Discovery of Pyroptosis-inducing Drugs and Antineoplastic Activity based on the ROS/ER Stress/Pyroptosis Axis
- Authors: Gan X.1, Xie J.2, Dong Z.2, Wu Y.3, Zeng X.2, Yang Z.2, Liu B.4, Zhu M.2, Wang B.2, Li W.4, Wang L.1, Zhang H.2, Wu J.1, Hu Y.1
-
Affiliations:
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University
- School of Pharmaceutical Sciences, Wenzhou Medical University
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University
- , The First affiliated hospital of Wenzhou Medical University
- Issue: Vol 31, No 30 (2024)
- Pages: 4880-4897
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/645029
- DOI: https://doi.org/10.2174/0109298673281684240102072157
- ID: 645029
Cite item
Full Text
Abstract
Background:Pyroptosis, a cell death process triggered by chemotherapy drugs, has emerged as a highly promising mechanism for combating tumors in recent years. As the lead of new drugs, natural products play an important role in the discovery of anticancer drugs. Compared to other natural products, the medicine food homologous natural products (MFHNP) exhibit a superior safety profile. Among a series of MFHNP molecular skeletons, this study found that only benzylideneacetophenone (1) could induce cancer cell pyroptosis. However, the anti-cancer activity of 1 remains to be improved.
Aims:This study aimed to find a pyroptosis inducer with highly effective antitumor activity by modifying the chalcone structure.
Methods:To examine the effect of the Michael receptor in compound 1 on the induction of pyroptosis, several analogs were synthesized by modifying the Michael acceptor. Subsequently, the anticancer activity was tested by MTT assay, and morphological indications of pyroptosis were observed in human lung carcinoma NCI-H460 and human ovarian cancer CP-70 cell lines. Furthermore, to improve the activity of the chalcone skeleton, the anticancer group 3,4,5- trimethoxyphenyl was incorporated into the phenyl ring. Subsequently, compounds 2-22 were designed, synthesized, and screened in human lung cancer cells (NCI-H460, H1975, and A549). Additionally, a quantitative structure-activity relationship (QSAR) model was established using the eXtreme Gradient Boosting (XGBoost) machine learning library to identify the pharmacophore. Furthermore, both in vitro and in vivo experiments were conducted to investigate the molecular mechanisms of pyroptosis induced by the active compound.
Results:α, β-unsaturated ketone was the functional group of the chalcone skeleton and played a pivotal role in inducing cancer cell pyroptosis. QSAR models showed that the regression coefficients (R2) were 0.992 (A549 cells), 0.990 (NCI-H460 cells), and 0.998 (H1975 cells). Among these compounds, compound 7 was selected to be the active compound. Moreover, compound 7 was found to induce pyroptosis in lung cancer cells by upregulating the expression of CHOP by increasing the ROS level. Furthermore, it effectively suppressed the growth of lung cancer xenograft tumors.
Conclusion:Compound 7 exhibits antineoplastic activity by regulating the ROS/ER stress/pyroptosis axis and is a kind of promising pyroptosis inducer.
Keywords
About the authors
Xin Gan
Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University
Email: info@benthamscience.net
Jingwen Xie
School of Pharmaceutical Sciences, Wenzhou Medical University
Email: info@benthamscience.net
Zhaojun Dong
School of Pharmaceutical Sciences, Wenzhou Medical University
Email: info@benthamscience.net
Yuna Wu
The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University
Email: info@benthamscience.net
Xiaoqing Zeng
School of Pharmaceutical Sciences, Wenzhou Medical University
Email: info@benthamscience.net
Zhenzhen Yang
School of Pharmaceutical Sciences, Wenzhou Medical University
Email: info@benthamscience.net
Bo Liu
, The First affiliated hospital of Wenzhou Medical University
Email: info@benthamscience.net
Min Zhu
School of Pharmaceutical Sciences, Wenzhou Medical University
Email: info@benthamscience.net
Bozhen Wang
School of Pharmaceutical Sciences, Wenzhou Medical University
Email: info@benthamscience.net
Wulan Li
, The First affiliated hospital of Wenzhou Medical University
Email: info@benthamscience.net
Ledan Wang
Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University
Email: info@benthamscience.net
Huajie Zhang
School of Pharmaceutical Sciences, Wenzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
Jianzhang Wu
Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
Yue Hu
Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Dholaria, B.; Hammond, W.; Shreders, A.; Lou, Y. Emerging therapeutic agents for lung cancer. J. Hematol. Oncol., 2016, 9(1), 138-152. doi: 10.1186/s13045-016-0365-z PMID: 27938382
- Romano, S.; Fonseca, N.; Simões, S.; Gonçalves, J.; Moreira, J.N. Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discov. Today, 2019, 24(10), 1985-2001. doi: 10.1016/j.drudis.2019.06.018 PMID: 31271738
- Singh, M.; Jadhav, H.R. Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. Drug Discov. Today, 2018, 23(3), 745-753. doi: 10.1016/j.drudis.2017.10.004 PMID: 29031620
- Rahman, A.; White, R.M. Cytotoxic anticancer agents and renal impairment study: the challenge remains. J. Clin. Oncol., 2006, 24(4), 533-536. doi: 10.1200/JCO.2005.03.8299 PMID: 16391294
- Schimmel, K.J.M.; Richel, D.J.; van den Brink, R.B.A.; Guchelaar, H.J. Cardiotoxicity of cytotoxic drugs. Cancer Treat. Rev., 2004, 30(2), 181-191. doi: 10.1016/j.ctrv.2003.07.003 PMID: 15023436
- Weathers, S.P.S.; Gilbert, M.R. Toward personalized targeted therapeutics: An overview. Neurotherapeutics, 2017, 14(2), 256-264. doi: 10.1007/s13311-016-0496-5 PMID: 27995437
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810. doi: 10.1021/acs.chemrev.7b00020 PMID: 28488435
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol., 2009, 7(2), 99-109. doi: 10.1038/nrmicro2070 PMID: 19148178
- Wu, J.; Li, J.; Cai, Y.; Pan, Y.; Ye, F.; Zhang, Y.; Zhao, Y.; Yang, S.; Li, X.; Liang, G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem., 2011, 54(23), 8110-8123. doi: 10.1021/jm200946h PMID: 21988173
- Wu, J.Z.; Cheng, C.C.; Shen, L.L.; Wang, Z.K.; Wu, S.B.; Li, W.L.; Chen, S.H.; Zhou, R.P.; Qiu, P.H. Synthetic chalcones with potent antioxidant ability on H2O2-induced apoptosis in PC12 cells. Int. J. Mol. Sci., 2014, 15(10), 18525-18539. doi: 10.3390/ijms151018525 PMID: 25318055
- Nik, M.E.; Momtazi-Borojeni, A.A.; Zamani, P.; Navashenaq, J.G.; Iranshahi, M.; Jaafari, M.R.; Malaekeh-Nikouei, B. Targeted-nanoliposomal combretastatin A4 (CA-4) as an efficient antivascular candidate in the metastatic cancer treatment. J. Cell. Physiol., 2019, 234(9), 14721-14733. doi: 10.1002/jcp.28230 PMID: 30697744
- Sansalone, L.; Veliz, E.; Myrthil, N.; Stathias, V.; Walters, W.; Torrens, I.; Schürer, S.; Vanni, S.; Leblanc, R.; Graham, R. Novel curcumin inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death. Cancers, 2019, 11(3), 357-374. doi: 10.3390/cancers11030357 PMID: 30871215
- Rahimifard, M.; Jalalimanesh, N.; Movahed, M.A.; Hadjighassem, M.; Pourahmad Jaktaji, R.; Bagheri, Z.; Pourahmad, J.; Zarghi, A. Antiproliferative activity of new derivatives of pyrazino1,2- a benzimidazole: Integrated cell-based assay and computational studies with divalent magnesium, iron, and copper ions. J. Biochem. Mol. Toxicol., 2022, 36(10), e23155. doi: 10.1002/jbt.23155 PMID: 35791688
- Adams, D.J.; Dai, M.; Pellegrino, G.; Wagner, B.K.; Stern, A.M.; Shamji, A.F.; Schreiber, S.L. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc. Natl. Acad. Sci., 2012, 109(38), 15115-15120. doi: 10.1073/pnas.1212802109 PMID: 22949699
- Secci, D.; Bolasco, A.; Chimenti, P.; Carradori, S. The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr. Med. Chem., 2011, 18(33), 5114-5144. doi: 10.2174/092986711797636090 PMID: 22050759
- Cousins, D.L.; Fricero, P.; Kopf, K.P.M.; McColl, E.J.; Czechtizky, W.; Lim, Y.H.; Harrity, J.P.A. Pyrimidin-6-yl trifluoroborate salts as versatile templates for heterocycle synthesis. Angew. Chem. Int. Ed., 2021, 60(17), 9412-9415. doi: 10.1002/anie.202101297 PMID: 33570831
- La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Passacantilli, S.; Naccarato, V.; Ortar, G.; Mazzoccoli, C.; Ruggieri, V.; Agriesti, F.; Piccoli, C.; Tataranni, T.; Nalli, M.; Brancale, A.; Vultaggio, S.; Mercurio, C.; Varasi, M.; Saponaro, C.; Sergio, S.; Maffia, M.; Coluccia, A.M.L.; Hamel, E.; Silvestri, R. 3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin. ACS Med. Chem. Lett., 2017, 8(5), 521-526. doi: 10.1021/acsmedchemlett.7b00022 PMID: 28523104
- Qin, X.; Yao Lee, M.W.; Zhou, J.S. Asymmetric hydroarylation of enones via nickel-catalyzed 5- endo-trig cyclization. Org. Lett., 2019, 21(15), 5990-5994. doi: 10.1021/acs.orglett.9b02130 PMID: 31339044
- Puxeddu, M.; Shen, H.; Bai, R.; Coluccia, A.; Nalli, M.; Mazzoccoli, C.; Da Pozzo, E.; Cavallini, C.; Martini, C.; Orlando, V.; Biagioni, S.; Mazzoni, C.; Coluccia, A.M.L.; Hamel, E.; Liu, T.; Silvestri, R.; La Regina, G. Structure-activity relationship studies and in vitro and in vivo anticancer activity of novel 3-aroyl-1,4-diarylpyrroles against solid tumors and hematological malignancies. Eur. J. Med. Chem., 2020, 185, 111828. doi: 10.1016/j.ejmech.2019.111828 PMID: 31727471
- Johnson, M.; Younglove, B.; Lee, L.; LeBlanc, R.; Holt, H., Jr; Hills, P.; Mackay, H.; Brown, T.; Mooberry, S.L.; Lee, M. Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorg. Med. Chem. Lett., 2007, 17(21), 5897-5901. doi: 10.1016/j.bmcl.2007.07.105 PMID: 17827004
- Pathak, V.; Maurya, H.K.; Sharma, S.; Srivastava, K.K.; Gupta, A. Synthesis and biological evaluation of substituted 4,6-diarylpyrimidines and 3,5-diphenyl-4,5-dihydro-1H-pyrazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(13), 2892-2896. doi: 10.1016/j.bmcl.2014.04.094 PMID: 24835631
- Mansouri, K.; Cariello, N.F.; Korotcov, A.; Tkachenko, V.; Grulke, C.M.; Sprankle, C.S.; Allen, D.; Casey, W.M.; Kleinstreuer, N.C.; Williams, A.J. Open-source QSAR models for pKa prediction using multiple machine learning approaches. J. Cheminform., 2019, 11(1), 60. doi: 10.1186/s13321-019-0384-1 PMID: 33430972
- Heller, L.; Schwarz, S.; Perl, V.; Köwitsch, A.; Siewert, B.; Csuk, R. Incorporation of a Michael acceptor enhances the antitumor activity of triterpenoic acids. Eur. J. Med. Chem., 2015, 101, 391-399. doi: 10.1016/j.ejmech.2015.07.004 PMID: 26177446
- Rana, S.; Blowers, E.C.; Tebbe, C.; Contreras, J.I.; Radhakrishnan, P.; Kizhake, S.; Zhou, T.; Rajule, R.N.; Arnst, J.L.; Munkarah, A.R.; Rattan, R.; Natarajan, A. Isatin derived spirocyclic analogues with α-methylene-γ-butyrolactone as anticancer agents: A structureactivity relationship study. J. Med. Chem., 2016, 59(10), 5121-5127. doi: 10.1021/acs.jmedchem.6b00400 PMID: 27077228
- Gao, J.; Fan, M.; Peng, S.; Zhang, M.; Xiang, G.; Li, X.; Guo, W.; Sun, Y.; Wu, X.; Wu, X.; Liang, G.; Shen, Y.; Xu, Q. Small-molecule RL71-triggered excessive autophagic cell death as a potential therapeutic strategy in triple-negative breast cancer. Cell Death Dis., 2017, 8(9), e3049. doi: 10.1038/cddis.2017.444 PMID: 28906486
- Wu, J.; Wu, S.; Shi, L.; Zhang, S.; Ren, J.; Yao, S.; Yun, D.; Huang, L.; Wang, J.; Li, W.; Wu, X.; Qiu, P.; Liang, G. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer. Eur. J. Med. Chem., 2017, 125, 1321-1331. doi: 10.1016/j.ejmech.2016.10.027 PMID: 27886548
- Yu, J.; Li, S.; Qi, J.; Chen, Z.; Wu, Y.; Guo, J.; Wang, K.; Sun, X.; Zheng, J. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis., 2019, 10(3), 193-213. doi: 10.1038/s41419-019-1441-4 PMID: 30804337
- Chio, I.I.C.; Tuveson, D.A. ROS in cancer: The burning question. Trends Mol. Med., 2017, 23(5), 411-429. doi: 10.1016/j.molmed.2017.03.004 PMID: 28427863
- Cubillos-Ruiz, J.R.; Mohamed, E.; Rodriguez, P.C. Unfolding anti-tumor immunity: ER stress responses sculpt tolerogenic myeloid cells in cancer. J. Immunother. Cancer, 2017, 5(1), 5-15. doi: 10.1186/s40425-016-0203-4 PMID: 28105371
- Cao, Y.; Trillo-Tinoco, J.; Sierra, R.A.; Anadon, C.; Dai, W.; Mohamed, E.; Cen, L.; Costich, T.L.; Magliocco, A.; Marchion, D.; Klar, R.; Michel, S.; Jaschinski, F.; Reich, R.R.; Mehrotra, S.; Cubillos-Ruiz, J.R.; Munn, D.H.; Conejo-Garcia, J.R.; Rodriguez, P.C. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun., 2019, 10(1), 1280-1295. doi: 10.1038/s41467-019-09263-1 PMID: 30894532
- Li, Y.; Guo, Y.; Tang, J.; Jiang, J.; Chen, Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim. Biophys. Sin., 2014, 46(8), 629-640. doi: 10.1093/abbs/gmu048 PMID: 25016584
- Yang, J.R.; Yao, F.H.; Zhang, J.G.; Ji, Z.Y.; Li, K.L.; Zhan, J.; Tong, Y.N.; Lin, L.R.; He, Y.N. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am. J. Physiol. Renal Physiol., 2014, 306(1), F75-F84. doi: 10.1152/ajprenal.00117.2013 PMID: 24133119
- Jiang, C.; Jiang, L.; Li, Q.; Liu, X.; Zhang, T.; Dong, L.; Liu, T.; Liu, L.; Hu, G.; Sun, X.; Jiang, L. Acrolein induces NLRP3 inflammasome-mediated pyroptosis and suppresses migration via ROS-dependent autophagy in vascular endothelial cells. Toxicology, 2018, 410, 26-40. doi: 10.1016/j.tox.2018.09.002 PMID: 30205151
- Tan, C.C.; Zhang, J.G.; Tan, M.S.; Chen, H.; Meng, D.W.; Jiang, T.; Meng, X.F.; Li, Y.; Sun, Z.; Li, M.M.; Yu, J.T.; Tan, L. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J. Neuroinflammation, 2015, 12(1), 18-30. doi: 10.1186/s12974-014-0233-0 PMID: 25626361
- Tan, M-S.; Tan, L.; Jiang, T.; Zhu, X-C.; Wang, H-F.; Jia, C-D.; Yu, J-T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimers disease. Cell Death Dis., 2014, 5(8), e1382. doi: 10.1038/cddis.2014.348 PMID: 25144717
- Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661), 99-103. doi: 10.1038/nature22393 PMID: 28459430
- Zhu, X.; Wu, T.; Chi, Y.; Ge, Y.; Wu, B.; Zhou, M.; Zhu, F.; Ji, M.; Cui, L. Pyroptosis induced by enterovirus A71 infection in cultured human neuroblastoma cells. Virology, 2018, 521, 69-76. doi: 10.1016/j.virol.2018.05.025 PMID: 29886343
- Phang, C.W.; Karsani, S.A.; Sethi, G.; Abd Malek, S.N. Flavokawain C inhibits cell cycle and promotes apoptosis, associated with endoplasmic reticulum stress and regulation of MAPKs and Akt signaling pathways in HCT 116 human colon carcinoma cells. PLoS One, 2016, 11(2), e0148775. doi: 10.1371/journal.pone.0148775 PMID: 26859847
- Wang, J.; Qi, Q.; Zhou, W.; Feng, Z.; Huang, B.; Chen, A.; Zhang, D.; Li, W.; Zhang, Q.; Jiang, Z.; Bjerkvig, R.; Prestegarden, L.; Thorsen, F.; Wang, X.; Li, X.; Wang, J. Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. Autophagy, 2018, 14(11), 2007-2022. doi: 10.1080/15548627.2018.1501133 PMID: 30025493
- Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894-930. doi: 10.3390/biom11060894 PMID: 34208562
- Wang, C.; Chang, J.; Yang, S.; Shi, L.; Zhang, Y.; Liu, W.; Meng, J.; Zeng, J.; Zhang, R.; Xing, D. Advances in antitumor research of CA-4 analogs carrying quinoline scaffold. Front Chem., 2022, 10, 1040333. doi: 10.3389/fchem.2022.1040333 PMID: 36385996
- Huang, L.; Liu, M.; Man, S.; Ma, D.; Feng, D.; Sun, Z.; Guan, Q.; Zuo, D.; Wu, Y.; Zhang, W.; Bao, K. Design, synthesis and bio-evaluation of novel 2-aryl-4-(3,4,5-trimethoxy-benzoyl)-5-substituted-1,2,3-triazoles as the tubulin polymerization inhibitors. Eur. J. Med. Chem., 2020, 186, 111846. doi: 10.1016/j.ejmech.2019.111846 PMID: 31740055
- Miglioranza Scavuzzi, B.; Holoshitz, J. Endoplasmic reticulum stress, oxidative stress, and rheumatic diseases. Antioxidants, 2022, 11(7), 1306-1325. doi: 10.3390/antiox11071306 PMID: 35883795
- Cantoni, O.; Zito, E.; Guidarelli, A.; Fiorani, M.; Ghezzi, P. Mitochondrial ROS, ER stress, and Nrf2 crosstalk in the regulation of mitochondrial apoptosis induced by arsenite. Antioxidants, 2022, 11(5), 1034-1049. doi: 10.3390/antiox11051034 PMID: 35624898
Supplementary files
