Type 2 Diabetes and HDL Dysfunction: A Key Contributor to Glycemic Control


Citar

Texto integral

Resumo

High-density lipoproteins (HDL) have been shown to exert multiple cardioprotective and antidiabetic functions, such as their ability to promote cellular cholesterol efflux and their antioxidant, anti-inflammatory, and antiapoptotic properties. Type 2 diabetes (T2D) is usually associated with low high-density lipoprotein cholesterol (HDL-C) levels as well as with significant alterations in the HDL composition, thereby impairing its main functions. HDL dysfunction also negatively impacts both pancreatic β-cell function and skeletal muscle insulin sensitivity, perpetuating this adverse self-feeding cycle. The impairment of these pathways is partly dependent on cellular ATP-binding cassette transporter (ABC) A1-mediated efflux to lipid-poor apolipoprotein (apo) A-I in the extracellular space. In line with these findings, experimental interventions aimed at improving HDL functions, such as infusions of synthetic HDL or lipid-poor apoA-I, significantly improved glycemic control in T2D patients and experimental models of the disease. Cholesteryl ester transfer protein (CETP) inhibitors are specific drugs designed to increase HDLC and HDL functions. Posthoc analyses of large clinical trials with CETP inhibitors have demonstrated their potential anti-diabetic properties. Research on HDL functionality and HDL-based therapies could be a crucial step toward improved glycemic control in T2D subjects.

Sobre autores

Noemi Rotllan

Institut de recerca de l’Hospital de la Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques (IIB) Sant Pau

Email: info@benthamscience.net

Josep Julve

Institut de recerca de l’Hospital de la Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques (IIB) Sant Pau

Autor responsável pela correspondência
Email: info@benthamscience.net

Joan Escolà-Gil

Institut de recerca de l’Hospital de la Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques (IIB) Sant Pau

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Lee-Rueckert, M.; Escola-Gil, J.C.; Kovanen, P.T. HDL functionality in reverse cholesterol transport — Challenges in translating data emerging from mouse models to human disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(7), 566-583. doi: 10.1016/j.bbalip.2016.03.004 PMID: 26968096
  2. Rohatgi, A.; Westerterp, M.; Von Eckardstein, A.; Remaley, A.; Rye, K.A. HDL in the 21st century: A multifunctional roadmap for future hdl research. Circulation, 2021, 143(23), 2293-2309. doi: 10.1161/CIRCULATIONAHA.120.044221 PMID: 34097448
  3. Mora, S.; Otvos, J.D.; Rosenson, R.S.; Pradhan, A.; Buring, J.E.; Ridker, P.M. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes, 2010, 59(5), 1153-1160. doi: 10.2337/db09-1114 PMID: 20185808
  4. Rashid, S.; Watanabe, T.; Sakaue, T.; Lewis, G.F. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: The combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin. Biochem., 2003, 36(6), 421-429. doi: 10.1016/S0009-9120(03)00078-X PMID: 12951168
  5. Sparks, D.L.; Davidson, W.S.; Lund-Katz, S.; Phillips, M.C. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J. Biol. Chem., 1995, 270(45), 26910-26917. doi: 10.1074/jbc.270.45.26910 PMID: 7592936
  6. Kheniser, K.G.; Osme, A.; Kim, C.; Ilchenko, S.; Kasumov, T.; Kashyap, S.R. Temporal dynamics of high-density lipoprotein proteome in diet-controlled subjects with type 2 diabetes. Biomolecules, 2020, 10(4), 520. doi: 10.3390/biom10040520 PMID: 32235466
  7. Peng, D.Q.; Brubaker, G.; Wu, Z.; Zheng, L.; Willard, B.; Kinter, M.; Hazen, S.L.; Smith, J.D. Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler. Thromb. Vasc. Biol., 2008, 28(11), 2063-2070. doi: 10.1161/ATVBAHA.108.173815 PMID: 18688016
  8. Nobécourt, E.; Tabet, F.; Lambert, G.; Puranik, R.; Bao, S.; Yan, L.; Davies, M.J.; Brown, B.E.; Jenkins, A.J.; Dusting, G.J.; Bonnet, D.J.; Curtiss, L.K.; Barter, P.J.; Rye, K.A. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 766-772. doi: 10.1161/ATVBAHA.109.201715 PMID: 20110571
  9. Pu, L.J.; Lu, L.; Zhang, R.Y.; Du, R.; Shen, Y.; Zhang, Q.; Yang, Z.K.; Chen, Q.J.; Shen, W.F. Glycation of apoprotein A-I is associated with coronary artery plaque progression in type 2 diabetic patients. Diabetes Care, 2013, 36(5), 1312-1320. doi: 10.2337/dc12-1411 PMID: 23230102
  10. Wu, Z.; Wagner, M.A.; Zheng, L.; Parks, J.S.; Shy, J.M., III; Smith, J.D.; Gogonea, V.; Hazen, S.L. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol., 2007, 14(9), 861-868. doi: 10.1038/nsmb1284 PMID: 17676061
  11. Mastorikou, M.; Mackness, B.; Liu, Y.; Mackness, M. Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides. Diabet. Med., 2008, 25(9), 1049-1055. doi: 10.1111/j.1464-5491.2008.02546.x PMID: 18937674
  12. Waldman, B.; Jenkins, A.J.; Davis, T.M.E.; Taskinen, M.R.; Scott, R.; O’Connell, R.L.; Gebski, V.J.; Ng, M.K.C.; Keech, A.C.; Investigators, F.S. HDL-C and HDL-C/ApoAI predict long-term progression of glycemia in established type 2 diabetes. Diabetes Care, 2014, 37(8), 2351-2358. doi: 10.2337/dc13-2738 PMID: 24804699
  13. Feng, X.; Gao, X.; Yao, Z.; Xu, Y. Low apoA-I is associated with insulin resistance in patients with impaired glucose tolerance: A cross-sectional study. Lipids Health Dis., 2017, 16(1), 69. doi: 10.1186/s12944-017-0446-1 PMID: 28372564
  14. Drew, B.G.; Duffy, S.J.; Formosa, M.F.; Natoli, A.K.; Henstridge, D.C.; Penfold, S.A.; Thomas, W.G.; Mukhamedova, N.; de Courten, B.; Forbes, J.M.; Yap, F.Y.; Kaye, D.M.; van Hall, G.; Febbraio, M.A.; Kemp, B.E.; Sviridov, D.; Steinberg, G.R.; Kingwell, B.A. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation, 2009, 119(15), 2103-2111. doi: 10.1161/CIRCULATIONAHA.108.843219 PMID: 19349317
  15. Barter, P.J.; Rye, K.A.; Tardif, J.C.; Waters, D.D.; Boekholdt, S.M.; Breazna, A.; Kastelein, J.J.P. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation, 2011, 124(5), 555-562. doi: 10.1161/CIRCULATIONAHA.111.018259 PMID: 21804130
  16. Menon, V.; Kumar, A.; Patel, D.R.; St John, J.; Riesmeyer, J.; Weerakkody, G.; Ruotolo, G.; Wolski, K.E.; McErlean, E.; Cremer, P.C.; Nicholls, S.J.; Lincoff, A.M.; Nissen, S.E. Effect of CETP inhibition with evacetrapib in patients with diabetes mellitus enrolled in the ACCELERATE trial. BMJ Open Diabetes Res. Care, 2020, 8(1), e000943. doi: 10.1136/bmjdrc-2019-000943 PMID: 32179516
  17. Perego, C.; Da Dalt, L.; Pirillo, A.; Galli, A.; Catapano, A.L.; Norata, G.D. Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2149-2156. doi: 10.1016/j.bbadis.2019.04.012 PMID: 31029825
  18. Vergeer, M.; Brunham, L.R.; Koetsveld, J.; Kruit, J.K.; Verchere, C.B.; Kastelein, J.J.P.; Hayden, M.R.; Stroes, E.S.G. Carriers of loss-of-function mutations in ABCA1 display pancreatic beta-cell dysfunction. Diabetes Care, 2010, 33(4), 869-874. doi: 10.2337/dc09-1562 PMID: 20067955
  19. Villarreal-Molina, M.T.; Flores-Dorantes, M.T.; Arellano-Campos, O.; Villalobos-Comparan, M.; Rodríguez-Cruz, M.; Miliar-García, A.; Huertas-Vazquez, A.; Menjivar, M.; Romero-Hidalgo, S.; Wacher, N.H.; Tusie-Luna, M.T.; Cruz, M.; Aguilar-Salinas, C.A.; Canizales-Quinteros, S. Association of the ATP-binding cassette transporter A1 R230C variant with early-onset type 2 diabetes in a Mexican population. Diabetes, 2008, 57(2), 509-513. doi: 10.2337/db07-0484 PMID: 18003760
  20. Kruit, J.K.; Brunham, L.R.; Verchere, C.B.; Hayden, M.R. HDL and LDL cholesterol significantly influence β-cell function in type 2 diabetes mellitus. Curr. Opin. Lipidol., 2010, 21(3), 178-185. doi: 10.1097/MOL.0b013e328339387b PMID: 20463468
  21. Schou, J.; Tybjærg-Hansen, A.; Møller, H.J.; Nordestgaard, B.G.; Frikke-Schmidt, R. ABC transporter genes and risk of type 2 diabetes: A study of 40,000 individuals from the general population. Diabetes Care, 2012, 35(12), 2600-2606. doi: 10.2337/dc12-0082 PMID: 23139370
  22. Cochran, B.J.; Hou, L.; Manavalan, A.P.C.; Moore, B.M.; Tabet, F.; Sultana, A.; Cuesta Torres, L.; Tang, S.; Shrestha, S.; Senanayake, P.; Patel, M.; Ryder, W.J.; Bongers, A.; Maraninchi, M.; Wasinger, V.C.; Westerterp, M.; Tall, A.R.; Barter, P.J.; Rye, K.A. Impact of perturbed pancreatic β-cell cholesterol homeostasis on adipose tissue and skeletal muscle metabolism. Diabetes, 2016, 65(12), 3610-3620. doi: 10.2337/db16-0668 PMID: 27702832
  23. Manandhar, B.; Cochran, B.J.; Rye, K.A. Role of high‐density lipoproteins in cholesterol homeostasis and glycemic control. J. Am. Heart Assoc., 2020, 9(1), e013531. doi: 10.1161/JAHA.119.013531 PMID: 31888429
  24. Yalcinkaya, M.; Kerksiek, A.; Gebert, K.; Annema, W.; Sibler, R.; Radosavljevic, S.; Lütjohann, D.; Rohrer, L.; von Eckardstein, A. HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic β-cells in vitro by activation of Smoothened. J. Lipid Res., 2020, 61(4), 492-504. doi: 10.1194/jlr.RA119000509 PMID: 31907205
  25. Habegger, K.M.; Hoffman, N.J.; Ridenour, C.M.; Brozinick, J.T.; Elmendorf, J.S. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology, 2012, 153(5), 2130-2141. doi: 10.1210/en.2011-2099 PMID: 22434076
  26. White, J.; Swerdlow, D.I.; Preiss, D.; Fairhurst-Hunter, Z.; Keating, B.J.; Asselbergs, F.W.; Sattar, N.; Humphries, S.E.; Hingorani, A.D.; Holmes, M.V. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol., 2016, 1(6), 692-699. doi: 10.1001/jamacardio.2016.1884 PMID: 27487401
  27. Fall, T.; Xie, W.; Poon, W.; Yaghootkar, H.; Mägi, R.; Knowles, J.W.; Lyssenko, V.; Weedon, M.; Frayling, T.M.; Ingelsson, E.; Ingelsson, E. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes, 2015, 64(7), 2676-2684. doi: 10.2337/db14-1710 PMID: 25948681
  28. Haase, C.L.; Tybjærg-Hansen, A.; Nordestgaard, B.G.; Frikke-Schmidt, R. HDL cholesterol and risk of type 2 diabetes: A mendelian randomization study. Diabetes, 2015, 64(9), 3328-3333. doi: 10.2337/db14-1603 PMID: 25972569
  29. Abbasi, A.; Corpeleijn, E.; Gansevoort, R.T.; Gans, R.O.B.; Hillege, H.L.; Stolk, R.P.; Navis, G.; Bakker, S.J.L.; Dullaart, R.P.F. Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: The PREVEND study. J. Clin. Endocrinol. Metab., 2013, 98(8), E1352-E1359. doi: 10.1210/jc.2013-1680 PMID: 23690306
  30. Tabara, Y.; Arai, H.; Hirao, Y.; Takahashi, Y.; Setoh, K.; Kawaguchi, T.; Kosugi, S.; Ito, Y.; Nakayama, T.; Matsuda, F. Different inverse association of large high-density lipoprotein subclasses with exacerbation of insulin resistance and incidence of type 2 diabetes: The Nagahama study. Diabetes Res. Clin. Pract., 2017, 127, 123-131. doi: 10.1016/j.diabres.2017.03.018 PMID: 28365559
  31. Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; Landray, M.J.; Landray, M.J. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med., 2017, 377(13), 1217-1227. doi: 10.1056/NEJMoa1706444 PMID: 28847206
  32. Schwartz, G.G.; Leiter, L.A.; Ballantyne, C.M.; Barter, P.J.; Black, D.M.; Kallend, D.; Laghrissi-Thode, F.; Leitersdorf, E.; McMurray, J.J.V.; Nicholls, S.J.; Olsson, A.G.; Preiss, D.; Shah, P.K.; Tardif, J.C.; Kittelson, J. Dalcetrapib reduces risk of new-onset diabetes in patients with coronary heart disease. Diabetes Care, 2020, 43(5), 1077-1084. doi: 10.2337/dc19-2204 PMID: 32144166
  33. Masson, W.; Lobo, M.; Siniawski, D.; Huerín, M.; Molinero, G.; Valéro, R.; Nogueira, J.P. Therapy with cholesteryl ester transfer protein (CETP) inhibitors and diabetes risk. Diabetes Metab., 2018, 44(6), 508-513. doi: 10.1016/j.diabet.2018.02.005 PMID: 29523487
  34. Siebel, A.L.; Natoli, A.K.; Yap, F.Y.T.; Carey, A.L.; Reddy-Luthmoodoo, M.; Sviridov, D.; Weber, C.I.K.; Meneses-Lorente, G.; Maugeais, C.; Forbes, J.M.; Kingwell, B.A. Effects of high-density lipoprotein elevation with cholesteryl ester transfer protein inhibition on insulin secretion. Circ. Res., 2013, 113(2), 167-175. doi: 10.1161/CIRCRESAHA.113.300689 PMID: 23676183

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024