Aldehyde Dehydrogenases as Promising Targets for Treating Toxic Aldehyde-related Diseases


Citar

Texto integral

Resumo

Background:Mammals are exposed to various endogenous and exogenous aldehydes, and aldehyde dehydrogenases (ALDHs) function to metabolize these aldehydes into acids in order to counteract aldehyde over-load. ALDHs, therefore, play important roles in a series of physiological and pathophysiological processes. ALDHs activators and inhibitors are not only important probes for exploring ALDHs functions, but promising for the treatment of toxic aldehyde-related diseases.

Methods:This review has comprehensively summarized the categories and characteristics of 19 human ALDHs, elaborated their related biological pathways, such as alcohol metabolism, retinoic acid (RA) production, neurotransmitter metabolism, etc. In addition, reported ALDHs activators and inhibitors have been summarized by listing their target, inhibition form, and clinical application.

Results:On the one hand, summarization of the types and relative functions is useful for further research on aldehyde metabolic pathways and related diseases. On the other hand, a review of existing activators and inhibitors of ALDHs contributes to discovering new leading compounds and provides new insights.

Conclusion:In consideration of the important role ALDH plays in toxic aldehyde-related diseases, ALDHs are promising targets for the treatment of toxic aldehyde-related diseases, and more research efforts are required to explore their pathophysiology and to develop new regulators.

Sobre autores

Yu Chen

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,, Zhejiang University of Technology

Email: info@benthamscience.net

Xin Li

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. McMurry, J. Organic Chemistry; Brooks Cole: Monterey, 1984.
  2. LoPachin, R.M.; Gavin, T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol., 2014, 27(7), 1081-1091. doi: 10.1021/tx5001046 PMID: 24911545
  3. Shoeb, M.; Ansari, N.; Srivastava, S.; Ramana, K. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr. Med. Chem., 2013, 21(2), 230-237. doi: 10.2174/09298673113209990181 PMID: 23848536
  4. Hopkinson, R.J.; Schofield, C.J. Deciphering functions of intracellular formaldehyde: linking cancer and aldehyde metabolism. Biochemistry, 2018, 57(6), 904-906. doi: 10.1021/acs.biochem.7b01304 PMID: 29368521
  5. Chen, C.H.; Ferreira, J.C.B.; Gross, E.R.; Mochly-Rosen, D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol. Rev., 2014, 94(1), 1-34. doi: 10.1152/physrev.00017.2013 PMID: 24382882
  6. Poon, H.F.; Calabrese, V.; Scapagnini, G.; Butterfield, D.A. Free radicals: Key to brain aging and heme oxygenase as a cellular response to oxidative stress. J. Gerontol. A Biol. Sci. Med. Sci., 2004, 59(5), M478-M493. doi: 10.1093/gerona/59.5.M478 PMID: 15123759
  7. Grünblatt, E.; Riederer, P. Aldehyde dehydrogenase (ALDH) in Alzheimer’s and Parkinson’s disease. J. Neural Transm., 2016, 123(2), 83-90. doi: 10.1007/s00702-014-1320-1 PMID: 25298080
  8. Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2019, 24(40), 4771-4778. doi: 10.2174/1381612825666190215121712 PMID: 30767733
  9. Pang, J.; Wang, J.; Zhang, Y.; Xu, F.; Chen, Y. Targeting acetaldehyde dehydrogenase 2 (ALDH2) in heart failure - Recent insights and perspectives. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(8), 1933-1941. doi: 10.1016/j.bbadis.2016.10.004 PMID: 27742538
  10. Münzel, T.; Daiber, A. The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin. Ther. Targets, 2018, 22(3), 217-231. doi: 10.1080/14728222.2018.1439922 PMID: 29431026
  11. Protein Data Bank. Available from: https://www.rcsb.org/structure/1O01
  12. Vasiliou, V.; Nebert, D.W. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum. Genomics, 2005, 2(2), 138-143. doi: 10.1186/1479-7364-2-2-138 PMID: 16004729
  13. Koppaka, V.; Thompson, D.C.; Chen, Y.; Ellermann, M.; Nicolaou, K.C.; Juvonen, R.O.; Petersen, D.; Deitrich, R.A.; Hurley, T.D.; Vasiliou, V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev., 2012, 64(3), 520-539. doi: 10.1124/pr.111.005538 PMID: 22544865
  14. Wang, X.; Weiner, H. Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry, 1995, 34(1), 237-243. doi: 10.1021/bi00001a028 PMID: 7819202
  15. Marchal, S.; Rahuel-Clermont, S.; Branlant, G. Role of glutamate-268 in the catalytic mechanism of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. Biochemistry, 2000, 39(12), 3327-3335. doi: 10.1021/bi9914208 PMID: 10727225
  16. Yoval-Sánchez, B.; Rodríguez-Zavala, J.S. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem. Res. Toxicol., 2012, 25(3), 722-729. doi: 10.1021/tx2005184 PMID: 22339434
  17. Hsu, L.C.; Chang, W.C.; Chang, C.; Tsukamoto, N.; Yoshida, A. The human aldehyde dehydrogenase 3 gene (ALDH3): identification of a new exon and diverse mRNA isoforms, and functional analysis of the promoter. Gene Expr., 1996, 6(2), 87-99. PMID: 8979087
  18. Black, W.J.; Stagos, D.; Marchitti, S.A.; Nebert, D.W.; Tipton, K.F.; Bairoch, A.; Vasiliou, V. Human aldehyde dehydrogenase genes: Alternatively spliced transcriptional variants and their suggested nomenclature. Pharmacogenet. Genomics, 2009, 19(11), 893-902. doi: 10.1097/FPC.0b013e3283329023 PMID: 19823103
  19. Yoshida, A.; Rzhetsky, A.; Hsu, L.C.; Chang, C. Human aldehyde dehydrogenase gene family. Eur. J. Biochem., 1998, 251(3), 549-557. doi: 10.1046/j.1432-1327.1998.2510549.x PMID: 9490025
  20. Morgan, C.A.; Hurley, T.D. Characterization of two distinct structural classes of selective aldehyde dehydrogenase 1A1 inhibitors. J. Med. Chem., 2015, 58(4), 1964-1975. doi: 10.1021/jm501900s PMID: 25634381
  21. Petrosino, J.; DiSilvestro, D.; Ziouzenkova, O. Aldehyde dehydrogenase 1A1: Friend or foe to female metabolism? Nutrients, 2014, 6(3), 950-973. doi: 10.3390/nu6030950 PMID: 24594504
  22. Tomita, H.; Tanaka, K.; Tanaka, T.; Hara, A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget, 2016, 7(10), 11018-11032. doi: 10.18632/oncotarget.6920 PMID: 26783961
  23. Toledo-Guzmán, M.E.; Hernández, M.I.; Gómez-Gallegos, Á.A.; Ortiz-Sánchez, E. ALDH as a stem cell marker in solid tumors. Curr. Stem Cell Res. Ther., 2019, 14(5), 375-388. doi: 10.2174/1574888X13666180810120012 PMID: 30095061
  24. Xu, X.; Chai, S.; Wang, P.; Zhang, C.; Yang, Y.; Yang, Y.; Wang, K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett., 2015, 369(1), 50-57. doi: 10.1016/j.canlet.2015.08.018 PMID: 26319899
  25. Kastan, M.B.; Schlaffer, E.; Russo, J.E.; Colvin, O.M.; Civin, C.I.; Hilton, J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood, 1990, 75(10), 1947-1950. doi: 10.1182/blood.V75.10.1947.1947 PMID: 2337669
  26. Marcato, P.; Dean, C.A.; Giacomantonio, C.A.; Lee, P.W.K. Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle, 2011, 10(9), 1378-1384. doi: 10.4161/cc.10.9.15486 PMID: 21552008
  27. Wang, H.; Li, Y.; Zhou, D.; Li, X.; Jia, S.; Qi, S.; Huang, J. Aldehyde dehydrogenase 1B1 is a potential marker of colorectal tumors. Histol. Histopathol., 2021, 36(2), 183-194. PMID: 33438176
  28. Matsumoto, A.; Arcaroli, J.; Chen, Y.; Gasparetto, M.; Neumeister, V.; Thompson, D.C.; Singh, S.; Smith, C.; Messersmith, W.; Vasiliou, V. Aldehyde dehydrogenase 1B1: A novel immunohistological marker for colorectal cancer. Br. J. Cancer, 2017, 117(10), 1537-1543. doi: 10.1038/bjc.2017.304 PMID: 28881356
  29. Singh, S.; Arcaroli, J.; Chen, Y.; Thompson, D.C.; Messersmith, W.; Jimeno, A.; Vasiliou, V. ALDH1B1 is crucial for colon tumorigenesis by modulating Wnt/β-Catenin, Notch and PI3K/Akt signaling pathways. PLoS One, 2015, 10(5), e0121648. doi: 10.1371/journal.pone.0121648 PMID: 25950950
  30. Danielsen, S.A.; Eide, P.W.; Nesbakken, A.; Guren, T.; Leithe, E.; Lothe, R.A. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim. Biophys. Acta, 2015, 1855(1), 104-121. PMID: 25450577
  31. Langan, R.C.; Mullinax, J.E.; Ray, S.; Raiji, M.T.; Schaub, N.; Xin, H.W.; Koizumi, T.; Steinberg, S.M.; Anderson, A.; Wiegand, G.; Butcher, D.; Anver, M.; Bilchik, A.J.; Stojadinovic, A.; Rudloff, U.; Avital, I. A pilot study assessing the potential role of non-CD133 colorectal cancer stem cells as biomarkers. J. Cancer, 2012, 3, 231-240. doi: 10.7150/jca.4542 PMID: 22670157
  32. Wang, X.; Yu, Y.; He, Y.; Cai, Q.; Gao, S.; Yao, W.; Liu, Z.; Tian, Z.; Han, Q.; Wang, W.; Sun, R.; Luo, Y.; Li, C. Upregulation of ALDH1B1 promotes tumor progression in osteosarcoma. Oncotarget, 2018, 9(2), 2502-2514. doi: 10.18632/oncotarget.23506 PMID: 29416787
  33. Tsybovsky, Y.; Sereda, V.; Golczak, M.; Krupenko, N.I.; Krupenko, S.A. Structure of putative tumor suppressor ALDH1L1. Commun. Biol., 2022, 5(1), 3. doi: 10.1038/s42003-021-02963-9 PMID: 35013550
  34. Hwang, P.H.; Lian, L.; Zavras, A.I. Alcohol intake and folate antagonism via CYP2E1 and ALDH1: Effects on oral carcinogenesis. Med. Hypotheses, 2012, 78(2), 197-202. doi: 10.1016/j.mehy.2011.10.023 PMID: 22100631
  35. Krupenko, S.A.; Krupenko, N.I. ALDH1L1 and ALDH1L2 folate regulatory enzymes in cancer. Adv. Exp. Med. Biol., 2018, 1032, 127-143. doi: 10.1007/978-3-319-98788-0_10 PMID: 30362096
  36. Kimura, M.; Yokoyama, A.; Higuchi, S. Aldehyde dehydrogenase-2 as a therapeutic target. Expert Opin. Ther. Targets, 2019, 23(11), 955-966. doi: 10.1080/14728222.2019.1690454 PMID: 31697578
  37. Perez-Miller, S.; Younus, H.; Vanam, R.; Chen, C.H.; Mochly-Rosen, D.; Hurley, T.D. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat. Struct. Mol. Biol., 2010, 17(2), 159-164. doi: 10.1038/nsmb.1737 PMID: 20062057
  38. Luckey, S.W.; Tjalkens, R.B.; Petersen, D.R. Mechanism of inhibition of rat liver class 2 ALDH by 4-hydroxynonenal. Adv. Exp. Med. Biol., 1999, 463, 71-77. doi: 10.1007/978-1-4615-4735-8_9 PMID: 10352671
  39. Liu, X.; Sun, A. Aldehyde dehydrogenase-2 roles in ischemic cardiovascular disease. Curr. Drug Targets, 2017, 18(15), 1817-1823. PMID: 27633387
  40. Chen, C.H.; Ferreira, J.C.B.; Joshi, A.U.; Stevens, M.C.; Li, S.J.; Hsu, J.H.M.; Maclean, R.; Ferreira, N.D.; Cervantes, P.R.; Martinez, D.D.; Barrientos, F.L.; Quintanares, G.H.R.; Mochly-Rosen, D. Novel and prevalent non-East Asian ALDH2 variants; Implications for global susceptibility to aldehydes’ toxicity. EBioMedicine, 2020, 55, 102753. doi: 10.1016/j.ebiom.2020.102753 PMID: 32403082
  41. Holmes, R.S.; Hempel, J. Comparative studies of vertebrate aldehyde dehydrogenase 3: Sequences, structures, phylogeny and evolution. Evidence for a mammalian origin for the ALDH3A1 gene. Chem. Biol. Interact., 2011, 191(1-3), 113-121. doi: 10.1016/j.cbi.2011.01.014 PMID: 21296057
  42. Lassen, N.; Bateman, J.B.; Estey, T.; Kuszak, J.R.; Nees, D.W.; Piatigorsky, J.; Duester, G.; Day, B.J.; Huang, J.; Hines, L.M.; Vasiliou, V. Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1(-/-)/Aldh1a1(-/-) knock-out mice. J. Biol. Chem., 2007, 282(35), 25668-25676. doi: 10.1074/jbc.M702076200 PMID: 17567582
  43. Ahmed Laskar, A.; Younus, H. Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab. Rev., 2019, 51(1), 42-64. doi: 10.1080/03602532.2018.1555587 PMID: 30514131
  44. Parajuli, B.; Georgiadis, T.M.; Fishel, M.L.; Hurley, T.D. Development of selective inhibitors for human aldehyde dehydrogenase 3A1 (ALDH3A1) for the enhancement of cyclophosphamide cytotoxicity. ChemBioChem, 2014, 15(5), 701-712. doi: 10.1002/cbic.201300625 PMID: 24677340
  45. Rogers, G.R.; Markova, N.G.; De Laurenzi, V.; Rizzo, W.B.; Compton, J.G. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH). Genomics, 1997, 39(2), 127-135. doi: 10.1006/geno.1996.4501 PMID: 9027499
  46. De Laurenzi, V.; Rogers, G.R.; Hamrock, D.J.; Marekov, L.N.; Steinert, P.M.; Compton, J.G.; Markova, N.; Rizzo, W.B. Sjögren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat. Genet., 1996, 12(1061-4036), 52-57. doi: 10.1038/ng0196-52
  47. Keller, M.A.; Zander, U.; Fuchs, J.E.; Kreutz, C.; Watschinger, K.; Mueller, T.; Golderer, G.; Liedl, K.R.; Ralser, M.; Kräutler, B.; Werner, E.R.; Marquez, J.A. A gatekeeper helix determines the substrate specificity of Sjögren–Larsson Syndrome enzyme fatty aldehyde dehydrogenase. Nat. Commun., 2014, 5(1), 4439. doi: 10.1038/ncomms5439 PMID: 25047030
  48. Hsu, L.C.; Chang, W.C.; Yoshida, A. Cloning of a cDNA encoding human ALDH7, a new member of the aldehyde dehydrogenase family. Gene, 1994, 151(1-2), 285-289. doi: 10.1016/0378-1119(94)90672-6 PMID: 7828891
  49. Hsu, L.C.; Chang, W.C.; Yoshida, A. Human aldehyde dehydrogenase genes, ALDH7 and ALDH8: Genomic organization and gene structure comparison. Gene, 1997, 189(1), 89-94. doi: 10.1016/S0378-1119(96)00839-6 PMID: 9161417
  50. Wang, Y.; Li, K.; Zhao, W.; Liu, Z.; Liu, J.; Shi, A.; Chen, T.; Mu, W.; Xu, Y.; Pan, C.; Zhang, Z. Aldehyde dehydrogenase 3B2 promotes the proliferation and invasion of cholangiocarcinoma by increasing Integrin Beta 1 expression. Cell Death Dis., 2021, 12(12), 1158. doi: 10.1038/s41419-021-04451-8 PMID: 34907179
  51. Pemberton, T.A.; Tanner, J.J. Structural basis of substrate selectivity of ∆1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): Semialdehyde chain length. Arch. Biochem. Biophys., 2013, 538(1), 34-40. doi: 10.1016/j.abb.2013.07.024 PMID: 23928095
  52. Pemberton, T.A.; Srivastava, D.; Sanyal, N.; Henzl, M.T.; Becker, D.F.; Tanner, J.J. Structural studies of yeast ∆(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): Active site flexibility and oligomeric state. Biochemistry, 2014, 53(8), 1350-1359. doi: 10.1021/bi500048b PMID: 24502590
  53. Lorenzo, C.; Delgado, P.; Busse, C.E.; Sanz-Bravo, A.; Martos-Folgado, I.; Bonzon-Kulichenko, E.; Ferrarini, A.; Gonzalez-Valdes, I.B.; Mur, S.M.; Roldán-Montero, R.; Martinez-Lopez, D.; Martin-Ventura, J.L.; Vázquez, J.; Wardemann, H.; Ramiro, A.R. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature, 2021, 589(7841), 287-292. doi: 10.1038/s41586-020-2993-2 PMID: 33268892
  54. Liu, N.; Kong, X.; Kan, Q.; Shi, H.; Wu, Q.; Zhuo, Z.; Bai, Q.; Jiang, M. Mutation analysis and prenatal diagnosis in a Chinese family with succinic semialdehyde dehydrogenase and a systematic review of the literature of reported ALDH5A1 mutations. J. Perinat. Med., 2016, 44(4), 441-451. doi: 10.1515/jpm-2014-0164 PMID: 25431891
  55. Pop, A.; Smith, D.E.C.; Kirby, T.; Walters, D.; Gibson, K.M.; Mahmoudi, S.; van Dooren, S.J.M.; Kanhai, W.A.; Fernandez-Ojeda, M.R.; Wever, E.J.M.; Koster, J.; Waterham, H.R.; Grob, B.; Roos, B.; Wamelink, M.M.C.; Chen, J.; Natesan, S.; Salomons, G.S. Functional analysis of thirty-four suspected pathogenic missense variants in ALDH5A1 gene associated with succinic semialdehyde dehydrogenase deficiency. Mol. Genet. Metab., 2020, 130(3), 172-178. doi: 10.1016/j.ymgme.2020.04.004 PMID: 32402538
  56. Deng, X.Y.; Gan, X.X.; Feng, J.H.; Cai, W.S.; Wang, X.Q.; Shen, L.; Luo, H.T.; Chen, Z.; Guo, M.; Cao, J.; Shen, F.; Xu, B. ALDH5A1 acts as a tumour promoter and has a prognostic impact in papillary thyroid carcinoma. Cell Biochem. Funct., 2021, 39(2), 317-325. doi: 10.1002/cbf.3584 PMID: 32881051
  57. Tian, X.; Han, Y.; Yu, L.; Luo, B.; Hu, Z.; Li, X.; Yang, Z.; Wang, X.; Huang, W.; Wang, H.; Zhang, Q.; Ma, D. Decreased expression of ALDH5A1 predicts prognosis in patients with ovarian cancer. Cancer Biol. Ther., 2017, 18(4), 245-251. doi: 10.1080/15384047.2017.1295175 PMID: 28346042
  58. Marcadier, J.L.; Smith, A.M.; Pohl, D.; Schwartzentruber, J.; Al-Dirbashi, O.Y.; Majewski, J.; Ferdinandusse, S.; Wanders, R.J.A.; Bulman, D.E.; Boycott, K.M.; Chakraborty, P.; Geraghty, M.T.; Consortium, F.C. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J. Rare Dis., 2013, 8(1), 98. doi: 10.1186/1750-1172-8-98 PMID: 23835272
  59. Lu, J.; Chen, Z.; Zhao, H.; Dong, H.; Zhu, L.; Zhang, Y.; Wang, J.; Zhu, H.; Cui, Q.; Qi, C.; Wang, S.; Chen, S.; Shao, J. ABAT and ALDH6A1, regulated by transcription factor HNF4A, suppress tumorigenic capability in clear cell renal cell carcinoma. J. Transl. Med., 2020, 18(1), 101. doi: 10.1186/s12967-020-02268-1 PMID: 32093682
  60. Shin, H.; Cha, H.J.; Lee, M.J.; Na, K.; Park, D.; Kim, C.Y.; Han, D.H.; Kim, H.; Paik, Y.K. Identification of ALDH6A1 as a potential molecular signature in hepatocellular carcinoma via quantitative profiling of the mitochondrial proteome. J. Proteome Res., 2020, 19(4), 1684-1695. doi: 10.1021/acs.jproteome.9b00846 PMID: 31985234
  61. Cho, S.Y.; Kang, S.; Kim, D.S.; Na, H.J.; Kim, Y.J.; Choi, Y.D.; Cho, N.H. HSP27, ALDH6A1 and prohibitin act as a trio-biomarker to predict survival in late metastatic prostate cancer. Anticancer Res., 2018, 38(11), 6551-6560. doi: 10.21873/anticanres.13021 PMID: 30396985
  62. Brocker, C.; Cantore, M.; Failli, P.; Vasiliou, V. Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity. Chem. Biol. Interact., 2011, 191(1-3), 269-277. doi: 10.1016/j.cbi.2011.02.016 PMID: 21338592
  63. Vasiliou, V.; Thompson, D.C.; Smith, C.; Fujita, M.; Chen, Y. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells. Chem. Biol. Interact., 2013, 202(1-3), 2-10. doi: 10.1016/j.cbi.2012.10.026 PMID: 23159885
  64. Tang, W.K.; Chan, C.B.; Cheng, C.H.K.; Fong, W.P. Seabream antiquitin: Molecular cloning, tissue distribution, subcellular localization and functional expression. FEBS Lett., 2005, 579(17), 3759-3764. doi: 10.1016/j.febslet.2005.05.070 PMID: 15967446
  65. Brocker, C.; Lassen, N.; Estey, T.; Pappa, A.; Cantore, M.; Orlova, V.V.; Chavakis, T.; Kavanagh, K.L.; Oppermann, U.; Vasiliou, V. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J. Biol. Chem., 2010, 285(24), 18452-18463. doi: 10.1074/jbc.M109.077925 PMID: 20207735
  66. Mills, P.B.; Footitt, E.J.; Mills, K.A.; Tuschl, K.; Aylett, S.; Varadkar, S.; Hemingway, C.; Marlow, N.; Rennie, J.; Baxter, P.; Dulac, O.; Nabbout, R.; Craigen, W.J.; Schmitt, B.; Feillet, F.; Christensen, E.; De Lonlay, P.; Pike, M.G.; Hughes, M.I.; Struys, E.A.; Jakobs, C.; Zuberi, S.M.; Clayton, P.T. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain, 2010, 133(7), 2148-2159. doi: 10.1093/brain/awq143 PMID: 20554659
  67. Guo, Y.; Tan, L.J.; Lei, S.F.; Yang, T.L.; Chen, X.D.; Zhang, F.; Chen, Y.; Pan, F.; Yan, H.; Liu, X.; Tian, Q.; Zhang, Z.X.; Zhou, Q.; Qiu, C.; Dong, S.S.; Xu, X.H.; Guo, Y.F.; Zhu, X.Z.; Liu, S.L.; Wang, X.L.; Li, X.; Luo, Y.; Zhang, L.S.; Li, M.; Wang, J.T.; Wen, T.; Drees, B.; Hamilton, J.; Papasian, C.J.; Recker, R.R.; Song, X.P.; Cheng, J.; Deng, H.W. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet., 2010, 6(1), e1000806. doi: 10.1371/journal.pgen.1000806 PMID: 20072603
  68. Davis, I.; Yang, Y.; Wherritt, D.; Liu, A. Reassignment of the human aldehyde dehydrogenase ALDH8A1 (ALDH12) to the kynurenine pathway in tryptophan catabolism. J. Biol. Chem., 2018, 293(25), 9594-9603. doi: 10.1074/jbc.RA118.003320 PMID: 29703752
  69. Wang, X.; Zhao, Y.; Luo, J.; Xu, L.; Li, X.; Jin, Y.; Li, C.; Feng, M.; Wang, Y.; Chen, J.; Hou, Y.; Zhao, Q.; Zhao, J.; Ning, B.; Zheng, Y.; Yu, D. MicroRNA hsa-miR-1301-3p regulates human ADH6, ALDH5A1 and ALDH8A1 in the ethanol-acetaldehyde-acetate metabolic pathway. Mol. Pharmacol., 2020, 98(2), 120-129. doi: 10.1124/mol.120.119693 PMID: 32499331
  70. Izaguirre, G.; Kikonyogo, A.; Pietruszko, R. Tissue distribution of human aldehyde dehydrogenase E3 (ALDH9): comparison of enzyme activity with E3 protein and mRNA distribution. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1997, 118(1), 59-64. doi: 10.1016/S0305-0491(97)00022-9 PMID: 9417993
  71. Vasiliou, V.; Pappa, A.; Petersen, D.R. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem. Biol. Interact., 2000, 129(1-2), 1-19. doi: 10.1016/S0009-2797(00)00211-8 PMID: 11154732
  72. Henrion, M.Y.R.; Purdue, M.P.; Scelo, G.; Broderick, P.; Frampton, M.; Ritchie, A.; Meade, A.; Li, P.; McKay, J.; Johansson, M.; Lathrop, M.; Larkin, J.; Rothman, N.; Wang, Z.; Chow, W.H.; Stevens, V.L.; Diver, W.R.; Albanes, D.; Virtamo, J.; Brennan, P.; Eisen, T.; Chanock, S.; Houlston, R.S. Common variation at 1q24.1 (ALDH9A1) is a potential risk factor for renal cancer. PLoS One, 2015, 10(3), e0122589. doi: 10.1371/journal.pone.0122589 PMID: 25826619
  73. Končitíková, R.; Vigouroux, A.; Kopečná, M.; Šebela, M.; Moréra, S.; Kopečný, D. Kinetic and structural analysis of human ALDH9A1. Biosci. Rep., 2019, 39(4), BSR20190558. doi: 10.1042/BSR20190558 PMID: 30914451
  74. Vasiliou, V.; Sandoval, M.; Backos, D.S.; Jackson, B.C.; Chen, Y.; Reigan, P.; Lanaspa, M.A.; Johnson, R.J.; Koppaka, V.; Thompson, D.C. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein–protein interactions with HPRT1. Chem. Biol. Interact., 2013, 202(1-3), 22-31. doi: 10.1016/j.cbi.2012.12.018 PMID: 23348497
  75. Sulem, P.; Gudbjartsson, D.F.; Walters, G.B.; Helgadottir, H.T.; Helgason, A.; Gudjonsson, S.A.; Zanon, C.; Besenbacher, S.; Bjornsdottir, G.; Magnusson, O.T.; Magnusson, G.; Hjartarson, E.; Saemundsdottir, J.; Gylfason, A.; Jonasdottir, A.; Holm, H.; Karason, A.; Rafnar, T.; Stefansson, H.; Andreassen, O.A.; Pedersen, J.H.; Pack, A.I.; de Visser, M.C.H.; Kiemeney, L.A.; Geirsson, A.J.; Eyjolfsson, G.I.; Olafsson, I.; Kong, A.; Masson, G.; Jonsson, H.; Thorsteinsdottir, U.; Jonsdottir, I.; Stefansson, K. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet., 2011, 43(11), 1127-1130. doi: 10.1038/ng.972 PMID: 21983786
  76. Hanna, M.C.; Blackstone, C. Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics, 2009, 10(3), 217-228. doi: 10.1007/s10048-009-0172-6 PMID: 19184135
  77. Wolthuis, D.F.G.J.; van Asbeck, E.; Mohamed, M.; Gardeitchik, T.; Lim-Melia, E.R.; Wevers, R.A.; Morava, E. Cutis laxa, fat pads and retinopathy due to ALDH18A1 mutation and review of the literature. Eur. J. Paediatr. Neurol., 2014, 18(4), 511-515. doi: 10.1016/j.ejpn.2014.01.003 PMID: 24767728
  78. Fischer, B.; Callewaert, B.; Schröter, P.; Coucke, P.J.; Schlack, C.; Ott, C.E.; Morroni, M.; Homann, W.; Mundlos, S.; Morava, E.; Ficcadenti, A.; Kornak, U. Severe congenital cutis laxa with cardiovascular manifestations due to homozygous deletions in ALDH18A1. Mol. Genet. Metab., 2014, 112(4), 310-316. doi: 10.1016/j.ymgme.2014.05.003 PMID: 24913064
  79. Coutelier, M.; Goizet, C.; Durr, A.; Habarou, F.; Morais, S.; Dionne-Laporte, A.; Tao, F.; Konop, J.; Stoll, M.; Charles, P.; Jacoupy, M.; Matusiak, R.; Alonso, I.; Tallaksen, C.; Mairey, M.; Kennerson, M.; Gaussen, M.; Schule, R.; Janin, M.; Morice-Picard, F.; Durand, C.M.; Depienne, C.; Calvas, P.; Coutinho, P.; Saudubray, J.M.; Rouleau, G.; Brice, A.; Nicholson, G.; Darios, F.; Loureiro, J.L.; Zuchner, S.; Ottolenghi, C.; Mochel, F.; Stevanin, G. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain, 2015, 138(8), 2191-2205. doi: 10.1093/brain/awv143 PMID: 26026163
  80. Muzio, G.; Maggiora, M.; Paiuzzi, E.; Oraldi, M.; Canuto, R.A. Aldehyde dehydrogenases and cell proliferation. Free Radic. Biol. Med., 2012, 52(4), 735-746. doi: 10.1016/j.freeradbiomed.2011.11.033 PMID: 22206977
  81. Guo, J.M.; Liu, A.J.; Zang, P.; Dong, W.Z.; Ying, L.; Wang, W.; Xu, P.; Song, X.R.; Cai, J.; Zhang, S.Q.; Duan, J.L.; Mehta, J.L.; Su, D.F. ALDH2 protects against stroke by clearing 4-HNE. Cell Res., 2013, 23(7), 915-930. doi: 10.1038/cr.2013.69 PMID: 23689279
  82. Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci., 2017, 18(2), 101-113. doi: 10.1038/nrn.2016.178 PMID: 28104909
  83. Deza-Ponzio, R.; Herrera, M.L.; Bellini, M.J.; Virgolini, M.B.; Hereñú, C.B. Aldehyde dehydrogenase 2 in the spotlight: The link between mitochondria and neurodegeneration. Neurotoxicology, 2018, 68, 19-24. doi: 10.1016/j.neuro.2018.06.005 PMID: 29936317
  84. Doorn, J.A.; Florang, V.R.; Schamp, J.H.; Vanle, B.C. Aldehyde dehydrogenase inhibition generates a reactive dopamine metabolite autotoxic to dopamine neurons. Parkinsonism Relat. Disord., 2014, 20(0 1 Suppl. 1), S73-S75. doi: 10.1016/S1353-8020(13)70019-1 PMID: 24262193
  85. Siucinska, E. Aminobutyric acid in adult brain: An update. Behav. Brain Res., 2019, 376, 112224. doi: 10.1016/j.bbr.2019.112224 PMID: 31518661
  86. Cha, J.Y.; Jeong, J.J.; Yang, H.J.; Lee, B.J.; Cho, Y.S. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae. J. Microbiol. Biotechnol., 2011, 21(8), 791-795. doi: 10.4014/jmb.1103.02039 PMID: 21876367
  87. Minkina, A.; Lindeman, R.E.; Gearhart, M.D.; Chassot, A.A.; Chaboissier, M.C.; Ghyselinck, N.B.; Bardwell, V.J.; Zarkower, D. Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary. Dev. Biol., 2017, 424(2), 208-220. doi: 10.1016/j.ydbio.2017.02.015 PMID: 28274610
  88. Dräger, U.C.; Wagner, E.; McCaffery, P. Aldehyde dehydrogenases in the generation of retinoic acid in the developing vertebrate: A central role of the eye. J. Nutr., 1998, 128(2)(Suppl.), S463-S466. doi: 10.1093/jn/128.2.463S PMID: 9478049
  89. Duester, G. Families of retinoid dehydrogenases regulating vitamin A function. Eur. J. Biochem., 2000, 267(14), 4315-4324. doi: 10.1046/j.1432-1327.2000.01497.x PMID: 10880953
  90. Vasiliou, V.; Pappa, A.; Estey, T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab. Rev., 2004, 36(2), 279-299. doi: 10.1081/DMR-120034001 PMID: 15237855
  91. Zhang, H.; Fu, L. The role of ALDH2 in tumorigenesis and tumor progression: Targeting ALDH2 as a potential cancer treatment. Acta Pharm. Sin. B, 2021, 11(6), 1400-1411. doi: 10.1016/j.apsb.2021.02.008 PMID: 34221859
  92. Brooks, P.J.; Enoch, M.A.; Goldman, D.; Li, T.K.; Yokoyama, A. The alcohol flushing response: An unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med., 2009, 6(3), e1000050. doi: 10.1371/journal.pmed.1000050 PMID: 19320537
  93. Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol., 2021, 87(2), 159-172. doi: 10.1007/s00280-020-04216-8 PMID: 33426580
  94. Ma, I.; Allan, A.L. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev., 2011, 7(2), 292-306. doi: 10.1007/s12015-010-9208-4 PMID: 21103958
  95. Garaycoechea, J.I.; Crossan, G.P.; Langevin, F.; Daly, M.; Arends, M.J.; Patel, K.J. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature, 2012, 489(7417), 571-575. doi: 10.1038/nature11368 PMID: 22922648
  96. Sugamura, K.; Keaney, J.F., Jr Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med., 2011, 51(5), 978-992. doi: 10.1016/j.freeradbiomed.2011.05.004 PMID: 21627987
  97. Zhong, H.; Yin, H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biol., 2015, 4, 193-199. doi: 10.1016/j.redox.2014.12.011 PMID: 25598486
  98. Chen, C.H.; Sun, L.; Mochly-Rosen, D. Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc. Res., 2010, 88(1), 51-57. doi: 10.1093/cvr/cvq192 PMID: 20558439
  99. Wang, M.F.; Han, C.L.; Yin, S.J. Substrate specificity of human and yeast aldehyde dehydrogenases. Chem. Biol. Interact., 2009, 178(1-3), 36-39. doi: 10.1016/j.cbi.2008.10.002 PMID: 18983993
  100. Riveros-Rosas, H.; González-Segura, L.; Julián-Sánchez, A.; Díaz-Sánchez, Á.G.; Muñoz-Clares, R.A. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem. Biol. Interact., 2013, 202(1-3), 51-61. doi: 10.1016/j.cbi.2012.11.015 PMID: 23219887
  101. Calleja, L.F.; Yoval-Sánchez, B.; Hernández-Esquivel, L.; Gallardo-Pérez, J.C.; Sosa-Garrocho, M.; Marín-Hernández, Á.; Jasso-Chávez, R.; Macías-Silva, M.; Salud Rodríguez-Zavala, J. Activation of ALDH1A1 by omeprazole reduces cell oxidative stress damage. FEBS J., 2021, 288(13), 4064-4080. doi: 10.1111/febs.15698 PMID: 33400378
  102. Calleja, L.F.; Belmont-Díaz, J.A.; Medina-Contreras, O.; Quezada, H.; Yoval-Sánchez, B.; Campos-García, J.; Rodríguez-Zavala, J.S. Omeprazole as a potent activator of human cytosolic aldehyde dehydrogenase ALDH1A1. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(1), 129451. doi: 10.1016/j.bbagen.2019.129451 PMID: 31678145
  103. Belmont-Díaz, J.A.; Calleja-Castañeda, L.F.; Yoval-Sánchez, B.; Rodríguez-Zavala, J.S. Tamoxifen, an anticancer drug, is an activator of human aldehyde dehydrogenase 1A1. Proteins, 2015, 83(1), 105-116. doi: 10.1002/prot.24709 PMID: 25354921
  104. Chen, C.H.; Budas, G.R.; Churchill, E.N.; Disatnik, M.H.; Hurley, T.D.; Mochly-Rosen, D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science, 2008, 321(5895), 1493-1495. doi: 10.1126/science.1158554 PMID: 18787169
  105. Steinmetz, C.G.; Xie, P.; Weiner, H.; Hurley, T.D. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure, 1997, 5(5), 701-711. doi: 10.1016/S0969-2126(97)00224-4 PMID: 9195888
  106. Budas, G.R.; Disatnik, M.H.; Chen, C.H.; Mochly-Rosen, D. Activation of aldehyde dehydrogenase 2 (ALDH2) confers cardioprotection in protein kinase C epsilon (PKCε) knockout mice. J. Mol. Cell. Cardiol., 2010, 48(4), 757-764. doi: 10.1016/j.yjmcc.2009.10.030 PMID: 19913552
  107. Hosoi, T.; Yamaguchi, R.; Noji, K.; Matsuo, S.; Baba, S.; Toyoda, K.; Suezawa, T.; Kayano, T.; Tanaka, S.; Ozawa, K. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol. Med., 2014, 6(3), 335-346. doi: 10.1002/emmm.201303227 PMID: 24421337
  108. Kang, P.F.; Wu, W.J.; Tang, Y.; Xuan, L.; Guan, S.D.; Tang, B.; Zhang, H.; Gao, Q.; Wang, H.J. Activation of ALDH2 with low concentration of ethanol attenuates myocardial ischemia/reperfusion injury in diabetes rat model. Oxid. Med. Cell. Longev., 2016, 2016, 1-12. doi: 10.1155/2016/6190504 PMID: 27829984
  109. Hu, J.; Tian, W.; Zhou, R.; Zhang, Y.; Lv, J.; Zhu, J.; Chen, X.; Pan, X.; Zheng, C. Design, synthesis, and biological evaluation of new ALDH2 activators. J. Saudi Chem. Soc., 2019, 23(3), 255-262. doi: 10.1016/j.jscs.2018.07.001
  110. Tian, W.; Guo, J.; Zhang, Q.; Fang, S.; Zhou, R.; Hu, J.; Wang, M.; Zhang, Y.; Guo, J.M.; Chen, Z.; Zhu, J.; Zheng, C. The discovery of novel small molecule allosteric activators of aldehyde dehydrogenase 2. Eur. J. Med. Chem., 2021, 212, 113119. doi: 10.1016/j.ejmech.2020.113119 PMID: 33383258
  111. Xiao, N.; Cao, H.; Chen, C.H.; Kong, C.S.; Ali, R.; Chan, C.; Sirjani, D.; Graves, E.; Koong, A.; Giaccia, A.; Mochly-Rosen, D.; Le, Q.T. A novel aldehyde dehydrogenase-3 activator (Alda-89) protects submandibular gland function from irradiation without accelerating tumor growth. Clin. Cancer Res., 2013, 19(16), 4455-4464. doi: 10.1158/1078-0432.CCR-13-0127 PMID: 23812668
  112. Banh, A.; Xiao, N.; Cao, H.; Chen, C.H.; Kuo, P.; Krakow, T.; Bavan, B.; Khong, B.; Yao, M.; Ha, C.; Kaplan, M.J.; Sirjani, D.; Jensen, K.; Kong, C.S.; Mochly-Rosen, D.; Koong, A.C.; Le, Q.T. A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo. Clin. Cancer Res., 2011, 17(23), 7265-7272. doi: 10.1158/1078-0432.CCR-11-0179 PMID: 21998334
  113. Yang, S.M.; Yasgar, A.; Miller, B.; Lal-Nag, M.; Brimacombe, K.; Hu, X.; Sun, H.; Wang, A.; Xu, X.; Nguyen, K.; Oppermann, U.; Ferrer, M.; Vasiliou, V.; Simeonov, A.; Jadhav, A.; Maloney, D.J. Discovery of NCT-501, a potent and selective theophylline-based inhibitor of aldehyde dehydrogenase 1A1 (ALDH1A1). J. Med. Chem., 2015, 58(15), 5967-5978. doi: 10.1021/acs.jmedchem.5b00577 PMID: 26207746
  114. Kulsum, S.; Sudheendra, H.V.; Pandian, R.; Ravindra, D.R.; Siddappa, G.R.N.; Chevour, P.; Ramachandran, B.; Sagar, M.; Jayaprakash, A.; Mehta, A.; Kekatpure, V.; Hedne, N.; Kuriakose, M.A.; Suresh, A. Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Mol. Carcinog., 2017, 56(2), 694-711. doi: 10.1002/mc.22526 PMID: 27380877
  115. Yang, S.M.; Martinez, N.J.; Yasgar, A.; Danchik, C.; Johansson, C.; Wang, Y.; Baljinnyam, B.; Wang, A.Q.; Xu, X.; Shah, P.; Cheff, D.; Wang, X.S.; Roth, J.; Lal-Nag, M.; Dunford, J.E.; Oppermann, U.; Vasiliou, V.; Simeonov, A.; Jadhav, A.; Maloney, D.J. Discovery of orally bioavailable, quinoline-based aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with potent cellular activity. J. Med. Chem., 2018, 61(11), 4883-4903. doi: 10.1021/acs.jmedchem.8b00270 PMID: 29767973
  116. Yokoyama, Y.; Zhu, H.; Lee, J.H.; Kossenkov, A.V.; Wu, S.Y.; Wickramasinghe, J.M.; Yin, X.; Palozola, K.C.; Gardini, A.; Showe, L.C.; Zaret, K.S.; Liu, Q.; Speicher, D.; Conejo-Garcia, J.R.; Bradner, J.E.; Zhang, Z.; Sood, A.K.; Ordog, T.; Bitler, B.G.; Zhang, R. BET Inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Res., 2016, 76(21), 6320-6330. doi: 10.1158/0008-5472.CAN-16-0854 PMID: 27803105
  117. Thomas, M.L.; de Antueno, R.; Coyle, K.M.; Sultan, M.; Cruickshank, B.M.; Giacomantonio, M.A.; Giacomantonio, C.A.; Duncan, R.; Marcato, P. Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3. Mol. Oncol., 2016, 10(9), 1485-1496. doi: 10.1016/j.molonc.2016.08.004 PMID: 27592281
  118. Zeng, S.; Kapur, A.; Patankar, M.S.; Xiong, M.P. Formulation, characterization, and antitumor properties of trans- and cis-citral in the 4T1 breast cancer xenograft mouse model. Pharm. Res., 2015, 32(8), 2548-2558. doi: 10.1007/s11095-015-1643-0 PMID: 25673043
  119. Arnold, S.L.; Kent, T.; Hogarth, C.A.; Schlatt, S.; Prasad, B.; Haenisch, M.; Walsh, T.; Muller, C.H.; Griswold, M.D.; Amory, J.K.; Isoherranen, N. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations. J. Lipid Res., 2015, 56(2), 342-357. doi: 10.1194/jlr.M054718 PMID: 25502770
  120. Haenisch, M.; Nguyen, T.; Fihn, C.A.; Goldstein, A.S.; Amory, J.K.; Treuting, P.; Brabb, T.; Paik, J. Investigation of an ALDH1A1-specific inhibitor for suppression of weight gain in a diet-induced mouse model of obesity. Int. J. Obes., 2021, 45(7), 1542-1552. doi: 10.1038/s41366-021-00818-1 PMID: 33934107
  121. Wang, B.; Buchman, C.D.; Li, L.; Hurley, T.D.; Meroueh, S.O. Enrichment of chemical libraries docked to protein conformational ensembles and application to aldehyde dehydrogenase 2. J. Chem. Inf. Model., 2014, 54(7), 2105-2116. doi: 10.1021/ci5002026 PMID: 24856086
  122. Martensen-Larsen, O. Treatment of alcoholism with a sensitizing drug. Lancet, 1948, 252(6539), 1004-1005. doi: 10.1016/S0140-6736(48)91515-3 PMID: 18122024
  123. Omran, Z. Novel disulfiram derivatives as ALDH1A1-selective inhibitors. Molecules, 2022, 27(2), 480. doi: 10.3390/molecules27020480 PMID: 35056791
  124. Deitrich, R.A.; Troxell, P.A.; Worth, W.S.; Erwin, V.G. Inhibition of aldehyde dehydrogenase in brain and liver by cyanamide. Biochem. Pharmacol., 1976, 25(24), 2733-2737. doi: 10.1016/0006-2952(76)90265-3 PMID: 1008896
  125. Tamai, H.; Yokoyama, A.; Okuyama, K.; Takahashi, H.; Maruyama, K.; Suzuki, Y.; Ishii, H. Comparison of cyanamide and disulfiram in effects on liver function. Alcohol. Clin. Exp. Res., 2000, 24(Suppl. 4), 97S-99S. doi: 10.1111/j.1530-0277.2000.tb00021.x PMID: 10803789
  126. Overstreet, D.H.; Knapp, D.J.; Breese, G.R.; Diamond, I. A selective ALDH-2 inhibitor reduces anxiety in rats. Pharmacol. Biochem. Behav., 2009, 94(2), 255-261. doi: 10.1016/j.pbb.2009.09.004 PMID: 19747934
  127. Morgan, C.A.; Parajuli, B.; Buchman, C.D.; Dria, K.; Hurley, T.D.N. N-diethylaminobenzaldehyde (DEAB) as a substrate and mechanism-based inhibitor for human ALDH isoenzymes. Chem. Biol. Interact., 2015, 234, 18-28. doi: 10.1016/j.cbi.2014.12.008 PMID: 25512087
  128. Jiménez, R.; Pequerul, R.; Amor, A.; Lorenzo, J.; Metwally, K.; Avilés, F.X.; Parés, X.; Farrés, J. Inhibitors of aldehyde dehydrogenases of the 1A subfamily as putative anticancer agents: Kinetic characterization and effect on human cancer cells. Chem. Biol. Interact., 2019, 306, 123-130. doi: 10.1016/j.cbi.2019.04.004 PMID: 30958995
  129. Lowe, E.D.; Gao, G.Y.; Johnson, L.N.; Keung, W.M. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase. J. Med. Chem., 2008, 51(15), 4482-4487. doi: 10.1021/jm800488j PMID: 18613661
  130. Keung, W.M.; Vallee, B.L. Daidzin: A potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc. Natl. Acad. Sci., 1993, 90(4), 1247-1251. doi: 10.1073/pnas.90.4.1247 PMID: 8433985
  131. Chen, Z.; Zhang, J.; Stamler, J.S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl. Acad. Sci. USA, 2002, 99(12), 8306-8311. doi: 10.1073/pnas.122225199 PMID: 12048254
  132. Beretta, M.; Wölkart, G.; Schernthaner, M.; Griesberger, M.; Neubauer, R.; Schmidt, K.; Sacherer, M.; Heinzel, F.R.; Kohlwein, S.D.; Mayer, B. Vascular bioactivation of nitroglycerin is catalyzed by cytosolic aldehyde dehydrogenase-2. Circ. Res., 2012, 110(3), 385-393. doi: 10.1161/CIRCRESAHA.111.245837 PMID: 22207712
  133. Buchman, C.D.; Hurley, T.D. Inhibition of the aldehyde dehydrogenase 1/2 family by psoralen and coumarin derivatives. J. Med. Chem., 2017, 60(6), 2439-2455. doi: 10.1021/acs.jmedchem.6b01825 PMID: 28219011
  134. Quemener, V.; Quash, G.; Moulinoux, J.P.; Penlap, V.; Ripoll, H.; Havouis, R.; Doutheau, A.; Goré, J. In vivo antitumor activity of 4-amino 4-methyl 2-pentyne 1-al, an inhibitor of aldehyde dehydrogenase. In Vivo, 1989, 3(5), 325-330. PMID: 2519873
  135. Ogier, G.; Chantepie, J.; Quash, G.; Doutheau, A.; Gore, J.; Marion, C. The effect of a novel inhibitor of aldehyde dehydrogenase on viral replication. Biochem. Pharmacol., 1989, 38(8), 1335-1343. doi: 10.1016/0006-2952(89)90341-9 PMID: 2706022
  136. Khanna, M.; Chen, C.H.; Kimble-Hill, A.; Parajuli, B.; Perez-Miller, S.; Baskaran, S.; Kim, J.; Dria, K.; Vasiliou, V.; Mochly-Rosen, D.; Hurley, T.D. Discovery of a novel class of covalent inhibitor for aldehyde dehydrogenases. J. Biol. Chem., 2011, 286(50), 43486-43494. doi: 10.1074/jbc.M111.293597 PMID: 22021038
  137. Kim, J.; Shin, J.H.; Chen, C.H.; Cruz, L.; Farnebo, L.; Yang, J.; Borges, P.; Kang, G.; Mochly-Rosen, D.; Sunwoo, J.B. Targeting aldehyde dehydrogenase activity in head and neck squamous cell carcinoma with a novel small molecule inhibitor. Oncotarget, 2017, 8(32), 52345-52356. doi: 10.18632/oncotarget.17017 PMID: 28881734
  138. Morgan, C.A.; Hurley, T.D. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1. Chem. Biol. Interact., 2015, 234, 29-37. doi: 10.1016/j.cbi.2014.10.028 PMID: 25450233
  139. Huddle, B.C.; Grimley, E.; Buchman, C.D.; Chtcherbinine, M.; Debnath, B.; Mehta, P.; Yang, K.; Morgan, C.A.; Li, S.; Felton, J.; Sun, D.; Mehta, G.; Neamati, N.; Buckanovich, R.J.; Hurley, T.D.; Larsen, S.D. Structure-based optimization of a novel class of aldehyde dehydrogenase 1A (ALDH1A) subfamily-selective inhibitors as potential adjuncts to ovarian cancer chemotherapy. J. Med. Chem., 2018, 61(19), 8754-8773. doi: 10.1021/acs.jmedchem.8b00930 PMID: 30221940
  140. Quash, G.; Fournet, G.; Courvoisier, C.; Martinez, R.M.; Chantepie, J.; Paret, M.J.; Pharaboz, J.; Joly-Pharaboz, M.O.; Goré, J.; André, J.; Reichert, U. Aldehyde dehydrogenase inhibitors: αβ-Acetylenic N-substituted aminothiolesters are reversible growth inhibitors of normal epithelial but irreversible apoptogens for cancer epithelial cells from human prostate in culture. Eur. J. Med. Chem., 2008, 43(5), 906-916. doi: 10.1016/j.ejmech.2007.06.004 PMID: 17692435
  141. Venton, G.; Pérez-Alea, M.; Baier, C.; Fournet, G.; Quash, G.; Labiad, Y.; Martin, G.; Sanderson, F.; Poullin, P.; Suchon, P.; Farnault, L.; Nguyen, C.; Brunet, C.; Ceylan, I.; Costello, R.T. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J., 2016, 6(9), e469-e469. doi: 10.1038/bcj.2016.78 PMID: 27611922
  142. Pappa, A.; Chen, C.; Koutalos, Y.; Townsend, A.J.; Vasiliou, V. Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic. Biol. Med., 2003, 34(9), 1178-1189. doi: 10.1016/S0891-5849(03)00070-4 PMID: 12706498
  143. Okazaki, S.; Shintani, S.; Hirata, Y.; Suina, K.; Semba, T.; Yamasaki, J.; Umene, K.; Ishikawa, M.; Saya, H.; Nagano, O. Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells. Oncotarget, 2018, 9(73), 33832-33843. doi: 10.18632/oncotarget.26112 PMID: 30333913
  144. Kimble-Hill, A.C.; Parajuli, B.; Chen, C.H.; Mochly-Rosen, D.; Hurley, T.D. Development of selective inhibitors for aldehyde dehydrogenases based on substituted indole-2,3-diones. J. Med. Chem., 2014, 57(3), 714-722. doi: 10.1021/jm401377v PMID: 24444054
  145. Chowdhary, S. Shalini; Arora, A.; Kumar, V. Shalini; Arora, A.; Kumar, V. A mini review on isatin, an anticancer scaffold with potential activities against Neglected Tropical Diseases (Ntds). Pharmaceuticals, 2022, 15(5), 536. doi: 10.3390/ph15050536 PMID: 35631362
  146. Annageldiyev, C.; Gowda, K.; Patel, T.; Bhattacharya, P.; Tan, S.F.; Iyer, S.; Desai, D.; Dovat, S.; Feith, D.J.; Loughran, T.P., Jr; Amin, S.; Claxton, D.; Sharma, A. The novel Isatin analog KS99 targets stemness markers in acute myeloid leukemia. Haematologica, 2020, 105(3), 687-696. doi: 10.3324/haematol.2018.212886 PMID: 31123028
  147. Dinavahi, S.S.; Gowda, R.; Bazewicz, C.G.; Battu, M.B.; Lin, J.M.; Chitren, R.J.; Pandey, M.K.; Amin, S.; Robertson, G.P.; Gowda, K. Design, synthesis characterization and biological evaluation of novel multi-isoform ALDH inhibitors as potential anticancer agents. Eur. J. Med. Chem., 2020, 187, 111962. doi: 10.1016/j.ejmech.2019.111962 PMID: 31887569
  148. Dinavahi, S.S.; Gowda, R.; Gowda, K.; Bazewicz, C.G.; Chirasani, V.R.; Battu, M.B.; Berg, A.; Dokholyan, N.V.; Amin, S.; Robertson, G.P. Development of a novel multi-isoform ALDH inhibitor effective as an antimelanoma agent. Mol. Cancer Ther., 2020, 19(2), 447-459. doi: 10.1158/1535-7163.MCT-19-0360 PMID: 31754071
  149. Parajuli, B.; Fishel, M.L.; Hurley, T.D. Selective ALDH3A1 inhibition by benzimidazole analogues increase mafosfamide sensitivity in cancer cells. J. Med. Chem., 2014, 57(2), 449-461. doi: 10.1021/jm401508p PMID: 24387105
  150. Kreuzer, J.; Bach, N.C.; Forler, D.; Sieber, S.A. Target discovery of acivicin in cancer cells elucidates its mechanism of growth inhibition. Chem. Sci., 2015, 6(1), 237-245. doi: 10.1039/C4SC02339K
  151. Shirota, F.N.; Demaster, E.G.; Nagasawa, H.T. Cyanide is a product of the catalase-mediated oxidation of the alcohol deterrent agent, cyanamide. Toxicol. Lett., 1987, 37(1), 7-12. doi: 10.1016/0378-4274(87)90160-3 PMID: 3590232
  152. Dinavahi, S.S.; Bazewicz, C.G.; Gowda, R.; Robertson, G.P. Aldehyde dehydrogenase inhibitors for cancer therapeutics. Trends Pharmacol. Sci., 2019, 40(10), 774-789. doi: 10.1016/j.tips.2019.08.002 PMID: 31515079

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024