9756618
- Xia, Y.; Prokop, S.; Gorion, K.M.M.; Kim, J.D.; Sorrentino, Z.A.; Bell, B.M.; Manaois, A.N.; Chakrabarty, P.; Davies, P.; Giasson, B.I. Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimers disease and other tauopathies. Acta Neuropathol. Commun., 2020, 8(1), 88. doi: 10.1186/s40478-020-00967-w PMID: 32571418
- Despres, C.; Byrne, C.; Qi, H.; Cantrelle, F.X.; Huvent, I.; Chambraud, B.; Baulieu, E.E.; Jacquot, Y.; Landrieu, I.; Lippens, G.; Smet-Nocca, C. Identification of the Tau phosphorylation pattern that drives its aggregation. Proc. Natl. Acad. Sci. USA, 2017, 114(34), 9080-9085. doi: 10.1073/pnas.1708448114 PMID: 28784767
- Shin, M.K.; Vázquez-Rosa, E.; Koh, Y.; Dhar, M.; Chaubey, K.; Cintrón-Pérez, C.J.; Barker, S.; Miller, E.; Franke, K.; Noterman, M.F.; Seth, D.; Allen, R.S.; Motz, C.T.; Rao, S.R.; Skelton, L.A.; Pardue, M.T.; Fliesler, S.J.; Wang, C.; Tracy, T.E.; Gan, L.; Liebl, D.J.; Savarraj, J.P.J.; Torres, G.L.; Ahnstedt, H.; McCullough, L.D.; Kitagawa, R.S.; Choi, H.A.; Zhang, P.; Hou, Y.; Chiang, C.W.; Li, L.; Ortiz, F.; Kilgore, J.A.; Williams, N.S.; Whitehair, V.C.; Gefen, T.; Flanagan, M.E.; Stamler, J.S.; Jain, M.K.; Kraus, A.; Cheng, F.; Reynolds, J.D.; Pieper, A.A. Reducing acetylated tau is neuroprotective in brain injury. Cell, 2021, 184(10), 2715-2732.e23. doi: 10.1016/j.cell.2021.03.032 PMID: 33852912
- Tracy, T.E.; Sohn, P.D.; Minami, S.S.; Wang, C.; Min, S.W.; Li, Y.; Zhou, Y.; Le, D.; Lo, I.; Ponnusamy, R.; Cong, X.; Schilling, B.; Ellerby, L.M.; Huganir, R.L.; Gan, L. Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy-related memory loss. Neuron, 2016, 90(2), 245-260. doi: 10.1016/j.neuron.2016.03.005 PMID: 27041503
- Luo, H.B.; Xia, Y.Y.; Shu, X.J.; Liu, Z.C.; Feng, Y.; Liu, X.H.; Yu, G.; Yin, G.; Xiong, Y.S.; Zeng, K.; Jiang, J.; Ye, K.; Wang, X.C.; Wang, J.Z. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc. Natl. Acad. Sci. USA, 2014, 111(46), 16586-16591. doi: 10.1073/pnas.1417548111 PMID: 25378699
- Clark, L.N.; Poorkaj, P.; Wszolek, Z.; Geschwind, D.H.; Nasreddine, Z.S.; Miller, B.; Li, D.; Payami, H.; Awert, F.; Markopoulou, K.; Andreadis, A.; DSouza, I.; Lee, V.M.Y.; Reed, L.; Trojanowski, J.Q.; Zhukareva, V.; Bird, T.; Schellenberg, G.; Wilhelmsen, K.C. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc. Natl. Acad. Sci. USA, 1998, 95(22), 13103-13107. doi: 10.1073/pnas.95.22.13103 PMID: 9789048
- Coppola, G.; Chinnathambi, S.; Lee, J.J.; Dombroski, B.A.; Baker, M.C.; Soto-Ortolaza, A.I.; Lee, S.E.; Klein, E.; Huang, A.Y.; Sears, R.; Lane, J.R.; Karydas, A.M.; Kenet, R.O.; Biernat, J.; Wang, L.S.; Cotman, C.W.; DeCarli, C.S.; Levey, A.I.; Ringman, J.M.; Mendez, M.F.; Chui, H.C.; Le Ber, I.; Brice, A.; Lupton, M.K.; Preza, E.; Lovestone, S.; Powell, J.; Graff-Radford, N.; Petersen, R.C.; Boeve, B.F.; Lippa, C.F.; Bigio, E.H.; Mackenzie, I.; Finger, E.; Kertesz, A.; Caselli, R.J.; Gearing, M.; Juncos, J.L.; Ghetti, B.; Spina, S.; Bordelon, Y.M.; Tourtellotte, W.W.; Frosch, M.P.; Vonsattel, J.P.G.; Zarow, C.; Beach, T.G.; Albin, R.L.; Lieberman, A.P.; Lee, V.M.; Trojanowski, J.Q.; Van Deerlin, V.M.; Bird, T.D.; Galasko, D.R.; Masliah, E.; White, C.L.; Troncoso, J.C.; Hannequin, D.; Boxer, A.L.; Geschwind, M.D.; Kumar, S.; Mandelkow, E.M.; Wszolek, Z.K.; Uitti, R.J.; Dickson, D.W.; Haines, J.L.; Mayeux, R.; Pericak-Vance, M.A.; Farrer, L.A.; Ross, O.A.; Rademakers, R.; Schellenberg, G.D.; Miller, B.L.; Mandelkow, E.; Geschwind, D.H. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimers diseases. Hum. Mol. Genet., 2012, 21(15), 3500-3512. doi: 10.1093/hmg/dds161 PMID: 22556362
- Kouri, N.; Carlomagno, Y.; Baker, M.; Liesinger, A.M.; Caselli, R.J.; Wszolek, Z.K.; Petrucelli, L.; Boeve, B.F.; Parisi, J.E.; Josephs, K.A.; Uitti, R.J.; Ross, O.A.; Graff-Radford, N.R.; DeTure, M.A.; Dickson, D.W.; Rademakers, R. Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol., 2014, 127(2), 271-282. doi: 10.1007/s00401-013-1193-7 PMID: 24121548
- Hasegawa, M.; Smith, M.J.; Goedert, M. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett., 1998, 437(3), 207-210. doi: 10.1016/S0014-5793(98)01217-4 PMID: 9824291
- Hong, M.; Zhukareva, V.; Vogelsberg-Ragaglia, V.; Wszolek, Z.; Reed, L.; Miller, B.I.; Geschwind, D.H.; Bird, T.D.; McKeel, D.; Goate, A.; Morris, J.C.; Wilhelmsen, K.C.; Schellenberg, G.D.; Trojanowski, J.Q.; Lee, V.M. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 1998, 282(5395), 1914-1917. doi: 10.1126/science.282.5395.1914 PMID: 9836646
- Meyer, V.; Dinkel, P.D.; Luo, Y.; Yu, X.; Wei, G.; Zheng, J.; Eaton, G.R.; Ma, B.; Nussinov, R.; Eaton, S.S.; Margittai, M. Single mutations in tau modulate the populations of fibril conformers through seed selection. Angew. Chem. Int. Ed., 2014, 53(6), 1590-1593. doi: 10.1002/anie.201308473 PMID: 24453187
- Strang, K.H.; Croft, C.L.; Sorrentino, Z.A.; Chakrabarty, P.; Golde, T.E.; Giasson, B.I. Distinct differences in prion-like seeding and aggregation between Tau protein variants provide mechanistic insights into tauopathies. J. Biol. Chem., 2018, 293(7), 2408-2421. doi: 10.1074/jbc.M117.815357 PMID: 29259137
- Delisle, M.B.; Murrell, J.R.; Richardson, R.; Trofatter, J.A.; Rascol, O.; Soulages, X.; Mohr, M.; Calvas, P.; Ghetti, B. A mutation at codon 279 (N279K) in exon 10 of the Tau gene causes a tauopathy with dementia and supranuclear palsy. Acta Neuropathol., 1999, 98(1), 62-77. doi: 10.1007/s004010051052 PMID: 10412802
- Hasegawa, M.; Smith, M.J.; Iijima, M.; Tabira, T.; Goedert, M. FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett., 1999, 443(2), 93-96. doi: 10.1016/S0014-5793(98)01696-2 PMID: 9989582
- Grazia Spillantini, M.; Yoshida, H.; Rizzini, C.; Lantos, P.L.; Khan, N.; Rossor, M.N.; Goedert, M.; Brown, J. A noveltau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann. Neurol., 2000, 48(6), 939-943. doi: 10.1002/1531-8249(200012)48:63.0.CO;2-1 PMID: 11117553
- Iseki, E.; Matsumura, T.; Marui, W.; Hino, H.; Odawara, T.; Sugiyama, N.; Suzuki, K.; Sawada, H.; Arai, T.; Kosaka, K. Familial frontotemporal dementia and parkinsonism with a novel N296H mutation in exon 10 of the tau gene and a widespread tau accumulation in the glial cells. Acta Neuropathol., 2001, 102(3), 285-292. doi: 10.1007/s004010000333 PMID: 11585254
- Deramecourt, V.; Lebert, F.; Maurage, C.A.; Fernandez-Gomez, F.J.; Dujardin, S.; Colin, M.; Sergeant, N.; Buée-Scherrer, V.; Clot, F.; Ber, I.L.; Brice, A.; Pasquier, F.; Buée, L. Clinical, neuropathological, and biochemical characterization of the novel tau mutation P332S. J. Alzheimers Dis., 2012, 31(4), 741-749. doi: 10.3233/JAD-2012-120160 PMID: 22699846
- Jeganathan, S.; von Bergen, M.; Mandelkow, E.M.; Mandelkow, E. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry, 2008, 47(40), 10526-10539. doi: 10.1021/bi800783d PMID: 18783251
- Ramachandran, G.; Udgaonkar, J.B. Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by Tau protein. J. Biol. Chem., 2011, 286(45), 38948-38959. doi: 10.1074/jbc.M111.271874 PMID: 21931162
- Sibille, N.; Sillen, A.; Leroy, A.; Wieruszeski, J.M.; Mulloy, B.; Landrieu, I.; Lippens, G. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Biochemistry, 2006, 45(41), 12560-12572. doi: 10.1021/bi060964o PMID: 17029411
- Elbaum-Garfinkle, S.; Ramlall, T.; Rhoades, E. The role of the lipid bilayer in tau aggregation. Biophys. J., 2010, 98(11), 2722-2730. doi: 10.1016/j.bpj.2010.03.013 PMID: 20513417
- Jones, E.M.; Dubey, M.; Camp, P.J.; Vernon, B.C.; Biernat, J.; Mandelkow, E.; Majewski, J.; Chi, E.Y. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption. Biochemistry, 2012, 51(12), 2539-2550. doi: 10.1021/bi201857v PMID: 22401494
- Brandt, R.; Léger, J.; Lee, G. Interaction of tau with the neural plasma membrane mediated by taus amino-terminal projection domain. J. Cell Biol., 1995, 131(5), 1327-1340. doi: 10.1083/jcb.131.5.1327 PMID: 8522593
- Künze, G.; Barré, P.; Scheidt, H.A.; Thomas, L.; Eliezer, D.; Huster, D. Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. Biochim. Biophys. Acta Biomembr., 2012, 1818(9), 2302-2313. doi: 10.1016/j.bbamem.2012.03.019 PMID: 22521809
- Barré, P.; Eliezer, D. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation. Protein Sci., 2013, 22(8), 1037-1048. doi: 10.1002/pro.2290 PMID: 23740819
- Barré, P.; Eliezer, D. Folding of the repeat domain of tau upon binding to lipid surfaces. J. Mol. Biol., 2006, 362(2), 312-326. doi: 10.1016/j.jmb.2006.07.018 PMID: 16908029
- Georgieva, E.R.; Xiao, S.; Borbat, P.P.; Freed, J.H.; Eliezer, D. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats. Biophys. J., 2014, 107(6), 1441-1452. doi: 10.1016/j.bpj.2014.07.046 PMID: 25229151
- Fanni, A.M.; Vander Zanden, C.M.; Majewska, P.V.; Majewski, J.; Chi, E.Y. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. J. Biol. Chem., 2019, 294(42), 15304-15317. doi: 10.1074/jbc.RA119.010003 PMID: 31439664
- Majewski, J.; Jones, E.M.; Vander Zanden, C.M.; Biernat, J.; Mandelkow, E.; Chi, E.Y. Lipid membrane templated misfolding and self-assembly of intrinsically disordered tau protein. Sci. Rep., 2020, 10(1), 13324. doi: 10.1038/s41598-020-70208-6 PMID: 32770092
- Smith, M.A.; Harris, P.L.R.; Sayre, L.M.; Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA, 1997, 94(18), 9866-9868. doi: 10.1073/pnas.94.18.9866 PMID: 9275217
- Yamamoto, A.; Shin, R.W.; Hasegawa, K.; Naiki, H.; Sato, H.; Yoshimasu, F.; Kitamoto, T. Iron (III) induces aggregation of hyperphosphorylated τ and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimers disease. J. Neurochem., 2002, 82(5), 1137-1147. doi: 10.1046/j.1471-4159.2002.t01-1-01061.x PMID: 12358761
- Huang, Y.; Wu, Z.; Cao, Y.; Lang, M.; Lu, B.; Zhou, B. Zinc binding directly regulates tau toxicity independent of tau hyperphosphorylation. Cell Rep., 2014, 8(3), 831-842. doi: 10.1016/j.celrep.2014.06.047 PMID: 25066125
- Li, X.; Du, X.; Ni, J. Zn2+ aggravates tau aggregation and neurotoxicity. Int. J. Mol. Sci., 2019, 20(3), 487. doi: 10.3390/ijms20030487 PMID: 30678122
- Ahmadi, S.; Zhu, S.; Sharma, R.; Wu, B.; Soong, R.; Dutta Majumdar, R.; Wilson, D.J.; Simpson, A.J.; Kraatz, H.B. Aggregation of microtubule binding repeats of tau protein is promoted by Cu2+. ACS Omega, 2019, 4(3), 5356-5366. doi: 10.1021/acsomega.8b03595 PMID: 31001602
- Roman, A.Y.; Devred, F.; Byrne, D.; La Rocca, R.; Ninkina, N.N.; Peyrot, V.; Tsvetkov, P.O. Zinc induces temperature-dependent reversible self-assembly of tau. J. Mol. Biol., 2019, 431(4), 687-695. doi: 10.1016/j.jmb.2018.12.008 PMID: 30580037
- Ambadipudi, S.; Biernat, J.; Riedel, D.; Mandelkow, E.; Zweckstetter, M. Liquidliquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun., 2017, 8(1), 275. doi: 10.1038/s41467-017-00480-0 PMID: 28819146
- Wegmann, S.; Eftekharzadeh, B.; Tepper, K.; Zoltowska, K.M.; Bennett, R.E.; Dujardin, S.; Laskowski, P.R.; MacKenzie, D.; Kamath, T.; Commins, C.; Vanderburg, C.; Roe, A.D.; Fan, Z.; Molliex, A.M.; Hernandez-Vega, A.; Muller, D.; Hyman, A.A.; Mandelkow, E.; Taylor, J.P.; Hyman, B.T. Tau protein liquidliquid phase separation can initiate tau aggregation. EMBO J., 2018, 37(7), e98049. doi: 10.15252/embj.201798049 PMID: 29472250
- Nedelsky, N.B.; Taylor, J.P. Bridging biophysics and neurology: Aberrant phase transitions in neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(5), 272-286. doi: 10.1038/s41582-019-0157-5 PMID: 30890779
- Singh, V.; Xu, L.; Boyko, S.; Surewicz, K.; Surewicz, W.K. Zinc promotes liquidliquid phase separation of tau protein. J. Biol. Chem., 2020, 295(18), 5850-5856. doi: 10.1074/jbc.AC120.013166 PMID: 32229582
- Soto, C. Transmissible proteins: Expanding the prion heresy. Cell, 2012, 149(5), 968-977. doi: 10.1016/j.cell.2012.05.007 PMID: 22632966
- Morales, R.; Estrada, L.D.; Diaz-Espinoza, R.; Morales-Scheihing, D.; Jara, M.C.; Castilla, J.; Soto, C. Molecular cross talk between misfolded proteins in animal models of Alzheimers and prion diseases. J. Neurosci., 2010, 30(13), 4528-4535. doi: 10.1523/JNEUROSCI.5924-09.2010 PMID: 20357103
- Vasconcelos, B.; Stancu, I.C.; Buist, A.; Bird, M.; Wang, P.; Vanoosthuyse, A.; Van Kolen, K.; Verheyen, A.; Kienlen-Campard, P.; Octave, J.N.; Baatsen, P.; Moechars, D.; Dewachter, I. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol., 2016, 131(4), 549-569. doi: 10.1007/s00401-015-1525-x PMID: 26739002
- Ferrari, A.; Hoerndli, F.; Baechi, T.; Nitsch, R.M.; Götz, J. β-Amyloid induces paired helical filament-like tau filaments in tissue culture. J. Biol. Chem., 2003, 278(41), 40162-40168. doi: 10.1074/jbc.M308243200 PMID: 12893817
- Waxman, E.A.; Giasson, B.I. Induction of intracellular tau aggregation is promoted by α-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J. Neurosci., 2011, 31(21), 7604-7618. doi: 10.1523/JNEUROSCI.0297-11.2011 PMID: 21613474
- Strodel, B. Amyloid aggregation simulations: challenges, advances and perspectives. Curr. Opin. Struct. Biol., 2021, 67, 145-152. doi: 10.1016/j.sbi.2020.10.019 PMID: 33279865
- Itoh, S.G.; Okumura, H. All-atom molecular dynamics simulation methods for the aggregation of protein and peptides: replica exchange/permutation and nonequilibrium simulations. Methods Mol. Biol., 2022, 2340, 197-220. doi: 10.1007/978-1-0716-1546-1_10 PMID: 35167076
- Dror, R.O.; Dirks, R.M.; Grossman, J.P.; Xu, H.; Shaw, D.E. Biomolecular simulation: A computational microscope for molecular biology. Annu. Rev. Biophys., 2012, 41(1), 429-452. doi: 10.1146/annurev-biophys-042910-155245 PMID: 22577825
- Kästner, J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(6), 932-942. doi: 10.1002/wcms.66
- Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett., 1999, 314(1-2), 141-151. doi: 10.1016/S0009-2614(99)01123-9
- Laio, A.; Gervasio, F.L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys., 2008, 71(12), 126601. doi: 10.1088/0034-4885/71/12/126601
- Zhou, R. Replica exchange molecular dynamics method for protein folding simulation. Methods Mol. Biol., 2007, 350, 205-223. PMID: 16957325
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys., 1953, 21(6), 1087-1092. doi: 10.1063/1.1699114
- Lu, S.; He, X.; Yang, Z.; Chai, Z.; Zhou, S.; Wang, J.; Rehman, A.U.; Ni, D.; Pu, J.; Sun, J.; Zhang, J. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat. Commun., 2021, 12(1), 4721. doi: 10.1038/s41467-021-25020-9 PMID: 34354057
- Liu, H.; Li, Q.; Xiong, C.; Zhong, H.; Zhang, Q.; Liu, H.; Yao, X. Uncovering the effect of pS202/pT205/pS208 triple phosphorylations on the conformational features of the key fragment G192-T212 of tau protein. ACS Chem. Neurosci., 2021, 12(6), 1039-1048. doi: 10.1021/acschemneuro.1c00058 PMID: 33663205
- Li, L.; Li, X.; Tang, Y.; Lao, Z.; Lei, J.; Wei, G. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations. Phys. Chem. Chem. Phys., 2020, 22(17), 9225-9232. doi: 10.1039/C9CP06671C PMID: 32307496
- Song, D.; Wang, W.; Ye, W.; Ji, D.; Luo, R.; Chen, H.F. ff14IDPs force field improving the conformation sampling of intrinsically disordered proteins. Chem. Biol. Drug Des., 2017, 89(1), 5-15. doi: 10.1111/cbdd.12832 PMID: 27484738
- Mu, J.; Liu, H.; Zhang, J.; Luo, R.; Chen, H.F. Recent force field strategies for intrinsically disordered proteins. J. Chem. Inf. Model., 2021, 61(3), 1037-1047. doi: 10.1021/acs.jcim.0c01175 PMID: 33591749
- Smit, F.X.; Luiken, J.A.; Bolhuis, P.G. Primary fibril nucleation of aggregation prone tau fragments PHF6 and PHF6*. J. Phys. Chem. B, 2017, 121(15), 3250-3261. doi: 10.1021/acs.jpcb.6b07045 PMID: 27776213
- Fichou, Y.; Schirò, G.; Gallat, F.X.; Laguri, C.; Moulin, M.; Combet, J.; Zamponi, M.; Härtlein, M.; Picart, C.; Mossou, E.; Lortat-Jacob, H.; Colletier, J.P.; Tobias, D.J.; Weik, M. Hydration water mobility is enhanced around tau amyloid fibers. Proc. Natl. Acad. Sci. USA, 2015, 112(20), 6365-6370. doi: 10.1073/pnas.1422824112 PMID: 25918405
- Liu, H.; Zhong, H.; Liu, X.; Zhou, S.; Tan, S.; Liu, H.; Yao, X. Disclosing the mechanism of spontaneous aggregation and template-induced misfolding of the key hexapeptide (PHF6) of tau protein based on molecular dynamics simulation. ACS Chem. Neurosci., 2019, 10(12), 4810-4823. doi: 10.1021/acschemneuro.9b00488 PMID: 31661961
- He, H.; Liu, Y.; Sun, Y.; Ding, F. Misfolding and self-assembly dynamics of microtubule-binding repeats of the Alzheimer-related protein tau. J. Chem. Inf. Model., 2021, 61(6), 2916-2925. doi: 10.1021/acs.jcim.1c00217 PMID: 34032430
- Liu, H.; Liu, X.; Zhou, S.; An, X.; Liu, H.; Yao, X. Disclosing the template-induced misfolding mechanism of tau protein by studying the dissociation of the boundary chain from the formed tau fibril based on a steered molecular dynamics simulation. ACS Chem. Neurosci., 2019, 10(3), 1854-1865. doi: 10.1021/acschemneuro.8b00732 PMID: 30665304
- Lyons, A.J.; Gandhi, N.S.; Mancera, R.L. Molecular dynamics simulation of the phosphorylation-induced conformational changes of a tau peptide fragment. Proteins, 2014, 82(9), 1907-1923. doi: 10.1002/prot.24544 PMID: 24577753
- Gandhi, N.S.; Landrieu, I.; Byrne, C.; Kukic, P.; Amniai, L.; Cantrelle, F.X.; Wieruszeski, J.M.; Mancera, R.L.; Jacquot, Y.; Lippens, G. A phosphorylation-induced turn defines the Alzheimers disease AT8 antibody epitope on the tau protein. Angew. Chem. Int. Ed., 2015, 54(23), 6819-6823. doi: 10.1002/anie.201501898 PMID: 25881502
- Shah, S.J.A.; Zhong, H.; Zhang, Q.; Liu, H. Deciphering the effect of lysine acetylation on the misfolding and aggregation of human tau fragment 171IPAKTPPAPK180 using molecular dynamic simulation and the Markov state model. Int. J. Mol. Sci., 2022, 23(5), 2399. doi: 10.3390/ijms23052399 PMID: 35269542
- Zou, Y.; Guan, L. Unraveling the influence of K280 acetylation on the conformational features of tau core fragment: A molecular dynamics simulation study. Front. Mol. Biosci., 2021, 8, 801577. doi: 10.3389/fmolb.2021.801577 PMID: 34966788
- Yuzwa, S.A.; Macauley, M.S.; Heinonen, J.E.; Shan, X.; Dennis, R.J.; He, Y.; Whitworth, G.E.; Stubbs, K.A.; McEachern, E.J.; Davies, G.J.; Vocadlo, D.J. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol., 2008, 4(8), 483-490. doi: 10.1038/nchembio.96 PMID: 18587388
- Brister, M.A.; Pandey, A.K.; Bielska, A.A.; Zondlo, N.J. OGlcNAcylation and phosphorylation have opposing structural effects in tau: Phosphothreonine induces particular conformational order. J. Am. Chem. Soc., 2014, 136(10), 3803-3816. doi: 10.1021/ja407156m PMID: 24559475
- Rani, L.; Mittal, J.; Mallajosyula, S.S. Effect of phosphorylation and O-GlcNAcylation on proline-rich domains of tau. J. Phys. Chem. B, 2020, 124(10), 1909-1918. doi: 10.1021/acs.jpcb.9b11720 PMID: 32065850
- Larini, L.; Gessel, M.M.; LaPointe, N.E.; Do, T.D.; Bowers, M.T.; Feinstein, S.C.; Shea, J.E. Initiation of assembly of tau(273-284) and its ΔK280 mutant: an experimental and computational study. Phys. Chem. Chem. Phys., 2013, 15(23), 8916-8928. doi: 10.1039/c3cp00063j PMID: 23515417
- Raz, Y.; Adler, J.; Vogel, A.; Scheidt, H.A.; Häupl, T.; Abel, B.; Huster, D.; Miller, Y. The influence of the ΔK280 mutation and N- or C-terminal extensions on the structure, dynamics, and fibril morphology of the tau R2 repeat. Phys. Chem. Chem. Phys., 2014, 16(17), 7710-7717. doi: 10.1039/c3cp54890b PMID: 24448233
- Chen, D.; Drombosky, K.W.; Hou, Z.; Sari, L.; Kashmer, O.M.; Ryder, B.D.; Perez, V.A.; Woodard, D.R.; Lin, M.M.; Diamond, M.I.; Joachimiak, L.A. Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat. Commun., 2019, 10(1), 2493. doi: 10.1038/s41467-019-10355-1 PMID: 31175300
- Li, H.; Li, N.; Tang, Y.; Lee, J.Y. Histidine tautomeric effect on the key fragment R3 of tau protein from atomistic simulations. ACS Chem. Neurosci., 2021, 12(11), 1983-1988. doi: 10.1021/acschemneuro.1c00093 PMID: 33978396
- Li, H.; Joo, E.; Lee, J.Y. Theoretical insights into mutation and histidine tautomerism effects on tau proteins. ACS Chem. Neurosci., 2021, 12(22), 4361-4366. doi: 10.1021/acschemneuro.1c00594 PMID: 34735109
- Chatterjee, S.; Salimi, A.; Lee, J.Y. Molecular mechanism of amyloidogenicity and neurotoxicity of a pro-aggregated tau mutant in the presence of histidine tautomerism via replica-exchange simulation. Phys. Chem. Chem. Phys., 2021, 23(17), 10475-10486. doi: 10.1039/D1CP00105A PMID: 33899866
- Jing, J.; Tu, G.; Yu, H.; Huang, R.; Ming, X.; Zhan, H.; Zhan, F.; Xue, W. Copper (Cu 2+ ) ion-induced misfolding of tau protein R3 peptide revealed by enhanced molecular dynamics simulation. Phys. Chem. Chem. Phys., 2021, 23(20), 11717-11726. doi: 10.1039/D0CP05744D PMID: 33982037
- Dong, X.; Qi, R.; Qiao, Q.; Li, X.; Li, F.; Wan, J.; Zhang, Q.; Wei, G. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations. Phys. Chem. Chem. Phys., 2021, 23(36), 20406-20418. doi: 10.1039/D1CP02651H PMID: 34494046
- Chowdhury, U.D.; Paul, A.; Bhargava, B.L. The effect of lipid composition on the dynamics of tau fibrils. Proteins, 2022, 90(12), 2103-2115. doi: 10.1002/prot.26401 PMID: 35869787
- Homeyer, N.; Horn, A.H.C.; Lanig, H.; Sticht, H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model., 2006, 12(3), 281-289. doi: 10.1007/s00894-005-0028-4 PMID: 16240095
补充文件
