Novel Computational Methods for Cancer Drug Design


Cite item

Full Text

Abstract

Cancer is a complex and debilitating disease that is one of the leading causes of death in the modern world. Computational methods have contributed to the successful design and development of several drugs. The recent advances in computational methodology, coupled with the avalanche of data being acquired through high throughput genomics, proteomics, and metabolomics, are likely to increase the contribution of computational methods toward the development of more effective treatments for cancer. Recent advances in the application of neural networks for the prediction of the native conformation of proteins have provided structural information regarding the complete human proteome. In addition, advances in machine learning and network pharmacology have provided novel methods for target identification and for the utilization of biological, pharmacological, and clinical databases for the design and development of drugs. This is a review of the key advances in computational methods that have the potential for application in the design and development of drugs for cancer.

About the authors

Sekhar Talluri

Department of Biotechnology, GITAM School of Technology,, GITAM

Author for correspondence.
Email: info@benthamscience.net

Mohammad Kamal

Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University

Email: info@benthamscience.net

Rama Malla

Cancer Biology Laboratory, Department of Biochemistry,, GITAM School of Science, GITAM,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Weinberg, R.A. How cancer arises. Sci. Am., 1996, 275(3), 62-70. doi: 10.1038/scientificamerican0996-62 PMID: 8701295
  2. Deepak, K.G.K.; Vempati, R.; Nagaraju, G.P.; Dasari, V.R.; S, N.; Rao, D.N.; Malla, R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res., 2020, 153, 104683. doi: 10.1016/j.phrs.2020.104683 PMID: 32050092
  3. Cao, C.; Moult, J. GWAS and drug targets. BMC Genomics, 2014, 15, S5. doi: 10.1186/1471-2164-15-S4-S5
  4. Liang, B.; Ding, H.; Huang, L.; Luo, H.; Zhu, X. GWAS in cancer: Progress and challenges. Mol. Genet. Genomics, 2020, 295(3), 537-561. doi: 10.1007/s00438-020-01647-z PMID: 32048005
  5. Boža, V.; Brejová, B.; Vinař, T. DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One, 2017, 12(6), e0178751. doi: 10.1371/journal.pone.0178751 PMID: 28582401
  6. Wei, Q.; Ji, Z.; Li, Z.; Du, J.; Wang, J.; Xu, J.; Xiang, Y.; Tiryaki, F.; Wu, S.; Zhang, Y.; Tao, C.; Xu, H. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. J. Am. Med. Inform. Assoc., 2020, 27(1), 13-21. doi: 10.1093/jamia/ocz063 PMID: 31135882
  7. Gorostiola González, M.; Janssen, A.P.A.; IJzerman, A.P.; Heitman, L.H.; van Westen, G.J.P. Oncological drug discovery: AI meets structure-based computational research. Drug Discov. Today, 2022, 27(6), 1661-1670. doi: 10.1016/j.drudis.2022.03.005 PMID: 35301149
  8. Rui Chang; Shoemaker, R.; Wei Wang A novel knowledge-driven systems biology approach for phenotype prediction upon genetic intervention. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2011, 8(5), 1170-1182. doi: 10.1109/TCBB.2011.18 PMID: 21282866
  9. Lu, Y.; Bi, J.; Li, F.; Wang, G.; Zhu, J.; Jin, J.; Liu, Y. Differential gene analysis of trastuzumab in breast cancer based on network pharmacology and medical images. Front. Physiol., 2022, 13, 942049. doi: 10.3389/fphys.2022.942049 PMID: 35874525
  10. Li, S.; Wu, S.; Wang, L.; Li, F.; Jiang, H.; Bai, F. Recent advances in predicting protein–protein interactions with the aid of artificial intelligence algorithms. Curr. Opin. Struct. Biol., 2022, 73, 102344. doi: 10.1016/j.sbi.2022.102344 PMID: 35219216
  11. Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; Velankar, S.; Kleywegt, G.J.; Bateman, A.; Evans, R.; Pritzel, A.; Figurnov, M.; Ronneberger, O.; Bates, R.; Kohl, S.A.A.; Potapenko, A.; Ballard, A.J.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Clancy, E.; Reiman, D.; Petersen, S.; Senior, A.W.; Kavukcuoglu, K.; Birney, E.; Kohli, P.; Jumper, J.; Hassabis, D. Highly accurate protein structure prediction for the human proteome. Nature, 2021, 596(7873), 590-596. doi: 10.1038/s41586-021-03828-1 PMID: 34293799
  12. Polanski, J. Unsupervised learning in drug design from self-organization to deep chemistry. Int. J. Mol. Sci., 2022, 23(5), 2797. doi: 10.3390/ijms23052797 PMID: 35269939
  13. Nag, S.; Baidya, A.T.K.; Mandal, A.; Mathew, A.T.; Das, B.; Devi, B.; Kumar, R. Deep learning tools for advancing drug discovery and development. 3 Biotech, 2022, 12(5), 110.2022,
  14. Liu, M.; Shen, X.; Pan, W. Deep reinforcement learning for personalized treatment recommendation. Stat. Med., 2022, 41(20), 4034-4056. doi: 10.1002/sim.9491 PMID: 35716038
  15. Kabir, A.; Muth, A. Polypharmacology: The science of multi-targeting molecules. Pharmacol. Res., 2022, 176, 106055. doi: 10.1016/j.phrs.2021.106055 PMID: 34990865
  16. Zhang, T.; Zhang, L.; Payne, P.R.O.; Li, F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol. Biol., 2021, 2194, 223-238. doi: 10.1007/978-1-0716-0849-4_12 PMID: 32926369
  17. Garofalo, M.; Grazioso, G.; Cavalli, A.; Sgrignani, J. How computational chemistry and drug delivery techniques can support the development of new anticancer drugs. Molecules, 2020, 25(7), 1756. doi: 10.3390/molecules25071756 PMID: 32290224
  18. Bannigan, P.; Aldeghi, M.; Bao, Z.; Häse, F.; Aspuru-Guzik, A.; Allen, C. Machine learning directed drug formulation development. Adv. Drug Deliv. Rev., 2021, 175, 113806. doi: 10.1016/j.addr.2021.05.016 PMID: 34019959
  19. Pantziarka, P.; Verbaanderd, C.; Huys, I.; Bouche, G.; Meheus, L. Repurposing drugs in oncology: From candidate selection to clinical adoption. Semin. Cancer Biol., 2021, 68, 186-191. doi: 10.1016/j.semcancer.2020.01.008 PMID: 31982510
  20. Alaimo, S.; Pulvirenti, A. Network-based drug repositioning: Approaches, resources, and research directions. Methods Mol. Biol., 2019, 1903, 97-113. doi: 10.1007/978-1-4939-8955-3_6 PMID: 30547438
  21. Prada-Gracia, D.; Huerta-Yépez, S.; Moreno-Vargas, L.M. Application of computational methods for anticancer drug discovery, design, and optimization. Bol. Méd. Hosp. Infant. México, 2016, 73(6), 411-423. doi: 10.1016/j.bmhimx.2016.10.006 PMID: 29421286
  22. Ren, N.; Yu, L.; Qian, L.; Ye, G.; Zhu, Z.; Yu, J.; Sun, L.; Zhang, L. Exploring the pharmacological mechanism of the effective chinese medicines against gynecological cancer based on meta-analysis combined with network pharmacology analysis. Front. Oncol., 2022, 12, 817772. doi: 10.3389/fonc.2022.817772 PMID: 35875080
  23. Eisenberg, M.C.; Jain, H.V. A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study. J. Theor. Biol., 2017, 431, 63-78. doi: 10.1016/j.jtbi.2017.07.018 PMID: 28733187
  24. Gorgulla, C.; Jayaraj, A.; Fackeldey, K.; Arthanari, H. Emerging frontiers in virtual drug discovery: From quantum mechanical methods to deep learning approaches. Curr. Opin. Chem. Biol., 2022, 69, 102156. doi: 10.1016/j.cbpa.2022.102156 PMID: 35576813
  25. Shreve, J.T.; Khanani, S.A.; Haddad, T.C. Artificial intelligence in oncology: Current capabilities, future opportunities, and ethical considerations. Am. Soc. Clin. Oncol. Educ. Book, 2022, 42(42), 842-851. doi: 10.1200/EDBK_350652 PMID: 35687826
  26. Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering anti-cancer drugs via computational methods. Front. Pharmacol., 2020, 11, 733. doi: 10.3389/fphar.2020.00733 PMID: 32508653
  27. Brady, R.; Enderling, H. Mathematical Models of Cancer: When to predict novel therapies, and when not to. Bull. Math. Biol., 2019, 81(10), 3722-3731. doi: 10.1007/s11538-019-00640-x PMID: 31338741
  28. Rahman, M.M.; Islam, M.R.; Rahman, F.; Rahaman, M.S.; Khan, M.S.; Abrar, S.; Ray, T.K.; Uddin, M.B.; Kali, M.S.K.; Dua, K.; Kamal, M.A.; Chellappan, D.K. Emerging promise of computational techniques in anti-cancer research: At a glance. Bioengineering, 2022, 9(8), 335. doi: 10.3390/bioengineering9080335 PMID: 35892749
  29. Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
  30. Bossé, Y.; Amos, C.I. A decade of GWAS results in lung cancer. Cancer Epidemiol. Biomarkers Prev., 2018, 27(4), 363-379. doi: 10.1158/1055-9965.EPI-16-0794 PMID: 28615365
  31. Fachal, L.; Dunning, A.M. From candidate gene studies to GWAS and post-GWAS analyses in breast cancer. Curr. Opin. Genet. Dev., 2015, 30, 32-41. doi: 10.1016/j.gde.2015.01.004 PMID: 25727315
  32. Dezső, Z.; Ceccarelli, M. Machine learning prediction of oncology drug targets based on protein and network properties. BMC Bioinf., 2020, 21(1), 104. doi: 10.1186/s12859-020-3442-9 PMID: 32171238
  33. Yeh, S.H.; Yeh, H.Y.; Soo, V.W. A network flow approach to predict drug targets from microarray data, disease genes and interactome network - case study on prostate cancer. J. Clin. Bioinf., 2012, 2(1), 1. doi: 10.1186/2043-9113-2-1 PMID: 22239822
  34. Ciriello, G.; Cerami, E.; Sander, C.; Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res., 2012, 22(2), 398-406. doi: 10.1101/gr.125567.111 PMID: 21908773
  35. Singh, R.; Devkota, K.; Sledzieski, S.; Berger, B.; Cowen, L. Topsy-Turvy: Integrating a global view into sequence-based PPI prediction. Bioinformatics, 2022, 38(Suppl. 1), i264-i272. doi: 10.1093/bioinformatics/btac258 PMID: 35758793
  36. Ghedira, K.; Hamdi, Y.; El Béji, A.; Othman, H. An integrative computational approach for the prediction of human-Plasmodium protein-protein interactions. BioMed Res. Int., 2020, 2020, 1-11. doi: 10.1155/2020/2082540 PMID: 33426052
  37. Kanitkar, T.R.; Sen, N.; Nair, S.; Soni, N.; Amritkar, K.; Ramtirtha, Y.; Madhusudhan, M.S. Methods for molecular modelling of protein complexes. Methods Mol. Biol., 2021, 2305, 53-80. doi: 10.1007/978-1-0716-1406-8_3 PMID: 33950384
  38. Hu, L.; Wang, X.; Huang, Y.A.; Hu, P.; You, Z.H. A survey on computational models for predicting protein–protein interactions. Brief. Bioinform., 2021, 22(5), bbab036. doi: 10.1093/bib/bbab036 PMID: 33693513
  39. Yin, R.; Feng, B.Y.; Varshney, A.; Pierce, B.G. Benchmarking ALPHAFOLD for protein complex modeling reveals accuracy determinants. Protein Sci., 2022, 31(8), e4379. doi: 10.1002/pro.4379 PMID: 35900023
  40. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
  41. Wang, S.; Lin, H.; Huang, Z.; He, Y.; Deng, X.; Xu, Y.; Pei, J.; Lai, L. CavitySpace: A database of potential ligand binding sites in the human proteome. Biomolecules, 2022, 12(7), 967. doi: 10.3390/biom12070967 PMID: 35883523
  42. Macari, G.; Toti, D.; Polticelli, F. Computational methods and tools for binding site recognition between proteins and small molecules: from classical geometrical approaches to modern machine learning strategies. J. Comput. Aided Mol. Des., 2019, 33(10), 887-903. doi: 10.1007/s10822-019-00235-7 PMID: 31628659
  43. Dhakal, A.; McKay, C.; Tanner, J.J.; Cheng, J. Artificial intelligence in the prediction of protein–ligand interactions: recent advances and future directions. Brief. Bioinform., 2022, 23(1), bbab476. doi: 10.1093/bib/bbab476 PMID: 34849575
  44. Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331. doi: 10.3390/ijms20184331 PMID: 31487867
  45. Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
  46. Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898. doi: 10.1021/acs.jcim.1c00203 PMID: 34278794
  47. Wang, C.; Zhang, Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput. Chem., 2017, 38(3), 169-177. doi: 10.1002/jcc.24667 PMID: 27859414
  48. Zhang, B.; Li, H.; Yu, K.; Jin, Z. Molecular docking-based computational platform for high-throughput virtual screening. CCF Transactions on High Performance Computing, 2022, 4(1), 63-74. doi: 10.1007/s42514-021-00086-5 PMID: 35039800
  49. Aziz, M.; Ejaz, S.A.; Zargar, S.; Akhtar, N.; Aborode, A.T.; A Wani, T.; Batiha, G.E.; Siddique, F.; Alqarni, M.; Akintola, A.A. Deep learning and structure-based virtual screening for drug discovery against NEK7: A novel target for the treatment of cancer. Molecules, 2022, 27(13), 4098. doi: 10.3390/molecules27134098 PMID: 35807344
  50. Kerrigan, J.E. Molecular dynamics simulations in drug design. Methods Mol. Biol., 2013, 993, 95-113. doi: 10.1007/978-1-62703-342-8_7 PMID: 23568466
  51. Cheng, Y.; Gong, Y.; Liu, Y.; Song, B.; Zou, Q. Molecular design in drug discovery: A comprehensive review of deep generative models. Brief. Bioinf., 2021, 22(6), bbab344. doi: 10.1093/bib/bbab344 PMID: 34415297
  52. Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci., 2018, 4(1), 120-131. doi: 10.1021/acscentsci.7b00512 PMID: 29392184
  53. Joshi, R.P.; Kumar, N. Artificial intelligence for autonomous molecular design: A perspective. Molecules, 2021, 26(22), 6761. doi: 10.3390/molecules26226761 PMID: 34833853
  54. Lim, J.; Hwang, S.Y.; Moon, S.; Kim, S.; Kim, W.Y. Scaffold-based molecular design with a graph generative model. Chem. Sci., 2020, 11(4), 1153-1164. doi: 10.1039/C9SC04503A PMID: 34084372
  55. Hong, S.H.; Ryu, S.; Lim, J.; Kim, W.Y. Molecular generative model based on an adversarially regularized autoencoder. J. Chem. Inf. Model., 2020, 60(1), 29-36. doi: 10.1021/acs.jcim.9b00694 PMID: 31820983
  56. Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V.; Sanchez-Lengeling, B.; Aspuru-Guzik, A.; Zhavoronkov, A. Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model., 2018, 58(6), 1194-1204. doi: 10.1021/acs.jcim.7b00690 PMID: 29762023
  57. Flam-Shepherd, D.; Zhu, K.; Aspuru-Guzik, A. Language models can learn complex molecular distributions. Nat. Commun., 2022, 13(1), 3293. doi: 10.1038/s41467-022-30839-x PMID: 35672310
  58. He, J.; You, H.; Sandström, E.; Nittinger, E.; Bjerrum, E.J.; Tyrchan, C.; Czechtizky, W.; Engkvist, O. Molecular optimization by capturing chemist’s intuition using deep neural networks. J. Cheminform., 2021, 13(1), 26. doi: 10.1186/s13321-021-00497-0 PMID: 33743817
  59. Wang, M.; Hsieh, C.Y.; Wang, J.; Wang, D.; Weng, G.; Shen, C.; Yao, X.; Bing, Z.; Li, H.; Cao, D.; Hou, T. RELATION: A deep generative model for structure-based de novo drug design. J. Med. Chem., 2022, 65(13), 9478-9492. doi: 10.1021/acs.jmedchem.2c00732 PMID: 35713420
  60. Li, Y.; Hu, J.; Wang, Y.; Zhou, J.; Zhang, L.; Liu, Z. DeepScaffold: A comprehensive tool for scaffold-based de novo drug discovery using deep learning. J. Chem. Inf. Model., 2020, 60(1), 77-91. doi: 10.1021/acs.jcim.9b00727 PMID: 31809029
  61. Zheng, S.; Lei, Z.; Ai, H.; Chen, H.; Deng, D.; Yang, Y. Deep scaffold hopping with multimodal transformer neural networks. J. Cheminform., 2021, 13(1), 87. doi: 10.1186/s13321-021-00565-5 PMID: 34774103
  62. Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R.R.; Zhebrak, A.; Minaeva, L.I.; Zagribelnyy, B.A.; Lee, L.H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol., 2019, 37(9), 1038-1040. doi: 10.1038/s41587-019-0224-x PMID: 31477924
  63. Ongusaha, P.P.; Kim, J.I.; Fang, L.; Wong, T.W.; Yancopoulos, G.D.; Aaronson, S.A.; Lee, S.W. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J., 2003, 22(6), 1289-1301. doi: 10.1093/emboj/cdg129 PMID: 12628922
  64. Pereira, T.; Abbasi, M.; Oliveira, R.I.; Guedes, R.A.; Salvador, J.A.R.; Arrais, J.P. Deep generative model for therapeutic targets using transcriptomic disease-associated data-USP7 case study. Brief. Bioinform., 2022, 23(4), bbac270. doi: 10.1093/bib/bbac270 PMID: 35789255
  65. Wang, J.; Chu, Y.; Mao, J.; Jeon, H.N.; Jin, H.; Zeb, A.; Jang, Y.; Cho, K.H.; Song, T.; No, K.T. De novo molecular design with deep molecular generative models for PPI inhibitors. Brief. Bioinform., 2022, 23(4), bbac285. doi: 10.1093/bib/bbac285 PMID: 35830870
  66. Khan, M.F.; Verma, G.; Akhtar, W.; Shaquiquzzaman, M.; Akhter, M.; Rizvi, M.A.; Alam, M.M. Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl 1,3,4-thiadiazole amides and sulfonamides as antitubulin agents. Arab. J. Chem., 2019, 12(8), 5000-5018. doi: 10.1016/j.arabjc.2016.11.004
  67. Elkaeed, E.B.; Yousef, R.G.; Elkady, H.; Gobaara, I.M.M.; Alsfouk, B.A.; Husein, D.Z.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects. Molecules, 2022, 27(14), 4606. doi: 10.3390/molecules27144606 PMID: 35889478
  68. Iwaloye, O.; Elekofehinti, O.O.; Kikiowo, B.; Oluwarotimi, E.A.; Fadipe, T.M. Machine learning-based virtual screening strategy revealssome natural compounds as potential PAK4 inhibitors in triple negative breast cancer. Curr. Proteomics, 2021, 18(5), 753-769. doi: 10.2174/1570164618999201223092209
  69. Méndez-Lucio, O.; Baillif, B.; Clevert, D.A.; Rouquié, D.; Wichard, J. De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat. Commun., 2020, 11(1), 10. doi: 10.1038/s41467-019-13807-w PMID: 31900408
  70. Sharma, V.; Wakode, S.; Kumar, H. Structure-and ligand-based drug design: concepts, approaches, and challenges; Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences, 2021, pp. 27-53. doi: 10.1016/B978-0-12-821748-1.00004-X
  71. Loganathan, L.; Muthusamy, K. Current Scenario in structure and ligand-based drug design on anti-colon cancer drugs. Curr. Pharm. Des., 2019, 24(32), 3829-3841. doi: 10.2174/1381612824666181114114513 PMID: 30426891
  72. Sanyal, S.; Amin, S.A.; Adhikari, N.; Jha, T. Ligand-based design of anticancer MMP2 inhibitors: A review. Future Med. Chem., 2021, 13(22), 1987-2013. doi: 10.4155/fmc-2021-0262 PMID: 34634916
  73. Hussin, S.K.; Omar, Y.M.; Abdelmageid, S.M.; Marie, M.I. Traditional machine learning and big data analytics in virtual screening: A comparative study. Int. J. Adv. Comput. Res., 2020, 10(47), 72-88. doi: 10.19101/IJACR.2019.940150
  74. Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J., 2021, 19, 4538-4558. doi: 10.1016/j.csbj.2021.08.011 PMID: 34471498
  75. Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharm., 2017, 14(9), 3098-3104. doi: 10.1021/acs.molpharmaceut.7b00346 PMID: 28703000
  76. Tsou, L.K.; Yeh, S.H.; Ueng, S.H.; Chang, C.P.; Song, J.S.; Wu, M.H.; Chang, H.F.; Chen, S.R.; Shih, C.; Chen, C.T.; Ke, Y.Y. Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci. Rep., 2020, 10(1), 16771. doi: 10.1038/s41598-020-73681-1 PMID: 33033310
  77. Daoud, N.E.H.; Borah, P.; Deb, P.K.; Venugopala, K.N.; Hourani, W.; Alzweiri, M.; Bardaweel, S.K.; Tiwari, V. ADMET profiling in drug discovery and development: Perspectives of in silico, in vitro and integrated approaches. Curr. Drug Metab., 2021, 22(7), 503-522. doi: 10.2174/1389200222666210705122913 PMID: 34225615
  78. Keyvanpour, M.R.; Shirzad, M.B. An analysis of QSAR research based on machine learning concepts. Curr. Drug Discov. Technol., 2021, 18(1), 17-30. doi: 10.2174/1570163817666200316104404 PMID: 32178612
  79. Zhang, W.; Xue, Z.; Li, Z.; Yin, H. DCE-DForest: A deep forest model for the prediction of anticancer drug combination effects. Comput. Math. Methods Med., 2022, 2022, 1-5. doi: 10.1155/2022/8693746 PMID: 35720022
  80. Celebi, R.; Bear Don’t Walk, O., IV; Movva, R.; Alpsoy, S.; Dumontier, M. In-silico prediction of synergistic anti- cancer drug combinations using multi-omics data. Sci. Rep., 2019, 9(1), 8949. doi: 10.1038/s41598-019-45236-6 PMID: 31222109
  81. Liu, H.; Zhang, W.; Nie, L.; Ding, X.; Luo, J.; Zou, L. Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network. BMC Bioinformatics, 2019, 20(1), 645. doi: 10.1186/s12859-019-3288-1 PMID: 31818267
  82. Alaparthi, S.; Mishra, M. Bidirectional Encoder Representations from Transformers (BERT): A sentiment analysis odyssey. 2007.011272020.
  83. Wu, Z.; Jiang, D.; Wang, J.; Zhang, X.; Du, H.; Pan, L.; Hsieh, C.Y.; Cao, D.; Hou, T. Knowledge-based BERT: A method to extract molecular features like computational chemists. Brief. Bioinform., 2022, 23(3), bbac131. doi: 10.1093/bib/bbac131 PMID: 35438145
  84. Khan, D.; Shedole, S. Leveraging deep learning techniques and integrated omics data for tailored treatment of breast cancer. J. Pers. Med., 2022, 12(5), 674. doi: 10.3390/jpm12050674 PMID: 35629097
  85. Xia, F.; Shukla, M.; Brettin, T.; Garcia-Cardona, C.; Cohn, J.; Allen, J.E.; Maslov, S.; Holbeck, S.L.; Doroshow, J.H.; Evrard, Y.A.; Stahlberg, E.A.; Stevens, R.L. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinf., 2018, 19(Suppl. 18), 486. doi: 10.1186/s12859-018-2509-3 PMID: 30577754
  86. Wang, J.; Liu, X.; Shen, S.; Deng, L.; Liu, H. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations. Brief. Bioinf., 2022, 23(1), bbab390. doi: 10.1093/bib/bbab390 PMID: 34571537
  87. Liu, Q.; Xie, L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput. Biol., 2021, 17(2), e1008653. doi: 10.1371/journal.pcbi.1008653 PMID: 33577560
  88. Schmucker, R.; Farina, G.; Faeder, J.; Fröhlich, F.; Saglam, A.S.; Sandholm, T. Combination treatment optimization using a pan-cancer pathway model. PLoS Comput. Biol., 2021, 17(12), e1009689. doi: 10.1371/journal.pcbi.1009689 PMID: 34962919
  89. Enriquez-Navas, P.M.; Kam, Y.; Das, T.; Hassan, S.; Silva, A.; Foroutan, P.; Ruiz, E.; Martinez, G.; Minton, S.; Gillies, R.J.; Gatenby, R.A. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med., 2016, 8(327), 327ra24. doi: 10.1126/scitranslmed.aad7842 PMID: 26912903
  90. Zhang, J.; Cunningham, J.J.; Brown, J.S.; Gatenby, R.A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun., 2017, 8(1), 1816. doi: 10.1038/s41467-017-01968-5 PMID: 29180633
  91. Galati, S.; Di Stefano, M.; Martinelli, E.; Poli, G.; Tuccinardi, T. Recent advances in in silico target fishing. Molecules, 2021, 26(17), 5124. doi: 10.3390/molecules26175124 PMID: 34500568
  92. Mohanasundaram, N.; Sekhar, T. Computational studies of molecular targets regarding the adverse effects of isoniazid drug for tuberculosis. Curr. Pharmacogenomics Person. Med., 2019, 16(3), 210-218. doi: 10.2174/1875692116666181108145230
  93. Metzger, M.H.; Gadji, A.; Haj Salah, N.; Kane, W.; Boue, F. Deep learning methods for detecting side effects of cancer chemotherapies reported in a remote monitoring web application. Stud. Health Technol. Inform., 2022, 294, 880-881. doi: 10.3233/SHTI220616 PMID: 35612235
  94. Blaschke, T.; Bajorath, J. Fine-tuning of a generative neural network for designing multi-target compounds. J. Comput. Aided Mol. Des., 2022, 36(5), 363-371. doi: 10.1007/s10822-021-00392-8 PMID: 34046745
  95. Fan, Y.W.; Liu, W.H.; Chen, Y.T.; Hsu, Y.C.; Pathak, N.; Huang, Y.W.; Yang, J.M. Exploring kinase family inhibitors and their moiety preferences using deep SHapley additive exPlanations. BMC Bioinf., 2022, 23(Suppl. 4), 242. doi: 10.1186/s12859-022-04760-5 PMID: 35725381
  96. Talluri, S. Molecular docking and virtual screening based prediction of drugs for COVID-19. Comb. Chem. High Throughput Screen., 2021, 24(5), 716-728. doi: 10.2174/13862073MTA5sMTEzz PMID: 32798373
  97. Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. A review of network-based approaches to drug repositioning. Brief. Bioinf., 2018, 19(5), 878-892. doi: 10.1093/bib/bbx017 PMID: 28334136
  98. Armando, R.G.; Mengual Gómez, D.L.; Gomez, D.E. New drugs are not enough-drug repositioning in oncology: An update. Int. J. Oncol., 2020, 56(3), 651-684. doi: 10.3892/ijo.2020.4966 PMID: 32124955
  99. Marshall, G.R. Computer-aided drug design. Annu. Rev. Pharmacol. Toxicol., 1987, 27(1), 193-213. doi: 10.1146/annurev.pa.27.040187.001205 PMID: 3555315
  100. Emig, D.; Ivliev, A.; Pustovalova, O.; Lancashire, L.; Bureeva, S.; Nikolsky, Y.; Bessarabova, M. Drug target prediction and repositioning using an integrated network-based approach. PLoS One, 2013, 8(4), e60618. doi: 10.1371/journal.pone.0060618 PMID: 23593264
  101. Brown, A.S.; Kong, S.W.; Kohane, I.S.; Patel, C.J. ksRepo: A generalized platform for computational drug repositioning. BMC Bioinf., 2016, 17(1), 78. doi: 10.1186/s12859-016-0931-y PMID: 26860211
  102. Imoto, S.; Tamada, Y.; Savoie, C.J.; Miyano, S. Analysis of gene networks for drug target discovery and validation. Methods Mol. Biol., 2007, 360, 33-56. PMID: 17172724
  103. Chen, H.R.; Sherr, D.H.; Hu, Z.; DeLisi, C. A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Med. Genomics, 2016, 9(1), 51. doi: 10.1186/s12920-016-0212-7 PMID: 27475327
  104. Zhao, Y.; Liu, Y.; Bai, H. Integrating LINCS data to evaluate cancer transcriptome modifying potential of small- molecule compounds for drug repositioning. Comb. Chem. High Throughput Screen., 2021, 24(9), 1340-1350. doi: 10.2174/1386207323666201027120149 PMID: 33109034
  105. Yang, H.T.; Ju, J.H.; Wong, Y.T.; Shmulevich, I.; Chiang, J.H. Literature-based discovery of new candidates for drug repurposing. Brief. Bioinform., 2017, 18(3), 488-497. PMID: 27113728
  106. Iorio, F.; Bosotti, R.; Scacheri, E.; Belcastro, V.; Mithbaokar, P.; Ferriero, R.; Murino, L.; Tagliaferri, R.; Brunetti-Pierri, N.; Isacchi, A.; di Bernardo, D. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14621-14626. doi: 10.1073/pnas.1000138107 PMID: 20679242
  107. Folger, O.; Jerby, L.; Frezza, C.; Gottlieb, E.; Ruppin, E.; Shlomi, T. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol., 2011, 7(1), 501. doi: 10.1038/msb.2011.35 PMID: 21694718
  108. Wang, W.; Yang, S.; Zhang, X.; Li, J. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics, 2014, 30(20), 2923-2930. doi: 10.1093/bioinformatics/btu403 PMID: 24974205
  109. Lee, H.; Kang, S.; Kim, W. Drug repositioning for cancer therapy based on large-scale drug-induced transcriptional signatures. PLoS One, 2016, 11(3), e0150460. doi: 10.1371/journal.pone.0150460 PMID: 26954019
  110. Tao, C.; Sun, J.; Zheng, W.J.; Chen, J.; Xu, H. Colorectal cancer drug target prediction using ontology-based inference and network analysis. Database, 2015, 2015 doi: 10.1093/database/bav015
  111. Qin, Y.; Chen, M.; Wang, H.; Zheng, X. A network flow-based method to predict anticancer drug sensitivity. PLoS One, 2015, 10(5), e0127380. doi: 10.1371/journal.pone.0127380 PMID: 25992881
  112. Ko, Y.K.; Gim, J.A. New drug development and clinical trial design by applying genomic information management. Pharmaceutics, 2022, 14(8), 1539. doi: 10.3390/pharmaceutics14081539 PMID: 35893795
  113. Deamer, D.; Akeson, M.; Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol., 2016, 34(5), 518-524. doi: 10.1038/nbt.3423 PMID: 27153285
  114. Norris, A.L.; Workman, R.E.; Fan, Y.; Eshleman, J.R.; Timp, W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther., 2016, 17(3), 246-253. doi: 10.1080/15384047.2016.1139236 PMID: 26787508
  115. Rang, F.J.; Kloosterman, W.P.; de Ridder, J. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol., 2018, 19(1), 90. doi: 10.1186/s13059-018-1462-9 PMID: 30005597
  116. Low, Z.Y.; Farouk, I.A.; Lal, S.K. Drug Repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses, 2020, 12(9), 1058. doi: 10.3390/v12091058 PMID: 32972027
  117. Isik, Z.; Baldow, C.; Cannistraci, C.V.; Schroeder, M. Drug target prioritization by perturbed gene expression and network information. Sci. Rep., 2015, 5(1), 17417. doi: 10.1038/srep17417 PMID: 26615774
  118. Kotsias, P.C.; Arús-Pous, J.; Chen, H.; Engkvist, O.; Tyrchan, C.; Bjerrum, E.J. Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. Nat. Mach. Intell., 2020, 2(5), 254-265. doi: 10.1038/s42256-020-0174-5
  119. Gebauer, N.W.A.; Gastegger, M.; Hessmann, S.S.P.; Müller, K.R.; Schütt, K.T. Inverse design of 3d molecular structures with conditional generative neural networks. Nat. Commun., 2022, 13(1), 973. doi: 10.1038/s41467-022-28526-y PMID: 35190542
  120. Galperin, M.Y.; Fernández-Suárez, X.M.; Rigden, D.J. The 24th annual Nucleic Acids Research database issue: a look back and upcoming changes. Nucleic Acids Res., 2017, 45(D1), D1-D11. doi: 10.1093/nar/gkw1188 PMID: 28053160
  121. Rigden, D.J.; Fernández, X.M. The 2022 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res., 2022, 50(D1), D1-D10. doi: 10.1093/nar/gkab1195 PMID: 34986604
  122. Deng, J.; Yang, Z.; Ojima, I.; Samaras, D.; Wang, F. Artificial intelligence in drug discovery: Applications and techniques. Brief. Bioinf., 2022, 23(1), bbab430. doi: 10.1093/bib/bbab430 PMID: 34734228
  123. David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M.J.E. The alphafold database of protein structures: A Biologist’s guide. J. Mol. Biol., 2022, 434(2), 167336. doi: 10.1016/j.jmb.2021.167336 PMID: 34757056
  124. Aaltonen, L.A.; Abascal, F.; Abeshouse, A.; Aburatani, H.; Adams, D.J.; Agrawal, N.; Ahn, K.S.; Ahn, S-M.; Aikata, H.; Akbani, R.; Akdemir, K.C.; Al-Ahmadie, H.; Al-Sedairy, S.T.; Al-Shahrour, F.; Alawi, M.; Albert, M.; Aldape, K.; Alexandrov, L.B.; Ally, A.; Alsop, K.; Alvarez, E.G.; Amary, F.; Amin, S.B.; Aminou, B.; Ammerpohl, O.; Anderson, M.J.; Ang, Y.; Antonello, D.; Anur, P.; Aparicio, S.; Appelbaum, E.L.; Arai, Y.; Aretz, A.; Arihiro, K.; Ariizumi, S.; Armenia, J.; Arnould, L.; Asa, S.; Assenov, Y.; Atwal, G.; Aukema, S.; Auman, J.T.; Aure, M.R.R.; Awadalla, P.; Aymerich, M.; Bader, G.D.; Baez-Ortega, A.; Bailey, M.H.; Bailey, P.J.; Balasundaram, M.; Balu, S.; Bandopadhayay, P.; Banks, R.E.; Barbi, S.; Barbour, A.P.; Barenboim, J.; Barnholtz-Sloan, J.; Barr, H.; Barrera, E.; Bartlett, J.; Bartolome, J.; Bassi, C.; Bathe, O.F.; Baumhoer, D.; Bavi, P.; Baylin, S.B.; Bazant, W.; Beardsmore, D.; Beck, T.A.; Behjati, S.; Behren, A.; Niu, B.; Bell, C.; Beltran, S.; Benz, C.; Berchuck, A.; Bergmann, A.K.; Bergstrom, E.N.; Berman, B.P.; Berney, D.M.; Bernhart, S.H.; Beroukhim, R.; Berrios, M.; Bersani, S.; Bertl, J.; Betancourt, M.; Bhandari, V.; Bhosle, S.G.; Biankin, A.V.; Bieg, M.; Bigner, D.; Binder, H.; Birney, E.; Birrer, M.; Biswas, N.K.; Bjerkehagen, B.; Bodenheimer, T.; Boice, L.; Bonizzato, G.; De Bono, J.S.; Boot, A.; Bootwalla, M.S.; Borg, A.; Borkhardt, A.; Boroevich, K.A.; Borozan, I.; Borst, C.; Bosenberg, M.; Bosio, M.; Boultwood, J.; Bourque, G.; Boutros, P.C.; Bova, G.S.; Bowen, D.T.; Bowlby, R.; Bowtell, D.D.L.; Boyault, S.; Boyce, R.; Boyd, J.; Brazma, A.; Brennan, P.; Brewer, D.S.; Brinkman, A.B.; Bristow, R.G.; Broaddus, R.R.; Brock, J.E.; Brock, M.; Broeks, A.; Brooks, A.N.; Brooks, D.; Brors, B.; Brunak, S.; Bruxner, T.J.C.; Bruzos, A.L.; Buchanan, A.; Buchhalter, I.; Buchholz, C.; Bullman, S.; Burke, H.; Burkhardt, B.; Burns, K.H.; Busanovich, J.; Bustamante, C.D.; Butler, A.P.; Butte, A.J.; Byrne, N.J.; Børresen-Dale, A-L.; Caesar-Johnson, S.J.; Cafferkey, A.; Cahill, D.; Calabrese, C.; Caldas, C.; Calvo, F.; Camacho, N.; Campbell, P.J.; Campo, E.; Cantù, C.; Cao, S.; Carey, T.E.; Carlevaro-Fita, J.; Carlsen, R.; Cataldo, I.; Cazzola, M.; Cebon, J.; Cerfolio, R.; Chadwick, D.E.; Chakravarty, D.; Chalmers, D.; Chan, C.W.Y.; Chan, K.; Chan-Seng-Yue, M.; Chandan, V.S.; Chang, D.K.; Chanock, S.J.; Chantrill, L.A.; Chateigner, A.; Chatterjee, N.; Chayama, K.; Chen, H-W.; Chen, J.; Chen, K.; Chen, Y.; Chen, Z.; Cherniack, A.D.; Chien, J.; Chiew, Y-E.; Chin, S-F.; Cho, J.; Cho, S.; Choi, J.K.; Choi, W.; Chomienne, C.; Chong, Z.; Choo, S.P.; Chou, A.; Christ, A.N.; Christie, E.L.; Chuah, E.; Cibulskis, C.; Cibulskis, K.; Cingarlini, S.; Clapham, P.; Claviez, A.; Cleary, S.; Cloonan, N.; Cmero, M.; Collins, C.C.; Connor, A.A.; Cooke, S.L.; Cooper, C.S.; Cope, L.; Corbo, V.; Cordes, M.G.; Cordner, S.M.; Cortés-Ciriano, I.; Covington, K.; Cowin, P.A.; Craft, B.; Craft, D.; Creighton, C.J.; Cun, Y.; Curley, E.; Cutcutache, I.; Czajka, K.; Czerniak, B.; Dagg, R.A.; Danilova, L.; Davi, M.V.; Davidson, N.R.; Davies, H.; Davis, I.J.; Davis-Dusenbery, B.N.; Dawson, K.J.; De La Vega, F.M.; De Paoli-Iseppi, R.; Defreitas, T.; Tos, A.P.D.; Delaneau, O.; Demchok, J.A.; Demeulemeester, J.; Demidov, G.M.; Demircioğlu, D.; Dennis, N.M.; Denroche, R.E.; Dentro, S.C.; Desai, N.; Deshpande, V.; Deshwar, A.G.; Desmedt, C.; Deu-Pons, J.; Dhalla, N.; Dhani, N.C.; Dhingra, P.; Dhir, R.; DiBiase, A.; Diamanti, K.; Ding, L.; Ding, S.; Dinh, H.Q.; Dirix, L.; Doddapaneni, H.V.; Donmez, N.; Dow, M.T.; Drapkin, R.; Drechsel, O.; Drews, R.M.; Serge, S.; Dudderidge, T.; Dueso-Barroso, A.; Dunford, A.J.; Dunn, M.; Dursi, L.J.; Duthie, F.R.; Dutton-Regester, K.; Eagles, J.; Easton, D.F.; Edmonds, S.; Edwards, P.A.; Edwards, S.E.; Eeles, R.A.; Ehinger, A.; Eils, J.; Eils, R.; El-Naggar, A.; Eldridge, M.; Ellrott, K.; Erkek, S.; Escaramis, G.; Espiritu, S.M.G.; Estivill, X.; Etemadmoghadam, D.; Eyfjord, J.E.; Faltas, B.M.; Fan, D.; Fan, Y.; Faquin, W.C.; Farcas, C.; Fassan, M.; Fatima, A.; Favero, F.; Fayzullaev, N.; Felau, I.; Fereday, S.; Ferguson, M.L.; Ferretti, V.; Feuerbach, L.; Field, M.A.; Fink, J.L.; Finocchiaro, G.; Fisher, C.; Fittall, M.W.; Fitzgerald, A.; Fitzgerald, R.C.; Flanagan, A.M.; Fleshner, N.E.; Flicek, P.; Foekens, J.A.; Fong, K.M.; Fonseca, N.A.; Foster, C.S.; Fox, N.S.; Fraser, M.; Frazer, S.; Frenkel-Morgenstern, M.; Friedman, W.; Frigola, J.; Fronick, C.C.; Fujimoto, A.; Fujita, M.; Fukayama, M.; Fulton, L.A.; Fulton, R.S.; Furuta, M.; Futreal, P.A.; Füllgrabe, A.; Gabriel, S.B.; Gallinger, S.; Gambacorti-Passerini, C.; Gao, J.; Gao, S.; Garraway, L.; Garred, Ø.; Garrison, E.; Garsed, D.W.; Gehlenborg, N.; Gelpi, J.L.L.; George, J.; Gerhard, D.S.; Gerhauser, C.; Gershenwald, J.E.; Gerstein, M.; Gerstung, M.; Getz, G.; Ghori, M.; Ghossein, R.; Giama, N.H.; Gibbs, R.A.; Gibson, B.; Gill, A.J.; Gill, P.; Giri, D.D.; Glodzik, D.; Gnanapragasam, V.J.; Goebler, M.E.; Goldman, M.J.; Gomez, C.; Gonzalez, S.; Gonzalez-Perez, A.; Gordenin, D.A.; Gossage, J.; Gotoh, K.; Govindan, R.; Grabau, D.; Graham, J.S.; Grant, R.C.; Green, A.R.; Green, E.; Greger, L.; Grehan, N.; Grimaldi, S.; Grimmond, S.M.; Grossman, R.L.; Grundhoff, A.; Gundem, G.; Guo, Q.; Gupta, M.; Gupta, S.; Gut, I.G.; Gut, M.; Göke, J.; Ha, G.; Haake, A.; Haan, D.; Haas, S.; Haase, K.; Haber, J.E.; Habermann, N.; Hach, F.; Haider, S.; Hama, N.; Hamdy, F.C.; Hamilton, A.; Hamilton, M.P.; Han, L.; Hanna, G.B.; Hansmann, M.; Haradhvala, N.J.; Harismendy, O.; Harliwong, I.; Harmanci, A.O.; Harrington, E.; Hasegawa, T.; Haussler, D.; Hawkins, S.; Hayami, S.; Hayashi, S.; Hayes, D.N.; Hayes, S.J.; Hayward, N.K.; Hazell, S.; He, Y.; Heath, A.P.; Heath, S.C.; Hedley, D.; Hegde, A.M.; Heiman, D.I.; Heinold, M.C.; Heins, Z.; Heisler, L.E.; Hellstrom-Lindberg, E.; Helmy, M.; Heo, S.G.; Hepperla, A.J.; Heredia-Genestar, J.M.; Herrmann, C.; Hersey, P.; Hess, J.M.; Hilmarsdottir, H.; Hinton, J.; Hirano, S.; Hiraoka, N.; Hoadley, K.A.; Hobolth, A.; Hodzic, E.; Hoell, J.I.; Hoffmann, S.; Hofmann, O.; Holbrook, A.; Holik, A.Z.; Hollingsworth, M.A.; Holmes, O.; Holt, R.A.; Hong, C.; Hong, E.P.; Hong, J.H.; Hooijer, G.K.; Hornshøj, H.; Hosoda, F.; Hou, Y.; Hovestadt, V.; Howat, W.; Hoyle, A.P.; Hruban, R.H.; Hu, J.; Hu, T.; Hua, X.; Huang, K.; Huang, M.; Huang, M.N.; Huang, V.; Huang, Y.; Huber, W.; Hudson, T.J.; Hummel, M.; Hung, J.A.; Huntsman, D.; Hupp, T.R.; Huse, J.; Huska, M.R.; Hutter, B.; Hutter, C.M.; Hübschmann, D.; Iacobuzio-Donahue, C.A.; Imbusch, C.D.; Imielinski, M.; Imoto, S.; Isaacs, W.B.; Isaev, K.; Ishikawa, S.; Iskar, M.; Islam, S.M.A.; Ittmann, M.; Ivkovic, S.; Izarzugaza, J.M.G.; Jacquemier, J.; Jakrot, V.; Jamieson, N.B.; Jang, G.H.; Jang, S.J.; Jayaseelan, J.C.; Jayasinghe, R.; Jefferys, S.R.; Jegalian, K.; Jennings, J.L.; Jeon, S-H.; Jerman, L.; Ji, Y.; Jiao, W.; Johansson, P.A.; Johns, A.L.; Johns, J.; Johnson, R.; Johnson, T.A.; Jolly, C.; Joly, Y.; Jonasson, J.G.; Jones, C.D.; Jones, D.R.; Jones, D.T.W.; Jones, N.; Jones, S.J.M.; Jonkers, J.; Ju, Y.S.; Juhl, H.; Jung, J.; Juul, M.; Juul, R.I.; Juul, S.; Jäger, N.; Kabbe, R.; Kahles, A.; Kahraman, A.; Kaiser, V.B.; Kakavand, H.; Kalimuthu, S.; von Kalle, C.; Kang, K.J.; Karaszi, K.; Karlan, B.; Karlić, R.; Karsch, D.; Kasaian, K.; Kassahn, K.S.; Katai, H.; Kato, M.; Katoh, H.; Kawakami, Y.; Kay, J.D.; Kazakoff, S.H.; Kazanov, M.D.; Keays, M.; Kebebew, E.; Kefford, R.F.; Kellis, M.; Kench, J.G.; Kennedy, C.J.; Kerssemakers, J.N.A.; Khoo, D.; Khoo, V.; Khuntikeo, N.; Khurana, E.; Kilpinen, H.; Kim, H.K.; Kim, H-L.; Kim, H-Y.; Kim, H.; Kim, J.; Kim, J.; Kim, J.K.; Kim, Y.; King, T.A.; Klapper, W.; Kleinheinz, K.; Klimczak, L.J.; Knappskog, S.; Kneba, M.; Knoppers, B.M.; Koh, Y.; Komorowski, J.; Komura, D.; Komura, M.; Kong, G.; Kool, M.; Korbel, J.O.; Korchina, V.; Korshunov, A.; Koscher, M.; Koster, R.; Kote-Jarai, Z.; Koures, A.; Kovacevic, M.; Kremeyer, B.; Kretzmer, H.; Kreuz, M.; Krishnamurthy, S.; Kube, D.; Kumar, K.; Kumar, P.; Kumar, S.; Kumar, Y.; Kundra, R.; Kübler, K.; Küppers, R.; Lagergren, J.; Lai, P.H.; Laird, P.W.; Lakhani, S.R.; Lalansingh, C.M.; Lalonde, E.; Lamaze, F.C.; Lambert, A.; Lander, E.; Landgraf, P.; Landoni, L.; Langerød, A.; Lanzós, A.; Larsimont, D.; Larsson, E.; Lathrop, M.; Lau, L.M.S.; Lawerenz, C.; Lawlor, R.T.; Lawrence, M.S.; Lazar, A.J.; Lazic, A.M.; Le, X.; Lee, D.; Lee, D.; Lee, E.A.; Lee, H.J.; Lee, J.J-K.; Lee, J-Y.; Lee, J.; Lee, M.T.M.; Lee-Six, H.; Lehmann, K-V.; Lehrach, H.; Lenze, D.; Leonard, C.R.; Leongamornlert, D.A.; Leshchiner, I.; Letourneau, L.; Letunic, I.; Levine, D.A.; Lewis, L.; Ley, T.; Li, C.; Li, C.H.; Li, H.I.; Li, J.; Li, L.; Li, S.; Li, S.; Li, X.; Li, X.; Li, X.; Li, Y.; Liang, H.; Liang, S-B.; Lichter, P.; Lin, P.; Lin, Z.; Linehan, W.M.; Lingjærde, O.C.; Liu, D.; Liu, E.M.; Liu, F-F.F.; Liu, F.; Liu, J.; Liu, X.; Livingstone, J.; Livitz, D.; Livni, N.; Lochovsky, L.; Loeffler, M.; Long, G.V.; Lopez-Guillermo, A.; Lou, S.; Louis, D.N.; Lovat, L.B.; Lu, Y.; Lu, Y-J.; Lu, Y.; Luchini, C.; Lungu, I.; Luo, X.; Luxton, H.J.; Lynch, A.G.; Lype, L.; López, C.; López-Otín, C.; Ma, E.Z.; Ma, Y.; MacGrogan, G.; MacRae, S.; Macintyre, G.; Madsen, T.; Maejima, K.; Mafficini, A.; Maglinte, D.T.; Maitra, A.; Majumder, P.P.; Malcovati, L.; Malikic, S.; Malleo, G.; Mann, G.J.; Mantovani-Löffler, L.; Marchal, K.; Marchegiani, G.; Mardis, E.R.; Margolin, A.A.; Marin, M.G.; Markowetz, F.; Markowski, J.; Marks, J.; Marques-Bonet, T.; Marra, M.A.; Marsden, L.; Martens, J.W.M.; Martin, S.; Martin-Subero, J.I.; Martincorena, I.; Martinez- Fundichely, A.; Maruvka, Y.E.; Mashl, R.J.; Massie, C.E.; Matthew, T.J.; Matthews, L.; Mayer, E.; Mayes, S.; Mayo, M.; Mbabaali, F.; McCune, K.; McDermott, U.; McGillivray, P.D.; McLellan, M.D.; McPherson, J.D.; McPherson, J.R.; McPherson, T.A.; Meier, S.R.; Meng, A.; Meng, S.; Menzies, A.; Merrett, N.D.; Merson, S.; Meyerson, M.; Meyerson, W.; Mieczkowski, P.A.; Mihaiescu, G.L.; Mijalkovic, S.; Mikkelsen, T.; Milella, M.; Mileshkin, L.; Miller, C.A.; Miller, D.K.; Miller, J.K.; Mills, G.B.; Milovanovic, A.; Minner, S.; Miotto, M.; Arnau, G.M.; Mirabello, L.; Mitchell, C.; Mitchell, T.J.; Miyano, S.; Miyoshi, N.; Mizuno, S.; Molnár-Gábor, F.; Moore, M.J.; Moore, R.A.; Morganella, S.; Morris, Q.D.; Morrison, C.; Mose, L.E.; Moser, C.D.; Muiños, F.; Mularoni, L.; Mungall, A.J.; Mungall, K.; Musgrove, E.A.; Mustonen, V.; Mutch, D.; Muyas, F.; Muzny, D.M.; Muñoz, A.; Myers, J.; Myklebost, O.; Möller, P.; Nagae, G.; Nagrial, A.M.; Nahal- Bose, H.K.; Nakagama, H.; Nakagawa, H.; Nakamura, H.; Nakamura, T.; Nakano, K.; Nandi, T.; Nangalia, J.; Nastic, M.; Navarro, A.; Navarro, F.C.P.; Neal, D.E.; Nettekoven, G.; Newell, F.; Newhouse, S.J.; Newton, Y.; Ng, A.W.T.; Ng, A.; Nicholson, J.; Nicol, D.; Nie, Y.; Nielsen, G.P.; Nielsen, M.M.; Nik-Zainal, S.; Noble, M.S.; Nones, K.; Northcott, P.A.; Notta, F.; O’Connor, B.D.; O’Donnell, P.; O’Donovan, M.; O’Meara, S.; O’Neill, B.P.; O’Neill, J.R.; Ocana, D.; Ochoa, A.; Oesper, L.; Ogden, C.; Ohdan, H.; Ohi, K.; Ohno-Machado, L.; Oien, K.A.; Ojesina, A.I.; Ojima, H.; Okusaka, T.; Omberg, L.; Ong, C.K.; Ossowski, S.; Ott, G.; Ouellette, B.F.F.; P’ng, C.; Paczkowska, M.; Paiella, S.; Pairojkul, C.; Pajic, M.; Pan-Hammarström, Q.; Papaemmanuil, E.; Papatheodorou, I.; Paramasivam, N.; Park, J.W.; Park, J-W.; Park, K.; Park, K.; Park, P.J.; Parker, J.S.; Parsons, S.L.; Pass, H.; Pasternack, D.; Pastore, A.; Patch, A-M.; Pauporté, I.; Pea, A.; Pearson, J.V.; Pedamallu, C.S.; Pedersen, J.S.; Pederzoli, P.; Peifer, M.; Pennell, N.A.; Perou, C.M.; Perry, M.D.; Petersen, G.M.; Peto, M.; Petrelli, N.; Petryszak, R.; Pfister, S.M.; Phillips, M.; Pich, O.; Pickett, H.A.; Pihl, T.D.; Pillay, N.; Pinder, S.; Pinese, M.; Pinho, A.V.; Pitkänen, E.; Pivot, X.; Piñeiro-Yáñez, E.; Planko, L.; Plass, C.; Polak, P.; Pons, T.; Popescu, I.; Potapova, O.; Prasad, A.; Preston, S.R.; Prinz, M.; Pritchard, A.L.; Prokopec, S.D.; Provenzano, E.; Puente, X.S.; Puig, S.; Puiggròs, M.; Pulido-Tamayo, S.; Pupo, G.M.; Purdie, C.A.; Quinn, M.C.; Rabionet, R.; Rader, J.S.; Radlwimmer, B.; Radovic, P.; Raeder, B.; Raine, K.M.; Ramakrishna, M.; Ramakrishnan, K.; Ramalingam, S.; Raphael, B.J.; Rathmell, W.K.; Rausch, T.; Reifenberger, G.; Reimand, J.; Reis-Filho, J.; Reuter, V.; Reyes-Salazar, I.; Reyna, M.A.; Reynolds, S.M.; Rheinbay, E.; Riazalhosseini, Y.; Richardson, A.L.; Richter, J.; Ringel, M.; Ringnér, M.; Rino, Y.; Rippe, K.; Roach, J.; Roberts, L.R.; Roberts, N.D.; Roberts, S.A.; Robertson, A.G.; Robertson, A.J.; Rodriguez, J.B.; Rodriguez-Martin, B.; Rodríguez-González, F.G.; Roehrl, M.H.A.; Rohde, M.; Rokutan, H.; Romieu, G.; Rooman, I.; Roques, T.; Rosebrock, D.; Rosenberg, M.; Rosenstiel, P.C.; Rosenwald, A.; Rowe, E.W.; Royo, R.; Rozen, S.G.; Rubanova, Y.; Rubin, M.A.; Rubio-Perez, C.; Rudneva, V.A.; Rusev, B.C.; Ruzzenente, A.; Rätsch, G.; Sabarinathan, R.; Sabelnykova, V.Y.; Sadeghi, S.; Sahinalp, S.C.; Saini, N.; Saito-Adachi, M.; Saksena, G.; Salcedo, A.; Salgado, R.; Salichos, L.; Sallari, R.; Saller, C.; Salvia, R.; Sam, M.; Samra, J.S.; Sanchez-Vega, F.; Sander, C.; Sanders, G.; Sarin, R.; Sarrafi, I.; Sasaki-Oku, A.; Sauer, T.; Sauter, G.; Saw, R.P.M.; Scardoni, M.; Scarlett, C.J.; Scarpa, A.; Scelo, G.; Schadendorf, D.; Schein, J.E.; Schilhabel, M.B.; Schlesner, M.; Schlomm, T.; Schmidt, H.K.; Schramm, S-J.; Schreiber, S.; Schultz, N.; Schumacher, S.E.; Schwarz, R.F.; Scolyer, R.A.; Scott, D.; Scully, R.; Seethala, R.; Segre, A.V.; Selander, I.; Semple, C.A.; Senbabaoglu, Y.; Sengupta, S.; Sereni, E.; Serra, S.; Sgroi, D.C.; Shackleton, M.; Shah, N.C.; Shahabi, S.; Shang, C.A.; Shang, P.; Shapira, O.; Shelton, T.; Shen, C.; Shen, H.; Shepherd, R.; Shi, R.; Shi, Y.; Shiah, Y-J.; Shibata, T.; Shih, J.; Shimizu, E.; Shimizu, K.; Shin, S.J.; Shiraishi, Y.; Shmaya, T.; Shmulevich, I.; Shorser, S.I.; Short, C.; Shrestha, R.; Shringarpure, S.S.; Shriver, C.; Shuai, S.; Sidiropoulos, N.; Siebert, R.; Sieuwerts, A.M.; Sieverling, L.; Signoretti, S.; Sikora, K.O.; Simbolo, M.; Simon, R.; Simons, J.V.; Simpson, J.T.; Simpson, P.T.; Singer, S.; Sinnott-Armstrong, N.; Sipahimalani, P.; Skelly, T.J.; Smid, M.; Smith, J.; Smith-McCune, K.; Socci, N.D.; Sofia, H.J.; Soloway, M.G.; Song, L.; Sood, A.K.; Sothi, S.; Sotiriou, C.; Soulette, C.M.; Span, P.N.; Spellman, P.T.; Sperandio, N.; Spillane, A.J.; Spiro, O.; Spring, J.; Staaf, J.; Stadler, P.F.; Staib, P.; Stark, S.G.; Stebbings, L.; Stefánsson, Ó.A.; Stegle, O.; Stein, L.D.; Stenhouse, A.; Stewart, C.; Stilgenbauer, S.; Stobbe, M.D.; Stratton, M.R.; Stretch, J.R.; Struck, A.J.; Stuart, J.M.; Stunnenberg, H.G.; Su, H.; Su, X.; Sun, R.X.; Sungalee, S.; Susak, H.; Suzuki, A.; Sweep, F.; Szczepanowski, M.; Sültmann, H.; Yugawa, T.; Tam, A.; Tamborero, D.; Tan, B.K.T.; Tan, D.; Tan, P.; Tanaka, H.; Taniguchi, H.; Tanskanen, T.J.; Tarabichi, M.; Tarnuzzer, R.; Tarpey, P.; Taschuk, M.L.; Tatsuno, K.; Tavaré, S.; Taylor, D.F.; Taylor-Weiner, A.; Teague, J.W.; Teh, B.T.; Tembe, V.; Temes, J.; Thai, K.; Thayer, S.P.; Thiessen, N.; Thomas, G.; Thomas, S.; Thompson, A.; Thompson, A.M.; Thompson, J.F.F.; Thompson, R.H.; Thorne, H.; Thorne, L.B.; Thorogood, A.; Tiao, G.; Tijanic, N.; Timms, L.E.; Tirabosco, R.; Tojo, M.; Tommasi, S.; Toon, C.W.; Toprak, U.H.; Torrents, D.; Tortora, G.; Tost, J.; Totoki, Y.; Townend, D.; Traficante, N.; Treilleux, I.; Trotta, J-R.; Trümper, L.H.P.; Tsao, M.; Tsunoda, T.; Tubio, J.M.C.; Tucker, O.; Turkington, R.; Turner, D.J.; Tutt, A.; Ueno, M.; Ueno, N.T.; Umbricht, C.; Umer, H.M.; Underwood, T.J.; Urban, L.; Urushidate, T.; Ushiku, T.; Uusküla-Reimand, L.; Valencia, A.; Van Den Berg, D.J.; Van Laere, S.; Van Loo, P.; Van Meir, E.G.; Van den Eynden, G.G.; Van der Kwast, T.; Vasudev, N.; Vazquez, M.; Vedururu, R.; Veluvolu, U.; Vembu, S.; Verbeke, L.P.C.; Vermeulen, P.; Verrill, C.; Viari, A.; Vicente, D.; Vicentini, C.; VijayRaghavan, K.; Viksna, J.; Vilain, R.E.; Villasante, I.; Vincent-Salomon, A.; Visakorpi, T.; Voet, D.; Vyas, P.; Vázquez-García, I.; Waddell, N.M.; Waddell, N.; Wadelius, C.; Wadi, L.; Wagener, R.; Wala, J.A.; Wang, J.; Wang, J.; Wang, L.; Wang, Q.; Wang, W.; Wang, Y.; Wang, Z.; Waring, P.M.; Warnatz, H-J.; Warrell, J.; Warren, A.Y.; Waszak, S.M.; Wedge, D.C.; Weichenhan, D.; Weinberger, P.; Weinstein, J.N.; Weischenfeldt, J.; Weisenberger, D.J.; Welch, I.; Wendl, M.C.; Werner, J.; Whalley, J.P.; Wheeler, D.A.; Whitaker, H.C.; Wigle, D.; Wilkerson, M.D.; Williams, A.; Wilmott, J.S.; Wilson, G.W.; Wilson, J.M.; Wilson, R.K.; Winterhoff, B.; Wintersinger, J.A.; Wiznerowicz, M.; Wolf, S.; Wong, B.H.; Wong, T.; Wong, W.; Woo, Y.; Wood, S.; Wouters, B.G.; Wright, A.J.; Wright, D.W.; Wright, M.H.; Wu, C-L.; Wu, D-Y.; Wu, G.; Wu, J.; Wu, K.; Wu, Y.; Wu, Z.; Xi, L.; Xia, T.; Xiang, Q.; Xiao, X.; Xing, R.; Xiong, H.; Xu, Q.; Xu, Y.; Xue, H.; Yachida, S.; Yakneen, S.; Yamaguchi, R.; Yamaguchi, T.N.; Yamamoto, M.; Yamamoto, S.; Yamaue, H.; Yang, F.; Yang, H.; Yang, J.Y.; Yang, L.; Yang, L.; Yang, S.; Yang, T-P.; Yang, Y.; Yao, X.; Yaspo, M-L.; Yates, L.; Yau, C.; Ye, C.; Ye, K.; Yellapantula, V.D.; Yoon, C.J.; Yoon, S-S.; Yousif, F.; Yu, J.; Yu, K.; Yu, W.; Yu, Y.; Yuan, K.; Yuan, Y.; Yuen, D.; Yung, C.K.; Zaikova, O.; Zamora, J.; Zapatka, M.; Zenklusen, J.C.; Zenz, T.; Zeps, N.; Zhang, C-Z.; Zhang, F.; Zhang, H.; Zhang, H.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, X.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, Z.; Zheng, L.; Zheng, X.; Zhou, W.; Zhou, Y.; Zhu, B.; Zhu, H.; Zhu, J.; Zhu, S.; Zou, L.; Zou, X.; deFazio, A.; van As, N.; van Deurzen, C.H.M.; van de Vijver, M.J.; van’t Veer, L.; von Mering, C. Pan-cancer analysis of whole genomes. Nature, 2020, 578(7793), 82-93. doi: 10.1038/s41586-020-1969-6 PMID: 32025007
  125. Finck, A.; Gill, S.I.; June, C.H. Cancer immunotherapy comes of age and looks for maturity. Nat. Commun., 2020, 11(1), 3325. doi: 10.1038/s41467-020-17140-5 PMID: 32620755
  126. Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr; Dees, E.C.; Goetz, M.P.; Olson, J.A., Jr; Lively, T.; Badve, S.S.; Saphner, T.J.; Wagner, L.I.; Whelan, T.J.; Ellis, M.J.; Paik, S.; Wood, W.C.; Ravdin, P.M.; Keane, M.M.; Gomez Moreno, H.L.; Reddy, P.S.; Goggins, T.F.; Mayer, I.A.; Brufsky, A.M.; Toppmeyer, D.L.; Kaklamani, V.G.; Berenberg, J.L.; Abrams, J.; Sledge, G.W., Jr Adjuvant chemotherapy guided by a 21-Gene expression assay in breast cancer. N. Engl. J. Med., 2018, 379(2), 111-121. doi: 10.1056/NEJMoa1804710 PMID: 29860917
  127. Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; Akbani, R.; Bowlby, R.; Wong, C.K.; Wiznerowicz, M.; Sanchez-Vega, F.; Robertson, A.G.; Schneider, B.G.; Lawrence, M.S.; Noushmehr, H.; Malta, T.M.; Stuart, J.M.; Benz, C.C.; Laird, P.W.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold- Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes- Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell, 2018, 173(2), 291-304.e6. doi: 10.1016/j.cell.2018.03.022 PMID: 29625048
  128. Stanková, K.; Brown, J.S.; Dalton, W.S.; Gatenby, R.A. Optimizing cancer treatment using game theory. JAMA Oncol., 2019, 5(1), 96-103. doi: 10.1001/jamaoncol.2018.3395 PMID: 30098166
  129. Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; Hellmann, M.D.; Barron, D.A.; Schram, A.M.; Hameed, M.; Dogan, S.; Ross, D.S.; Hechtman, J.F.; DeLair, D.F.; Yao, J.; Mandelker, D.L.; Cheng, D.T.; Chandramohan, R.; Mohanty, A.S.; Ptashkin, R.N.; Jayakumaran, G.; Prasad, M.; Syed, M.H.; Rema, A.B.; Liu, Z.Y.; Nafa, K.; Borsu, L.; Sadowska, J.; Casanova, J.; Bacares, R.; Kiecka, I.J.; Razumova, A.; Son, J.B.; Stewart, L.; Baldi, T.; Mullaney, K.A.; Al-Ahmadie, H.; Vakiani, E.; Abeshouse, A.A.; Penson, A.V.; Jonsson, P.; Camacho, N.; Chang, M.T.; Won, H.H.; Gross, B.E.; Kundra, R.; Heins, Z.J.; Chen, H.W.; Phillips, S.; Zhang, H.; Wang, J.; Ochoa, A.; Wills, J.; Eubank, M.; Thomas, S.B.; Gardos, S.M.; Reales, D.N.; Galle, J.; Durany, R.; Cambria, R.; Abida, W.; Cercek, A.; Feldman, D.R.; Gounder, M.M.; Hakimi, A.A.; Harding, J.J.; Iyer, G.; Janjigian, Y.Y.; Jordan, E.J.; Kelly, C.M.; Lowery, M.A.; Morris, L.G.T.; Omuro, A.M.; Raj, N.; Razavi, P.; Shoushtari, A.N.; Shukla, N.; Soumerai, T.E.; Varghese, A.M.; Yaeger, R.; Coleman, J.; Bochner, B.; Riely, G.J.; Saltz, L.B.; Scher, H.I.; Sabbatini, P.J.; Robson, M.E.; Klimstra, D.S.; Taylor, B.S.; Baselga, J.; Schultz, N.; Hyman, D.M.; Arcila, M.E.; Solit, D.B.; Ladanyi, M.; Berger, M.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med., 2017, 23(6), 703-713. doi: 10.1038/nm.4333 PMID: 28481359
  130. Cao, Y.; Romero, J.; Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev., 2018, 62(6), 6:1-6:20. doi: 10.1147/JRD.2018.2888987
  131. Lau, B.; Emani, P.S.; Chapman, J.; Yao, L.; Lam, T.; Merrill, P.; Warrell, J.; Gerstein, M.B.; Lam, H.Y.K. Insights from incorporating quantum computing into drug design workflows. Bioinformatics, 2023, 39(1), btac789. doi: 10.1093/bioinformatics/btac789 PMID: 36477833

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers