Effectiveness In Vivo and In Vitro of Polymeric Nanoparticles as a Drug Release System in the Treatment of Leishmaniasis
- Autores: de Carvalho Moreira L.M.1, de Sousa Silva A.B.2, de Araújo Medeiros K.1, Oshiro Júnior J.2, da Silva D.T.2, de Lima Damasceno B.P.1
-
Afiliações:
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba
- Edição: Volume 31, Nº 3 (2024)
- Páginas: 286-307
- Seção: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/645018
- DOI: https://doi.org/10.2174/0929867330666230120163543
- ID: 645018
Citar
Texto integral
Resumo
Leishmaniasis is a neglected disease caused by the parasite of the genus Leishmania. Current treatment regimens are obsolete and cause several side effects, promoting poor patient compliance, in addition to the vast majority already having the potential for resistance. Therefore, polymeric nanoparticles emerge as one of the viable alternatives to overcome existing limitations, through passive or active vectorization. This review aims to summarize the latest studies of polymeric nanoparticles as an alternative treatment for leishmaniasis. In the first section, the main pharmacokinetic and pharmacodynamic challenges of current drugs are reported. The second section details how nanoparticles with and without functionalization are efficient in the treatment of leishmaniasis, discussing the characteristics of the polymer in the formulation. In this way, polymeric nanoparticles can improve the physicochemical properties of leishmanicidal drugs, improving solubility and stability, as well as improve the release of these drugs, directly or indirectly reaching monocytes/macrophages. 64.28% drugs were focused on the treatment of visceral leishmaniasis, and 28.57% on cutaneous leishmaniasis. The most chosen polymers in the literature are chitosan (35.71%) and PLGA (35.71%), the others represented 14.30% drugs, with all able to manage the drug release and increase the in vitro and/or in vivo efficacy of the original molecule. However, there are several barriers for these nanoformulations to cross laboratory research and is necessary more in-depth studies about the metabolites and degradation pathways of the polymers used in the formulations and plasma proteomics studies.
Sobre autores
Lívia de Carvalho Moreira
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba
Email: info@benthamscience.net
Ana de Sousa Silva
Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba
Email: info@benthamscience.net
Kaline de Araújo Medeiros
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba
Email: info@benthamscience.net
João Oshiro Júnior
Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba
Email: info@benthamscience.net
Dayanne da Silva
Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba
Email: info@benthamscience.net
Bolívar de Lima Damasceno
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- de Souza, A.; Marins, D.S.S.; Mathias, S.L.; Monteiro, L.M.; Yukuyama, M.N.; Scarim, C.B.; Löbenberg, R.; Bou-Chacra, N.A. Promising nanotherapy in treating leishmaniasis. Int. J. Pharm., 2018, 547(1-2), 421-431. doi: 10.1016/j.ijpharm.2018.06.018 PMID: 29886097
- J, B.; M, B.M.; Chanda, K. An overview on the therapeutics of neglected infectious diseases Leishmaniasis and chagas diseases. Front Chem., 2021, 9, 622286. doi: 10.3389/fchem.2021.622286
- Sasidharan, S.; Saudagar, P. Leishmaniasis: where are we and where are we heading? Parasitol. Res., 2021, 120(5), 1541-1554. doi: 10.1007/s00436-021-07139-2 PMID: 33825036
- Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40. doi: 10.2147/DDDT.S146521 PMID: 29317800
- Chakravarty, J.; Sundar, S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin. Pharmacother., 2019, 20(10), 1251-1265. doi: 10.1080/14656566.2019.1609940 PMID: 31063412
- Magalhães, L.S.; Bomfim, L.G.S.; Santos, C.N.O.; dos Santos, P.L.; Tanajura, D.M.; Lipscomb, M.W.; de Jesus, A.R.; de Almeida, R.P.; de Moura, T.R.; Ribeiro, A. Antimony resistance associated with persistence of Leishmania (Leishmania) infantum infection in macrophages. Parasitol. Res., 2021, 120(8), 2959-2964. doi: 10.1007/s00436-021-07231-7 PMID: 34272999
- Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials (Basel), 2019, 9(12), 1749. doi: 10.3390/nano9121749 PMID: 31818029
- Durak, S.; Arasoglu, T.; Ates, S.C.; Derman, S. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology, 2020, 31(17), 175705. doi: 10.1088/1361-6528/ab6ab9 PMID: 31931488
- Kumar Singh, P.; Gorain, B.; Choudhury, H.; Kumar Singh, S.; Whadwa, P.; Shilpa; Sahu, S.; Gulati, M.; Kesharwani, P. Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis. Mater. Sci. Eng. B, 2020, 258, 114571. doi: 10.1016/j.mseb.2020.114571
- Ali-Boucetta, H.; Al-Jamal, K.T.; Kostarelos, K. Cytotoxic assessment of carbon nanotube interaction with cell cultures. Methods Mol. Biol., 2011, 726, 299-312. doi: 10.1007/978-1-61779-052-2_19 PMID: 21424457
- Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191. doi: 10.3390/pharmaceutics10040191 PMID: 30340327
- Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720. doi: 10.1016/j.ijpharm.2018.07.030 PMID: 30012508
- Luther, D.C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y.W.; Nagaraj, H.; Rotello, V.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv. Drug Deliv. Rev., 2020, 156, 188-213. doi: 10.1016/j.addr.2020.06.020 PMID: 32610061
- Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett., 2018, 29(11), 1601-1608. doi: 10.1016/j.cclet.2018.08.007
- Patil, S.M.; Sawant, S.S.; Kunda, N.K. Exosomes as drug delivery systems: A brief overview and progress update. Eur. J. Pharm. Biopharm., 2020, 154(April), 259-269. doi: 10.1016/j.ejpb.2020.07.026 PMID: 32717385
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403. doi: 10.3390/nano10071403 PMID: 32707641
- Prasanna, P.; Kumar, P.; Kumar, S.; Rajana, V.K.; Kant, V.; Prasad, S.R.; Mohan, U.; Ravichandiran, V.; Mandal, D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis A review. Biomed. Pharmacother., 2021, 141, 111920. doi: 10.1016/j.biopha.2021.111920 PMID: 34328115
- Téllez, J.; Echeverry, M.C.; Romero, I.; Guatibonza, A.; Santos Ramos, G.; Borges De Oliveira, A.C.; Frézard, F.; Demicheli, C. Use of liposomal nanoformulations in antileishmania therapy: challenges and perspectives. J. Liposome Res., 2021, 31(2), 169-176. doi: 10.1080/08982104.2020.1749067 PMID: 32228210
- Aragão Horoiwa, T.; Cortez, M.; Sauter, I.P.; Migotto, A.; Bandeira, C.L.; Cerize, N.N.P.; de Oliveira, A.M. Sugar-based colloidal nanocarriers for topical meglumine antimoniate application to cutaneous leishmaniasis treatment: Ex vivo cutaneous retention and in vivo evaluation. Eur. J. Pharm. Sci., 2020, 147, 105295. doi: 10.1016/j.ejps.2020.105295 PMID: 32145429
- Berbert, T.R.N.; Mello, T.F.P.; Wolf Nassif, P.; Mota, C.A.; Silveira, A.V.; Duarte, G.C.; Demarchi, I.G.; Aristides, S.M.A.; Lonardoni, M.V.C.; Vieira Teixeira, J.J.; Silveira, T.G.V. Pentavalent antimonials combined with other therapeutic alternatives for the treatment of cutaneous and mucocutaneous leishmaniasis : A systematic review. Dermatol. Res. Pract., 2018, 2018, 9014726. doi: 10.1155/2018/9014726 PMID: 30675152
- Sundar, S.; Singh, B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin. Ther. Targets, 2018, 22(6), 467-486. doi: 10.1080/14728222.2018.1472241
- Carvalho, S.H.; Frézard, F.; Pereira, N.P.; Moura, A.S.; Ramos, L.M.Q.C.; Carvalho, G.B.; Rocha, M.O.C. American tegumentary leishmaniasis in Brazil: a critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment. Trop. Med. Int. Health, 2019, 24(4), 380-391. doi: 10.1111/tmi.13210 PMID: 30681239
- Santos Braga, S. Treating an old disease with new tricks: strategies based on hostguest chemistry for leishmaniasis therapy. J. Incl. Phenom. Macrocycl. Chem., 2019, 93(3-4), 145-155. doi: 10.1007/s10847-019-00885-y
- Matos, A.P.S.; Viçosa, A.L.; Ré, M.I.; Ricci-Júnior, E.; Holandino, C. A review of current treatments strategies based on paromomycin for leishmaniasis. J. Drug Deliv. Sci. Technol., 2020, 57, 101664. doi: 10.1016/j.jddst.2020.101664
- Verrest, L.; Wasunna, M.; Kokwaro, G.; Aman, R.; Musa, A.M.; Khalil, E.A.G.; Mudawi, M.; Younis, B.M.; Hailu, A.; Hurissa, Z.; Hailu, W.; Tesfaye, S.; Makonnen, E.; Mekonnen, Y.; Huitema, A.D.R.; Beijnen, J.H.; Kshirsagar, S.A.; Chakravarty, J.; Rai, M.; Sundar, S.; Alves, F.; Dorlo, T.P.C. Geographical variability in paromomycin pharmacokinetics does not explain efficacy differences between eastern african and indian visceral leishmaniasis patients. Clin. Pharmacokinet., 2021, 60(11), 1463-1473. doi: 10.1007/s40262-021-01036-8 PMID: 34105063
- Davidson, R.N.; den Boer, M.; Ritmeijer, K. Paromomycin. Trans. R. Soc. Trop. Med. Hyg., 2009, 103(7), 653-660. doi: 10.1016/j.trstmh.2008.09.008 PMID: 18947845
- Wiwanitkit, V. Interest in paromomycin for the treatment of visceral leishmaniasis (kala-azar). Ther. Clin. Risk Manag., 2012, 8, 323-328. doi: 10.2147/TCRM.S30139 PMID: 22802694
- Vechi, H.T.; Sousa, A.S.V.; Cunha, M.A.; Shaw, J.J.; Luz, K.G. Case Report : Combination therapy with liposomal amphotericin B, N-Methyl meglumine antimoniate, and pentamidine isethionate for disseminated visceral leishmaniasis in a splenectomized adult patient. Am. J. Trop. Med. Hyg., 2020, 102(2), 268-273. doi: 10.4269/ajtmh.18-0999 PMID: 31872796
- Andreana, I.; Bincoletto, V.; Milla, P.; Dosio, F.; Stella, B.; Arpicco, S. Nanotechnological approaches for pentamidine delivery. Drug Deliv. Transl. Res., 2022, 12(8), 1911-1927. doi: 10.1007/s13346-022-01127-4 PMID: 35217992
- Pham, T.T.H.; Loiseau, P.M.; Barratt, G. Strategies for the design of orally bioavailable antileishmanial treatments. Int. J. Pharm., 2013, 454(1), 539-552. doi: 10.1016/j.ijpharm.2013.07.035 PMID: 23871737
- Mérian, J.; De Souza, R.; Dou, Y.; Ekdawi, S.N.; Ravenelle, F.; Allen, C. Development of a liposome formulation for improved biodistribution and tumor accumulation of pentamidine for oncology applications. Int. J. Pharm., 2015, 488(1-2), 154-164. doi: 10.1016/j.ijpharm.2015.04.060 PMID: 25910415
- Eissa, M.M.; El-Moslemany, R.M.; Ramadan, A.A.; Amer, E.I.; El-Azzouni, M.Z.; El-Khordagui, L.K. Miltefosine lipid nanocapsules for single dose oral treatment of Schistosomiasis Mansoni: A preclinical study. PLoS One, 2015, 10(11), e0141788. doi: 10.1371/journal.pone.0141788 PMID: 26574746
- Malheiros, B.; de Castro, R.D.; Lotierzo, M.C.; Casadei, B.R.; Mariani, P.; Barbosa, L.R.S.; Barbosa, L.R.S. Influence of hexadecylphosphocholine (Miltefosine) in phytantriol-based cubosomes: A structural investigation. Colloids Surf. A Physicochem. Eng. Asp., 2022, 632, 127720. doi: 10.1016/j.colsurfa.2021.127720
- Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Topno, R.K.; Ansari, M.Y.; Rana, S.; Das, P. Development of PLGAPEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2016, 59, 748-753. doi: 10.1016/j.msec.2015.10.083 PMID: 26652429
- Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597. doi: 10.1093/jac/dks275 PMID: 22833634
- Ware, J.M.; OConnell, E.M.; Brown, T.; Wetzler, L.; Talaat, K.R.; Nutman, T.B.; Nash, T.E. Efficacy and tolerability of miltefosine in the treatment of cutaneous leishmaniasis. Clin. Infect. Dis., 2021, 73(7), e2457-e2562. doi: 10.1093/cid/ciaa1238 PMID: 33124666
- Nimtrakul, P.; Williams, D.B.; Tiyaboonchai, W.; Prestidge, C.A. Copolymeric micelles overcome the oral delivery challenges of amphotericin B. Pharmaceuticals (Basel), 2020, 13(6), 121. doi: 10.3390/ph13060121 PMID: 32545189
- Lanza, J.S.; Pomel, S.; Loiseau, P.M.; Frézard, F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin. Drug Deliv., 2019, 16(10), 1063-1079. doi: 10.1080/17425247.2019.1659243 PMID: 31433678
- Silva-Carvalho, R.; Fidalgo, J.; Melo, K.R.; Queiroz, M.F.; Leal, S.; Rocha, H.A.; Cruz, T.; Parpot, P.; Tomás, A.M.; Gama, M. Development of dextrin-amphotericin B formulations for the treatment of Leishmaniasis. Int. J. Biol. Macromol., 2020, 153, 276-288. doi: 10.1016/j.ijbiomac.2020.03.019 PMID: 32145228
- Kapil, S.; Singh, P.K.; Silakari, O. An update on small molecule strategies targeting leishmaniasis. Eur. J. Med. Chem., 2018, 157, 339-367. doi: 10.1016/j.ejmech.2018.08.012 PMID: 30099256
- Souza, M.L.; Gonzaga da Costa, L.A.; Silva, E.O.; Sousa, A.L.M.D.; Santos, W.M.; Rolim Neto, P.J. Recent strategies for the development of oral medicines for the treatment of visceral leishmaniasis. Drug Dev. Res., 2020, 81(7), 803-814. doi: 10.1002/ddr.21684 PMID: 32394440
- Bocxlaer, K.V.; Croft, S.L. Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities. RSC Med. Chem., 2021, 12, 472-482. doi: 10.1039/D0MD00343C PMID: 34041488
- Patino, L.H.; Muskus, C.; Ramírez, J.D. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit. Vectors, 2019, 12(1), 348. doi: 10.1186/s13071-019-3603-8 PMID: 31300064
- Dar, M.J.; Din, F.U.; Khan, G.M. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv., 2018, 25(1), 1595-1606. doi: 10.1080/10717544.2018.1494222 PMID: 30105918
- El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691. doi: 10.1016/j.ijpharm.2017.06.052 PMID: 28629982
- Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4. doi: 10.3390/jfb10010004 PMID: 30626094
- Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater., 2014, 26(1), 59-71. doi: 10.1021/cm402225z
- Nafari, A.; Cheraghipour, K.; Sepahvand, M.; Shahrokhi, G.; Gabal, E.; Mahmoudvand, H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol. Control, 2020, 10, e00156. doi: 10.1016/j.parepi.2020.e00156 PMID: 32566773
- Marques, C.S.F.; Machado Júnior, J.B.; Andrade, L.R.M.; Andrade, L.N.; Santos, A.L.S.; Cruz, M.S.P.; Chaud, M.; Fricks, A.T.; Severino, P. Use of pharmaceutical nanotechnology for the treatment of leishmaniasis. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180246. doi: 10.1590/0037-8682-0246-2018 PMID: 30994800
- Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett., 2019, 14(1), 188. doi: 10.1186/s11671-019-3019-6 PMID: 31147786
- Cosco, D.; Bruno, F.; Castelli, G.; Puleio, R.; Bonacci, S.; Procopio, A.; Britti, D.; Fresta, M.; Vitale, F.; Paolino, D. Meglumine antimoniate-loaded aqueous-core PLA nanocapsules: Old drug, new formulation against leishmania-related diseases. Macromol. Biosci., 2021, 21(7), 2100046. doi: 10.1002/mabi.202100046 PMID: 34117834
- Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E.M.; Appel, E.A.; Dormont, F.; Lim, J.M.; Karnik, R.; Langer, R.; Farokhzad, O.C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun., 2017, 8(1), 777. doi: 10.1038/s41467-017-00600-w PMID: 28974673
- Loría-Cervera, E.N.; Andrade-Narvaez, F. The role of monocytes/macrophages in Leishmania infection: A glance at the human response. Acta Trop., 2020, 207, 105456. doi: 10.1016/j.actatropica.2020.105456 PMID: 32222362
- Saqib, M.; Ali Bhatti, A.S.; Ahmad, N.M.; Ahmed, N.; Shahnaz, G.; Lebaz, N.; Elaissari, A. Amphotericin B loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials (Basel), 2020, 10(6), 1152. doi: 10.3390/nano10061152 PMID: 32545473
- Messeder, M.M.S.; Miranda, D.; Lamas de Souza, S.O.; Dorneles, M.; Giunchetti, R.; Oréfice, R.L. Positively-charged electrosprayed nanoparticles based on biodegradable polymers containing amphotericin B for the treatment of leishmaniasis. Int. J. Polym. Mater., 2021, 70(16), 1189-1202. doi: 10.1080/00914037.2020.1785457
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofac. Res., 2020, 10(1), 381-388. doi: 10.1016/j.jobcr.2019.10.003 PMID: 31754598
- Ghosh, S.; Kar, N.; Bera, T. Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis. Int. J. Biol. Macromol., 2016, 93(Pt A), 961-970. doi: 10.1016/j.ijbiomac.2016.09.014 PMID: 27645930
- Abu Ammar, A.; Nasereddin, A.; Ereqat, S.; Dan-Goor, M.; Jaffe, C.L.; Zussman, E.; Abdeen, Z. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. Transl. Res., 2019, 9(1), 76-84. doi: 10.1007/s13346-018-00603-0 PMID: 30484256
- Valle, I.V.; Machado, M.E.; Araújo, C.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.C.R.P.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology, 2019, 30(45), 455102. doi: 10.1088/1361-6528/ab373e PMID: 31365912
- Machatschek, R.; Schulz, B.; Lendlein, A. The influence of pH on the molecular degradation mechanism of PLGA. MRS Adv., 2018, 3(63), 3883-3889. doi: 10.1557/adv.2018.602
- Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397. doi: 10.3390/polym3031377 PMID: 22577513
- Boltnarova, B.; Kubackova, J.; Skoda, J.; Stefela, A.; Smekalova, M.; Svacinova, P.; Pavkova, I.; Dittrich, M.; Scherman, D.; Zbytovska, J.; Pavek, P.; Holas, O. PLGA based nanospheres as a potent macrophage-specific drug delivery system. Nanomaterials (Basel), 2021, 11(3), 749. doi: 10.3390/nano11030749 PMID: 33809764
- Riezk, A.; Van Bocxlaer, K.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of amphotericin B-loaded chitosan nanoparticles against experimental cutaneous leishmaniasis. Molecules, 2020, 25(17), 4002. doi: 10.3390/molecules25174002 PMID: 32887341
- Yang, X.; Yu, T.; Zeng, Y.; Lian, K.; Zhou, X.; Li, S.; Qiu, G.; Jin, X.; Yuan, H.; Hu, F. Tumor-draining lymph node targeting chitosan micelles as antigen-capturing adjuvants for personalized immunotherapy. Carbohydr. Polym., 2020, 240, 116270. doi: 10.1016/j.carbpol.2020.116270 PMID: 32475559
- Sohail, A.; Khan, R.U.; Khan, M.; Khokhar, M.; Ullah, S.; Ali, A.; Bilal, H.; Khattak, S.; Khan, M.; Ahmad, B. Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica. Bull. Natl. Res. Cent., 2021, 45(1), 187. doi: 10.1186/s42269-021-00644-5
- Coelho, E.; Ribeiro, T.; Fuscaldi, L.; Santos, M.; Duarte, M.; Lage, P.; Martins, V.; Costa, L.; Diniz, S.; Cardoso, V.; Castilho, R.; Soto, M.; Tavares, C.A.; Fumagalli, M.; Ribeiro, J.; Faraco, A. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int. J. Nanomedicine, 2014, 9, 5341-5353. doi: 10.2147/IJN.S68966 PMID: 25429219
- Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Abbasi-Kolli, M.; Badehnoosh, B.; Ghandali, M.; Hamblin, M.R.; Mirzaei, H. Chitosan-based nanoparticles against viral infections. Front. Cell. Infect. Microbiol., 2021, 11, 643953. doi: 10.3389/fcimb.2021.643953 PMID: 33816349
- Piras, A.M.; Sandreschi, S.; Maisetta, G.; Esin, S.; Batoni, G.; Chiellini, F. Chitosan nanoparticles for the linear release of model cationic Peptide. Pharm. Res., 2015, 32(7), 2259-2265. doi: 10.1007/s11095-014-1615-9 PMID: 25559891
- Mulla, M.Z.; Rahman, M.R.T.; Marcos, B.; Tiwari, B.; Pathania, S. Poly Lactic Acid (PLA) Nanocomposites: Effect of inorganic nanoparticles reinforcement on its performance and food packaging applications. Molecules, 2021, 26(7), 1967. doi: 10.3390/molecules26071967 PMID: 33807351
- da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J., 2018, 340, 9-14. doi: 10.1016/j.cej.2018.01.010 PMID: 31384170
- Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A Perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol., 2019, 7, 259. doi: 10.3389/fbioe.2019.00259 PMID: 31681741
- Matha, K.; Calvignac, B.; Gangneux, J.P.; Benoit, J.P. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opin. Drug Deliv., 2021, 18(4), 471-487. doi: 10.1080/17425247.2021.1853701 PMID: 33217254
- Khalid, S.; Salman, S.; Iqbal, K.; Rehman, F.; Ullah, I.; Satoskar, A.R.; Khan, G.M.; Dar, M.J. Surfactant free synthesis of cationic nano-vesicles: A safe triple drug loaded vehicle for the topical treatment of cutaneous leishmaniasis. Nanomedicine, 2022, 40, 102490. doi: 10.1016/j.nano.2021.102490 PMID: 34748957
- Kohli, N.; Ho, S.; Brown, S.J.; Sawadkar, P.; Sharma, V.; Snow, M.; García-Gareta, E. Bone remodelling in vitro: Where are we headed? Bone, 2018, 110, 38-46. doi: 10.1016/j.bone.2018.01.015 PMID: 29355746
- Pinto, S.; Pintado, M.E.; Sarmento, B. In vivo, ex vivo and in vitro assessment of buccal permeation of drugs from delivery systems. Expert Opin. Drug Deliv., 2020, 17(1), 33-48. doi: 10.1080/17425247.2020.1699913 PMID: 31786958
- Bogdan, C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X, 2020, 2(4), 100041. doi: 10.1016/j.cytox.2020.100041 PMID: 33604563
- Espinoza, S.M.; Patil, H.I.; San Martin Martinez, E.; Casañas Pimentel, R.; Ige, P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int. J. Polym. Mater., 2020, 69(2), 85-126. doi: 10.1080/00914037.2018.1539990
- Afzal, I.; Sarwar, H.S.; Sohail, M.F.; Varikuti, S.; Jahan, S.; Akhtar, S.; Yasinzai, M.; Satoskar, A.R.; Shahnaz, G. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine (Lond.), 2019, 14(4), 387-406. doi: 10.2217/nnm-2018-0038 PMID: 30688557
- Pinelli, F.; Perale, G.; Rossi, F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 2020, 6(1), 6. doi: 10.3390/gels6010006 PMID: 32033057
- Angioletti-Uberti, S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective. NPJ Comput. Mater, 2017, 3(1), 48. doi: 10.1038/s41524-017-0050-y
- Chaubey, P.; Mishra, B.; Mudavath, S.L.; Patel, R.R.; Chaurasia, S.; Sundar, S.; Suvarna, V.; Monteiro, M. Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. Int. J. Biol. Macromol., 2018, 111, 109-120. doi: 10.1016/j.ijbiomac.2017.12.143 PMID: 29307805
- Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules, 2021, 26(2), 272. doi: 10.3390/molecules26020272 PMID: 33430478
- Federer, C.; Kurpiers, M.; Bernkop-Schnürch, A. Thiolated chitosans: A multi-talented class of polymers for various applications. Biomacromolecules, 2021, 22(1), 24-56. doi: 10.1021/acs.biomac.0c00663 PMID: 32567846
- Machatschek, R.; Lendlein, A. Fundamental insights in PLGA degradation from thin film studies. J. Control. Release, 2020, 319, 276-284. doi: 10.1016/j.jconrel.2019.12.044 PMID: 31884098
- Sarwar, H.S.; Ashraf, S.; Akhtar, S.; Sohail, M.F.; Hussain, S.Z.; Rafay, M.; Yasinzai, M.; Hussain, I.; Shahnaz, G. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine (Lond.), 2018, 13(1), 25-41. doi: 10.2217/nnm-2017-0255 PMID: 29173059
- Chen, Z.; Lv, Z.; Sun, Y.; Chi, Z.; Qing, G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2951-2973. doi: 10.1039/C9TB02271F PMID: 32159205
- Ghosh, S.; Das, S.; De, A.K.; Kar, N.; Bera, T. Amphotericin B-loaded mannose modified poly( D, L -lactide-co-glycolide) polymeric nanoparticles for the treatment of visceral leishmaniasis: In vitro and in vivo approaches. RSC Advances, 2017, 7(47), 29575-29590. doi: 10.1039/C7RA04951J
- Marques, A.C.; Costa, P.J.; Velho, S.; Amaral, M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release, 2020, 320, 180-200. doi: 10.1016/j.jconrel.2020.01.035 PMID: 31978444
- Costa, A.; Sarmento, B.; Seabra, V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur. J. Pharm. Sci., 2018, 114, 103-113. doi: 10.1016/j.ejps.2017.12.006 PMID: 29229273
- Choi, B.; Park, W.; Park, S.B.; Rhim, W.K.; Han, D.K. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods, 2020, 177, 2-14. doi: 10.1016/j.ymeth.2019.12.004 PMID: 31874237
- Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790. doi: 10.3389/fphar.2018.00790 PMID: 30065653
- Patel, J.; Patel, S. Major obstacles in technology transfer of nanomedicine from conception to major obstacles in technology transfer of nanomedicine from conception to commercialisation. 2021, 5(2), 333-342.
- Valencia, P.M.; Farokhzad, O.C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol., 2012, 7(10), 623-629. doi: 10.1038/nnano.2012.168 PMID: 23042546
- Weber, C.; Voigt, M.; Simon, J.; Danner, A.K.; Frey, H.; Mailänder, V.; Helm, M.; Morsbach, S.; Landfester, K. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona. Biomacromolecules, 2019, 20(8), 2989-2999. doi: 10.1021/acs.biomac.9b00539 PMID: 31268685
- Kad, A.; Pundir, A.; Arya, S.K.; Bhardwaj, N.; Khatri, M. An elucidative review to analytically sieve the viability of nanomedicine market. J. Pharm. Innov., 2022, 17(1), 249-265. doi: 10.1007/s12247-020-09495-5 PMID: 32983280
- Rai, R.; Alwani, S.; Badea, I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers (Basel), 2019, 11(4), 745. doi: 10.3390/polym11040745 PMID: 31027272
Arquivos suplementares
