Natural Coumarin Derivatives Targeting Melanoma
- 作者: Silva L.1, Nunes J.2, Zhan P.3, Łączkowski K.4, Cardoso S.5, da Silva-Júnior E.2
-
隶属关系:
- Institute of Chemistry and Biotechnology, Federal University of Alagoas,
- Institute of Chemistry and Biotechnology, Federal University of Alagoas
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University,
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy,, Nicolaus Copernicus University
- Laboratory of Organic and Medicinal Synthesis,, Federal University of Alagoas, Campus Arapiraca
- 期: 卷 31, 编号 7 (2024)
- 页面: 871-886
- 栏目: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/645184
- DOI: https://doi.org/10.2174/0929867330666230420152145
- ID: 645184
如何引用文章
全文:
详细
In general, a cancerous process starts from uncontrolled cell growth, apoptosis, and rapid proliferation of cellular clones, as well as, reactive oxygen species (ROS) and imbalance of ROS-antioxidant production also could be involved in the genesis of the disease. Cancer has accounted for millions of deaths worldwide every year, representing a relevant threat to human lives. In this context, malignant melanoma represents the most aggressive and deadliest type of cancer, leading to increased rates of patient deaths. Natural active compounds have demonstrated their pharmacological benefits in several different studies. Among these compounds, coumarin analogs have demonstrated promising biological profiles, considering their efficacy and low toxicity. In this context, this phytochemical oxygenated core has been broadly investigated since it presents several biological properties of interest in the medicinal field. Herein, we reported a complete compilation of studies focused on natural coumarins against melanoma, as well as, tyrosinase since it is a cooper-catalyzed oxidase that performs an essential role during melanogenesis (Eu-melanins and Pheo-melanins), which is associated with melanoma. Thus, three different subclasses of natural coumarin were described in detail, such as simple coumarin core, furanocoumarins, pyranocoumarins, and pyrone-substituents. Additionally, insights on tyrosinase have been provided, allowing an overview of some structural/- functional aspects of its enzyme, such as the presence of a binuclear type 3 cooper coordination at the binding site of this target, acting as cofactors. Posteriorly, several coumarin- based analogs with anti-tyrosinase activity also were reported and discussed. Finally, we believe that unprecedented review can be a valuable source of information, which can be used to design and develop novel coumarin-based analogs targeting melanoma and also tyrosinase enzyme, contributing to the advances in the field of natural products.
作者简介
Leandro Silva
Institute of Chemistry and Biotechnology, Federal University of Alagoas,
Email: info@benthamscience.net
Jéssica Nunes
Institute of Chemistry and Biotechnology, Federal University of Alagoas
Email: info@benthamscience.net
Peng Zhan
Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University,
Email: info@benthamscience.net
Krzysztof Łączkowski
Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy,, Nicolaus Copernicus University
Email: info@benthamscience.net
Sílvia Cardoso
Laboratory of Organic and Medicinal Synthesis,, Federal University of Alagoas, Campus Arapiraca
Email: info@benthamscience.net
Edeildo da Silva-Júnior
Institute of Chemistry and Biotechnology, Federal University of Alagoas
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Desai, A.; Qazi, G.; Ganju, R.; El-Tamer, M.; Singh, J.; Saxena, A.; Bedi, Y.; Taneja, S.; Bhat, H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591. doi: 10.2174/138920008785821657 PMID: 18781909
- Richter, L.; Kropp, S.; Proksch, P.; Scheu, S. A mouse model-based screening platform for the identification of immune activating compounds such as natural products for novel cancer immunotherapies. Bioorg. Med. Chem., 2019, 27(23), 115145. doi: 10.1016/j.bmc.2019.115145 PMID: 31648874
- Yao, W.; Qiu, H.M.; Cheong, K.L.; Zhong, S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int. J. Biol. Macromol., 2022, 221, 472-485. doi: 10.1016/j.ijbiomac.2022.09.055 PMID: 36089081
- Veselinović, J.B.; Kocić, G.M.; Pavic, A.; Nikodinovic-Runic, J.; Senerovic, L.; Nikolić, G.M.; Veselinović, A.M. Selected 4-phenyl hydroxycoumarins: in vitro cytotoxicity, teratogenic effect on zebrafish (Danio rerio) embryos and molecular docking study. Chem. Biol. Interact., 2015, 231, 10-17. doi: 10.1016/j.cbi.2015.02.011 PMID: 25724286
- Farhat, C.; Younes, H.; Alyamani, O.A.; Mrad, M.; Hourani, N.; Khalifeh, H.; El-Makhour, Y.; Dbaibo, G.; Hage-Sleiman, R. Chemical characterization and in vitro biological evaluation of aqueous extract of Althaea officinalis L. flower grown in Lebanon. J. Herb. Med., 2022, 34, 100575. doi: 10.1016/j.hermed.2022.100575
- Sailaja Rao, P.; Kalva, S.; Yerramilli, A.; Mamidi, S. Free radicals and tissue damage: Role of antioxidants. Free Radic. Antioxid., 2011, 1(4), 2-7. doi: 10.5530/ax.2011.4.2
- Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186. doi: 10.1136/jcp.54.3.176 PMID: 11253127
- Genestra, M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal., 2007, 19(9), 1807-1819. doi: 10.1016/j.cellsig.2007.04.009 PMID: 17570640
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424. doi: 10.1152/physrev.00029.2006 PMID: 17237348
- Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem., 2004, 266(1/2), 37-56. doi: 10.1023/B:MCBI.0000049134.69131.89 PMID: 15646026
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(5), 1147-1150. doi: 10.1042/BST0351147 PMID: 17956298
- Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest developments in metal complexes as anticancer agents. Coord. Chem. Rev., 2022, 452, 214307. doi: 10.1016/j.ccr.2021.214307
- Yuan, Y.; Shi, C.; Wu, X.; Li, W.; Huang, C.; Liang, L.; Chen, J.; Wang, Y.; Liu, Y. Synthesis and anticancer activity in vitro and in vivo evaluation of iridium(III) complexes on mouse melanoma B16 cells. J. Inorg. Biochem., 2022, 232, 111820. doi: 10.1016/j.jinorgbio.2022.111820 PMID: 35421766
- Zaid, H.; Silbermann, M.; Amash, A.; Gincel, D.; Abdel-Sattar, E.; Sarikahya, N.B. Medicinal plants and natural active compounds for cancer chemoprevention/chemotherapy. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-2. doi: 10.1155/2017/7952417 PMID: 28491112
- AlQathama, A.; Bader, A.; Al-Rehaily, A.; Gibbons, S.; Prieto, J.M. In vitro cytotoxic activities of selected Saudi medicinal plants against human malignant melanoma cells (A375) and the isolation of their active principles. Eur. J. Integr. Med., 2022, 49, 102083. doi: 10.1016/j.eujim.2021.102083
- Nanni, V.; Canuti, L.; Gismondi, A.; Canini, A. Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. Phytomedicine, 2018, 46, 1-10. doi: 10.1016/j.phymed.2018.06.008 PMID: 30097108
- Danciu, C.; Soica, C.; Antal, D.; Alexa, E.; Pavel, I.Z.; Ghiulai, R.; Ardelean, F.; Babuta, R.M.; Popescu, A.; Dehelean, C.A. Natural compounds in the chemoprevention of malignant melanoma. Anticancer. Agents Med. Chem., 2018, 18(5), 631-644. doi: 10.2174/1871520617666171121142522 PMID: 29173184
- Hasima, N.; Aun, L.I.L.; Azmi, M.N.; Aziz, A.N.; Thirthagiri, E.; Ibrahim, H.; Awang, K. 1′S-1′-Acetoxyeugenol acetate: A new chemotherapeutic natural compound against MCF-7 human breast cancer cells. Phytomedicine, 2010, 17(12), 935-939. doi: 10.1016/j.phymed.2010.03.011 PMID: 20729047
- Shefrin, S.; Sari, A.N.; Kumar, V.; Zhang, H.; Meidinnia, H.N.; Kaul, S.C.; Wadhwa, R.; Sundar, D. Comparative computational and experimental analyses of some natural small molecules to restore transcriptional activation function of P53 in cancer cells harbouring wild type and P53Ser46 mutant. Curr. Res. Struct. Biol., 2022, 4, 320-331.
- Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951. doi: 10.2174/092986711803414395 PMID: 21824098
- Thomas, V.; Giles, D.; Basavarajaswamy, G.; Das, A.; Patel, A. Coumarin derivatives as anti-inflammatory and anticancer agents. Anticancer. Agents Med. Chem., 2017, 17(3), 415-423. doi: 10.2174/1871520616666160902094739 PMID: 27592545
- Bubols, G.B.; Vianna, Dda.R.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334. PMID: 22876957
- Salar, U.; Khan, K.M.; Jabeen, A.; Faheem, A.; Fakhri, M.I.; Saad, S.M.; Perveen, S.; Taha, M.; Hameed, A. Coumarin sulfonates: As potential leads for ROS inhibition. Bioorg. Chem., 2016, 69, 37-47. doi: 10.1016/j.bioorg.2016.09.006 PMID: 27669119
- Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol., 2020, 10, 592853. doi: 10.3389/fonc.2020.592853 PMID: 33344242
- Sumorek-Wiadro, J.; Zając, A.; Bądziul, D.; Langner, E.; Skalicka-Woźniak, K.; Maciejczyk, A.; Wertel, I.; Rzeski, W.; Jakubowicz-Gil, J. Coumarins modulate the anti-glioma properties of temozolomide. Eur. J. Pharmacol., 2020, 881, 173207. doi: 10.1016/j.ejphar.2020.173207 PMID: 32446712
- Amin, K.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarinpyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198. doi: 10.1016/j.ejmech.2012.12.004 PMID: 23291120
- Khan, S.; Zafar, A.; Naseem, I. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention. Chem. Biol. Interact., 2018, 290, 64-76. doi: 10.1016/j.cbi.2018.05.010 PMID: 29803612
- Grötz, K.A.; Wüstenberg, P.; Kohnen, R.; Al-Nawas, B.; Henneicke-von Zepelin, H.H.; Bockisch, A.; Kutzner, J.; Naser-Hijazi, B.; Belz, G.G.; Wagner, W. Prophylaxis of radiogenic sialadenitis and mucositis by coumarin/troxerutine in patients with head and neck cancer a prospective, randomized, placebo-controlled, double-blind study. Br. J. Oral Maxillofac. Surg., 2001, 39(1), 34-39. doi: 10.1054/bjom.2000.0459 PMID: 11178853
- Marshall, M.E.; Butler, K.; Hermansen, D. Treatment of hormone-refractory stage D carcinoma of prostate with coumarin (1,2-benzopyrone) and cimetidine: A pilot study. Prostate, 1990, 17(2), 95-99. doi: 10.1002/pros.2990170203 PMID: 2399194
- Khan, S.; Zafar, A.; Naseem, I. Redox cycling of copper by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated modulation of redox scavengers, DNA damage and cell death in diethylnitrosamine induced hepatocellular carcinoma. Bioorg. Chem., 2020, 99, 103818. doi: 10.1016/j.bioorg.2020.103818 PMID: 32276135
- Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarinbenzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672. doi: 10.1016/j.bmcl.2012.12.071 PMID: 23642480
- Thati, B.; Noble, A.; Creaven, B.S.; Walsh, M.; McCann, M.; Devereux, M.; Kavanagh, K.; Egan, D.A. Role of cell cycle events and apoptosis in mediating the anti-cancer activity of a silver(I) complex of 4-hydroxy-3-nitro-coumarin-bis(phenanthroline) in human malignant cancer cells. Eur. J. Pharmacol., 2009, 602(2-3), 203-214. doi: 10.1016/j.ejphar.2008.11.020 PMID: 19041861
- Jyothi, M.; Banumathi; Zabiulla; Sherapura, A.; Khamees, H.A.; Prabhakar, B.T.; Khanum, S.A. Synthesis, structure analysis, DFT calculations and energy frameworks of new coumarin appended oxadiazoles, to regress ascites malignancy by targeting VEGF mediated angiogenesis. J. Mol. Struct., 2022, 1252, 132173. doi: 10.1016/j.molstruc.2021.132173
- Lingaraju, G.S.; Balaji, K.S.; Jayarama, S.; Anil, S.M.; Kiran, K.R.; Sadashiva, M.P. Synthesis of new coumarin tethered isoxazolines as potential anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3606-3612. doi: 10.1016/j.bmcl.2018.10.046 PMID: 30396758
- Gray-Schopfer, V.; Wellbrock, C.; Marais, R. Melanoma biology and new targeted therapy. Nature, 2007, 445(7130), 851-857. doi: 10.1038/nature05661 PMID: 17314971
- Chakraborty, D.P.; Roy, S. Chemical and biological aspects of melanin.The Alkaloids: Chemistry and Biology; Cordell, E.G.A., Ed.; Academic Press Inc.: Amsterdam, 2003, pp. 345-391.
- CDC. What Is Skin Cancer? Available From: https://www.cdc.gov/cancer/skin/basic_info/what-is-skin- cancer.htm
- ACS. Key Statistics for Melanoma Skin Cancer. Available From: https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html
- Liu, Q.; Das, M.; Liu, Y.; Huang, L. Targeted drug delivery to melanoma. Adv. Drug Deliv. Rev., 2018, 127, 208-221. doi: 10.1016/j.addr.2017.09.016 PMID: 28939379
- Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet, 2018, 392(10151), 971-984. doi: 10.1016/S0140-6736(18)31559-9 PMID: 30238891
- Huda, M.N.; Deaguero, I.G.; Borrego, E.A.; Kumar, R.; Islam, T.; Afrin, H.; Varela-Ramirez, A.; Aguilera, R.J.; Tanner, E.E.L.; Nurunnabi, M. Ionic liquid-mediated delivery of a BCL-2 inhibitor for topical treatment of skin melanoma. J. Control. Release, 2022, 349, 783-795. doi: 10.1016/j.jconrel.2022.07.035 PMID: 35908622
- Jenkins, R.W.; Fisher, D.E. Treatment of advanced melanoma in 2020 and beyond. J. Invest. Dermatol., 2021, 141(1), 23-31. doi: 10.1016/j.jid.2020.03.943 PMID: 32268150
- Domingues, B.; Lopes, J.; Soares, P.; Pópulo, H. Melanoma treatment in review. ImmunoTargets Ther., 2018, 7, 35-49. doi: 10.2147/ITT.S134842 PMID: 29922629
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379. doi: 10.1080/15384047.2019.1640032 PMID: 31366280
- Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet, 2021, 398(10304), 1002-1014. doi: 10.1016/S0140-6736(21)01206-X PMID: 34509219
- Mishra, H.; Mishra, P.K.; Ekielski, A.; Jaggi, M.; Iqbal, Z.; Talegaonkar, S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. Clin. Oncol., 2018, 144(12), 2283-2302. doi: 10.1007/s00432-018-2726-1 PMID: 30094536
- Tangella, L.P.; Clark, M.E.; Gray, E.S. Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(1), 129736. doi: 10.1016/j.bbagen.2020.129736 PMID: 32956754
- Kozar, I.; Margue, C.; Rothengatter, S.; Haan, C.; Kreis, S. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 313-322. doi: 10.1016/j.bbcan.2019.02.002 PMID: 30776401
- Fontana, F.; Raimondi, M.; Di Domizio, A.; Moretti, R.M.; Montagnani Marelli, M.; Limonta, P. Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin. Cancer Biol., 2019, 59, 266-282. doi: 10.1016/j.semcancer.2019.06.011 PMID: 31233829
- Essa, A.F.; El-Hawary, S.S.; Emam, S.E.; Kubacy, T.M.; El-Khrisy, E.E.D.A.M.; Younis, I.Y.; Elshamy, A.I. Characterization of undescribed melanoma inhibitors from Euphorbia mauritanica L. cultivated in Egypt targeting BRAFV600E and MEK 1 kinases via in-silico study and ADME prediction. Phytochemistry, 2022, 198, 113154. doi: 10.1016/j.phytochem.2022.113154 PMID: 35245525
- Marrelli, M.; Perri, M.R.; Amodeo, V.; Giordano, F.; Statti, G.A.; Panno, M.L.; Conforti, F. Assessment of photo-induced cytotoxic activity of Cachrys sicula and Cachrys libanotis enriched-coumarin extracts against human melanoma cells. Plants, 2021, 10(1), 123. doi: 10.3390/plants10010123 PMID: 33435579
- Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer, 2009, 62(1), 1-20. doi: 10.1080/01635580903191585 PMID: 20043255
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, 2013, 1-14. doi: 10.1155/2013/963248 PMID: 23586066
- Önder, A. Anticancer activity of natural coumarins for biological targets. Studies in Natural Products Chemistry; Rahman, A.U. Elsevier: Amsterdam, 2020, pp. 85-109.
- Finn, G.J.; Creaven, B.S.; Egan, D.A. A study of the role of cell cycle events mediating the action of coumarin derivatives in human malignant melanoma cells. Cancer Lett., 2004, 214(1), 43-54. doi: 10.1016/j.canlet.2004.04.022 PMID: 15331172
- Egan, D.; Okennedy, R.; Moran, E.; Cox, D.; Prosser, E.; Thornes, R.D. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab. Rev., 1990, 22(5), 503-529. doi: 10.3109/03602539008991449 PMID: 2078993
- Musa, M.A.; Badisa, V.L.D.; Latinwo, L.M.; Cooperwood, J.; Sinclair, A.; Abdullah, A. Cytotoxic activity of new acetoxycoumarin derivatives in cancer cell lines. Anticancer Res., 2011, 31(6), 2017-2022. PMID: 21737617
- Velascovelázquez, M.; Agramonte-Hevia, J.; Barrera, D.; Jiménez-Orozco, A.; García-Mondragón, M.J.; Mendoza-Patiño, N.; Landa, A.; Mandoki, J. 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16?F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett., 2003, 198(2), 179-186. doi: 10.1016/S0304-3835(03)00333-1 PMID: 12957356
- Jiménez-Orozco, F.A.; Molina-Guarneros, J.A.; Mendoza-Patiño, N.; León-Cedeño, F.; Flores-Pérez, B.; Santos-Santos, E.; Mandokl, J.J. Cytostatic activity of coumarin metabolites and derivatives in the B16-F10 murine melanoma cell line. Melanoma Res., 1999, 9(3), 243-248. doi: 10.1097/00008390-199906000-00005 PMID: 10465579
- Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 2020, 12(7), 1959. doi: 10.3390/cancers12071959 PMID: 32707666
- Penta, S. Introduction to coumarin and SAR. Advances in structure and activity relationship of coumarin derivatives. ; Penta, S., Ed.; Academic Press Inc.: Amsterdam, 2016, pp. 1-8. doi: 10.1016/B978-0-12-803797-3.00001-1
- Jeon, Y.J.; Jang, J.Y.; Shim, J.H.; Myung, P.K.; Chae, J.I. Esculetin, a coumarin derivative, exhibits anti-proliferative and pro-apoptotic activity in G361 human malignant melanoma. J. Cancer Prev., 2015, 20(2), 106-112. doi: 10.15430/JCP.2015.20.2.106 PMID: 26151043
- Barthomeuf, C.; Lim, S.; Iranshahi, M.; Chollet, P. Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine, 2008, 15(1-2), 103-111. doi: 10.1016/j.phymed.2007.04.001 PMID: 17689942
- Carneiro Leite, V.; Ferreira Santos, R.; Chen Chen, L.; Andreu Guillo, L. Psoralen derivatives and longwave ultraviolet irradiation are active in vitro against human melanoma cell line. J. Photochem. Photobiol. B, 2004, 76(1-3), 49-53. doi: 10.1016/j.jphotobiol.2004.07.004 PMID: 15488715
- Kim, Y.K.; Kim, Y.S.; Ryu, S.Y. Antiproliferative effect of furanocoumarins from the root of Angelica dahurica on cultured human tumor cell lines. Phytother. Res., 2007, 21(3), 288-290. doi: 10.1002/ptr.2043 PMID: 17143927
- Sumiyoshi, M.; Sakanaka, M.; Taniguchi, M.; Baba, K.; Kimura, Y. Anti-tumor effects of various furocoumarins isolated from the roots, seeds and fruits of Angelica and Cnidium species under ultraviolet A irradiation. J. Nat. Med., 2014, 68(1), 83-94. doi: 10.1007/s11418-013-0774-z PMID: 23649674
- Urbagarova, B.M.; Shults, E.E.; Taraskin, V.V.; Radnaeva, L.D.; Petrova, T.N.; Rybalova, T.V.; Frolova, T.S.; Pokrovskii, A.G.; Ganbaatar, J. Chromones and coumarins from Saposhnikovia divaricata (Turcz.) Schischk. Growing in Buryatia and Mongolia and their cytotoxicity. J. Ethnopharmacol., 2020, 261, 112517. doi: 10.1016/j.jep.2019.112517 PMID: 31931162
- Veselinović, J.B.; Veselinović, A.M.; Ilic-Tomic, T.; Davis, R.; OConnor, K.; Pavic, A.; Nikodinovic-Runic, J. Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies. Bioorg. Med. Chem., 2017, 25(24), 6286-6296. doi: 10.1016/j.bmc.2017.09.021 PMID: 29042224
- Fiorito, S.; Epifano, F.; Preziuso, F.; Cacciatore, I.; di Stefano, A.; Taddeo, V.A.; de Medina, P.; Genovese, S. Natural oxyprenylated coumarins are modulators of melanogenesis. Eur. J. Med. Chem., 2018, 152, 274-282. doi: 10.1016/j.ejmech.2018.04.051 PMID: 29730190
- Cheng, J.X.; Li, Y.Q.; Cai, J.; Zhang, C.F.; Akihisa, T.; Li, W.; Kikuchi, T.; Liu, W.Y.; Feng, F.; Zhang, J. Phenolic compounds from Ficus hispida L.f. as tyrosinase and melanin inhibitors: Biological evaluation, molecular docking, and molecular dynamics. J. Mol. Struct., 2021, 1244, 130951. doi: 10.1016/j.molstruc.2021.130951
- Mahendra Kumar, C.; Sathisha, U.V.; Dharmesh, S.; Rao, A.G.A.; Singh, S.A. Interaction of sesamol (3,4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochimie, 2011, 93(3), 562-569. doi: 10.1016/j.biochi.2010.11.014 PMID: 21144881
- Mayer, A.M. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 2006, 67(21), 2318-2331. doi: 10.1016/j.phytochem.2006.08.006 PMID: 16973188
- Theos, A.C.; Tenza, D.; Martina, J.A.; Hurbain, I.; Peden, A.A.; Sviderskaya, E.V.; Stewart, A.; Robinson, M.S.; Bennett, D.C.; Cutler, D.F.; Bonifacino, J.S.; Marks, M.S.; Raposo, G. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol. Biol. Cell, 2005, 16(11), 5356-5372. doi: 10.1091/mbc.e05-07-0626 PMID: 16162817
- Barton, D.E.; Kwon, B.S.; Francke, U. Human tyrosinase gene, mapped to chromosome 11 (q14 → q21), defines second region of homology with mouse chromosome 7. Genomics, 1988, 3(1), 17-24. doi: 10.1016/0888-7543(88)90153-X PMID: 3146546
- Rosada, B.; Bekier, A.; Cytarska, J.; Płaziński, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Łączkowski, K.Z. Benzobthiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity. Eur. J. Med. Chem., 2019, 184, 111765. doi: 10.1016/j.ejmech.2019.111765 PMID: 31629163
- Jaenicke, E.; Decker, H. Tyrosinases from crustaceans form hexamers. Biochem. J., 2003, 371(2), 515-523. doi: 10.1042/bj20021058 PMID: 12466021
- D'Orazio, J.A.; Marsch, A.; Lagrew, J.; Veith, B. Skin pigmentation and melanoma risk. Advances in Malignant Melanoma - Clinical and Research Perspectives; InTech, 2011.
- García-Borrón, J.C.; Olivares Sánchez, M.C. Biosynthesis of Melanins. Melanins and Melanosomes; Wiley, 2011, pp. 87-116. doi: 10.1002/9783527636150.ch4
- Hearing, V.J., Jr; Ekel, T.M.; Montague, P.M.; Nicholson, J.M. Mammalin tyrosinase. Stoichiometry and measurement of reaction products. Biochimica et Biophysica Acta (BBA) - Enzymology, 1980, 611(2), 251-268. doi: 10.1016/0005-2744(80)90061-3 PMID: 6766744
- Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50(24), 5477-5486. doi: 10.1021/bi200395t PMID: 21598903
- Choi, H.; Yoon, J.H.; Youn, K.; Jun, M. Decursin prevents melanogenesis by suppressing MITF expression through the regulation of PKA/CREB, MAPKs, and PI3K/Akt/GSK-3β cascades. Biomed. Pharmacother., 2022, 147, 112651. doi: 10.1016/j.biopha.2022.112651 PMID: 35063859
- Thornes, R.D.; Daly, L.; Lynch, G.; Breslin, B.; Browne, H.; Browne, H.Y.; Corrigan, T.; Daly, P.; Edwards, G.; Gaffney, E.; Henley, J.; Healy, T.; Keane, F.; Lennon, F.; McMurray, N.; OLoughlin, S.; Shine, M.; Tanner, A. Treatment with coumarin to prevent or delay recurrence of malignant melanoma. J. Cancer Res. Clin. Oncol., 1994, 120(S1)(Suppl.), S32-S34. doi: 10.1007/BF01377122 PMID: 8132701
- Pynam, H.; Dharmesh, S.M. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed. Pharmacother., 2018, 106, 98-108. doi: 10.1016/j.biopha.2018.06.053 PMID: 29957472
- Finn, G.J.; Creaven, B.S.; Egan, D.A. Activation of mitogen activated protein kinase pathways and melanogenesis by novel nitro-derivatives of 7-hydroxycomarin in human malignant melanoma cells. Eur. J. Pharm. Sci., 2005, 26(1), 16-25. doi: 10.1016/j.ejps.2005.04.016 PMID: 15996858
- Yang, H.H.; Oh, K.E.; Jo, Y.H.; Ahn, J.H.; Liu, Q.; Turk, A.; Jang, J.Y.; Hwang, B.Y.; Lee, K.Y.; Lee, M.K. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorg. Med. Chem., 2018, 26(2), 509-515. doi: 10.1016/j.bmc.2017.12.011 PMID: 29254897
- Küçükaydın, S.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. HPLC-DAD phytochemical profiles of Thymus cariensis and T. cilicicus with antioxidant, cytotoxic, anticholinesterase, anti-urease, anti-tyrosinase, and antidiabetic activities. S. Afr. J. Bot., 2021, 143, 155-163. doi: 10.1016/j.sajb.2021.07.018
- Ersoy, E.; Eroglu Ozkan, E.; Boga, M.; Yilmaz, M.A.; Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LCMS/MS. Ind. Crops Prod., 2019, 141, 111735. doi: 10.1016/j.indcrop.2019.111735
- Kamauchi, H.; Noji, M.; Kinoshita, K.; Takanami, T.; Koyama, K. Coumarins with an unprecedented tetracyclic skeleton and coumarin dimers from chemically engineered extracts of a marine-derived fungus. Tetrahedron, 2018, 74(23), 2846-2856. doi: 10.1016/j.tet.2018.04.033
补充文件
