The Epigenetic Contribution to the Pathogenesis of Psoriasis: Recent Advances


Citar

Texto integral

Resumo

Psoriasis is defined as a chronic autoimmune disorder of the skin in which abnormal proliferation and differentiation of keratinocytes are blamed as the central culprit of disease etiopathogenesis. A complex interplay between environmental factors and genetic risk factors has been suggested to trigger the disease. However, epigenetic regulation appears to connect external stimuli and genetic abnormalities in the development of psoriasis. The discordance in the prevalence of psoriasis between monozygotic twins and environmental factors that contribute to its onset have caused a paradigm shift regarding the mechanisms underlying the pathogenesis of this disease. Epigenetic dysregulation may be involved in aberrancies of keratinocyte differentiation, T-cell activation, and other plausible cells, leading to the initiation and perpetuation of psoriasis. Epigenetics is characterized by heritable alterations in the transcription of genes without nucleotide change and is commonly considered at three levels, i.e., DNA methylation, histone modifications, and microRNAs. To date, scientific evidence has indicated abnormal DNA methylation, histone modifications, and non-coding RNA transcription in psoriatic patients. In order to reverse aberrant epigenetic changes in psoriasis patients, several compounds and drugs (epi-drugs) have been developed to affect the major enzymes involved in the methylation of DNA, or the acetylation of histones, which aim to correct the aberrant methylation and acetylation patterns. A number of clinical trials have suggested the therapeutic potential of such drugs in the treatment of psoriasis. In the present review, we attempt to clarify recent findings with respect to epigenetic irregularities in psoriasis and discuss future challenges.

Psoriasis is defined as a chronic autoimmune disorder of the skin in which abnormal proliferation and differentiation of keratinocytes are blamed as the central culprit of disease etiopathogenesis. A complex interplay between environmental factors and genetic risk factors has been suggested to trigger the disease. However, epigenetic regulation appears to connect external stimuli and genetic abnormalities in the development of psoriasis. The discordance in the prevalence of psoriasis between monozygotic twins and environmental factors that contribute to its onset have caused a paradigm shift regarding the mechanisms underlying the pathogenesis of this disease. Epigenetic dysregulation may be involved in aberrancies of keratinocyte differentiation, T-cell activation, and other plausible cells, leading to the initiation and perpetuation of psoriasis. Epigenetics is characterized by heritable alterations in the transcription of genes without nucleotide change and is commonly considered at three levels, i.e., DNA methylation, histone modifications, and microRNAs. To date, scientific evidence has indicated abnormal DNA methylation, histone modifications, and non-coding RNA transcription in psoriatic patients. In order to reverse aberrant epigenetic changes in psoriasis patients, several compounds and drugs (epi-drugs) have been developed to affect the major enzymes involved in the methylation of DNA, or the acetylation of histones, which aim to correct the aberrant methylation and acetylation patterns. A number of clinical trials have suggested the therapeutic potential of such drugs in the treatment of psoriasis. In the present review, we attempt to clarify recent findings with respect to epigenetic irregularities in psoriasis and discuss future challenges.

Sobre autores

Saeed Aslani

Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University

Email: info@benthamscience.net

Seyed Mirarefin

Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University

Email: info@benthamscience.net

Habib Zarredar

Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Milad Asadi

Department of Basic Oncology, Institute of Health Sciences, Ege University

Email: info@benthamscience.net

Mohammad Javan

Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences

Email: info@benthamscience.net

Arezou Khosrojerdi

Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences

Autor responsável pela correspondência
Email: info@benthamscience.net

Thomas Johnston

Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy,, University of Missouri–Kansas City

Email: info@benthamscience.net

Amirhossein Sahebkar

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Frischknecht, L.; Vecellio, M.; Selmi, C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther. Adv. Musculoskeletal D., 2019, 11, 1759720X19886505.
  2. Iskandar, I.Y.K.; Parisi, R.; Griffiths, C.E.M.; Ashcroft, D.M.; Atlas, G.P. Systematic review examining changes over time and variation in the incidence and prevalence of psoriasis by age and gender. Br. J. Dermatol., 2021, 184(2), 243-258. doi: 10.1111/bjd.19169 PMID: 32358790
  3. Chandran, V.; Raychaudhuri, S.P. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J. Autoimmun., 2010, 34(3), J314-J321. doi: 10.1016/j.jaut.2009.12.001 PMID: 20034760
  4. Gervin, K.; Vigeland, M.D.; Mattingsdal, M.; Hammerø, M.; Nygård, H.; Olsen, A.O.; Brandt, I.; Harris, J.R.; Undlien, D.E.; Lyle, R. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: Identification of epigenetically dysregulated genes. PLoS Genet., 2012, 8(1), e1002454. doi: 10.1371/journal.pgen.1002454 PMID: 22291603
  5. Vecellio, M.; Paraboschi, E.M.; Ceribelli, A.; Isailovic, N.; Motta, F.; Cardamone, G.; Robusto, M.; Asselta, R.; Brescianini, S.; Sacrini, F.; Costanzo, A.; De Santis, M.; Stazi, M.A.; Duga, S.; Selmi, C. DNA methylation signature in monozygotic twins discordant for psoriatic disease. Front. Cell Dev. Biol., 2021, 9, 778677. doi: 10.3389/fcell.2021.778677 PMID: 34901024
  6. Zhao, M.; Wang, Z.; Yung, S.; Lu, Q. Epigenetic dynamics in immunity and autoimmunity. Int. J. Biochem. Cell Biol., 2015, 67, 65-74. doi: 10.1016/j.biocel.2015.05.022 PMID: 26026281
  7. Zhao, S.; Long, H.; Lu, Q. Epigenetic perspectives in systemic lupus erythematosus: pathogenesis, biomarkers, and therapeutic potentials. Clin. Rev. Allergy Immunol., 2010, 39(1), 3-9. doi: 10.1007/s12016-009-8165-7 PMID: 19639427
  8. Hedrich, C.M.; Tsokos, G.C. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol. Med., 2011, 17(12), 714-724. doi: 10.1016/j.molmed.2011.07.005 PMID: 21885342
  9. Jeffries, M.A.; Sawalha, A.H. Autoimmune disease in the epigenetic era: How has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev. Clin. Immunol., 2015, 11(1), 45-58. doi: 10.1586/1744666X.2015.994507 PMID: 25534978
  10. Long, H.; Yin, H.; Wang, L.; Gershwin, M.E.; Lu, Q. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J. Autoimmun., 2016, 74, 118-138. doi: 10.1016/j.jaut.2016.06.020 PMID: 27396525
  11. Okada, S.; Weatherhead, E.; Targoff, I.N.; Wesley, R.; Miller, F.W. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum., 2003, 48(8), 2285-2293. doi: 10.1002/art.11090 PMID: 12905483
  12. Tan, G.; Niu, J.; Shi, Y.; Ouyang, H.; Wu, Z.H. NF-κB-dependent microRNA-125b up-regulation promotes cell survival by targeting p38α upon ultraviolet radiation. J. Biol. Chem., 2012, 287(39), 33036-33047. doi: 10.1074/jbc.M112.383273 PMID: 22854965
  13. Chen, I.P.; Henning, S.; Faust, A.; Boukamp, P.; Volkmer, B.; Greinert, R. UVA-induced epigenetic regulation of P16INK4a in human epidermal keratinocytes and skin tumor derived cells. Photochem. Photobiol. Sci., 2012, 11(1), 180-190. doi: 10.1039/c1pp05197k PMID: 21986889
  14. Shahrad M, B.; Shahdad E, B.; John Y, K. Smoking and Psoriasis. Skinmed, 2005, 4(3), 174-176. doi: 10.1111/j.1540-9740.2005.03716.x PMID: 15891254
  15. Harlid, S.; Xu, Z.; Panduri, V.; Sandler, D.P.; Taylor, J.A. CpG sites associated with cigarette smoking: Analysis of epigenome-wide data from the Sister Study. Environ. Health Perspect., 2014, 122(7), 673-678. doi: 10.1289/ehp.1307480 PMID: 24704585
  16. Aslani, S.; Jafari, N.; Javan, M.R.; Karami, J.; Ahmadi, M.; Jafarnejad, M. Epigenetic modifications and therapy in multiple sclerosis. Neuromole. Med., 2017, 19(1), 11-23. doi: 10.1007/s12017-016-8422-x PMID: 27382982
  17. Aslani, S.; Mahmoudi, M.; Garshasbi, M.; Jamshidi, A.R.; Karami, J.; Nicknam, M.H. Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis. Clin. Rheumatol., 2016, 35(11), 2723-2731. doi: 10.1007/s10067-016-3403-x PMID: 27637577
  18. Mousavi, M.J.; Jamshidi, A.; Chopra, A.; Aslani, S.; Akhlaghi, M.; Mahmoudi, M. Implications of the noncoding RNAs in rheumatoid arthritis pathogenesis. J. Cell. Physiol., 2019, 234(1), 335-347. doi: 10.1002/jcp.26911 PMID: 30069877
  19. Karami, J.; Mahmoudi, M.; Amirzargar, A.; Gharshasbi, M.; Jamshidi, A.; Aslani, S.; Nicknam, M.H. Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients. Genes Immun., 2017, 18(3), 170-175. doi: 10.1038/gene.2017.17 PMID: 28794504
  20. Soltanzadeh-Yamchi, M.; Shahbazi, M.; Aslani, S.; Mohammadnia-Afrouzi, M. MicroRNA signature of regulatory T cells in health and autoimmunity. Biomed. Pharmacother., 2018, 100, 316-323. doi: 10.1016/j.biopha.2018.02.030 PMID: 29453041
  21. Aslani, S.; Sobhani, S.; Gharibdoost, F.; Jamshidi, A.; Mahmoudi, M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum. Immunol., 2018, 79(3), 178-187. doi: 10.1016/j.humimm.2018.01.003 PMID: 29330110
  22. Ahmadi, M.; Gharibi, T.; Dolati, S.; Rostamzadeh, D.; Aslani, S.; Baradaran, B.; Younesi, V.; Yousefi, M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed. Pharmacother., 2017, 87, 596-608. doi: 10.1016/j.biopha.2016.12.072 PMID: 28086135
  23. Fathollahi, A.; Aslani, S.; Jamshidi, A.; Mahmoudi, M. Epigenetics in osteoarthritis: Novel spotlight. J. Cell. Physiol., 2019, 234(8), 12309-12324. doi: 10.1002/jcp.28020 PMID: 30659623
  24. Foma, A.M.; Aslani, S.; Karami, J.; Jamshidi, A.; Mahmoudi, M. Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm. Res., 2017, 66(12), 1057-1073. doi: 10.1007/s00011-017-1082-y PMID: 28741130
  25. Karami, J.; Aslani, S.; Tahmasebi, M.N.; Mousavi, M.J.; Sharafat Vaziri, A.; Jamshidi, A.; Farhadi, E.; Mahmoudi, M. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol. Cell Biol., 2020, 98(3), 171-186. doi: 10.1111/imcb.12311 PMID: 31856314
  26. Feinberg, A.P. The key role of epigenetics in human disease prevention and mitigation. N. Engl. J. Med., 2018, 378(14), 1323-1334. doi: 10.1056/NEJMra1402513 PMID: 29617578
  27. Pacini, G.; Paolino, S.; Andreoli, L.; Tincani, A.; Gerosa, M.; Caporali, R.; Iagnocco, A.; Ospelt, C.; Smith, V.; Cutolo, M. Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmun. Rev., 2020, 19(12), 102685. doi: 10.1016/j.autrev.2020.102685 PMID: 33115633
  28. Zouali, M. B lymphocytes, the gastrointestinal tract and autoimmunity. Autoimmun. Rev., 2021, 20(4), 102777. doi: 10.1016/j.autrev.2021.102777 PMID: 33609796
  29. Farhat, S.C.L.; Yariwake, V.Y.; Veras, M.M.; Braga, A.L.F.; Maluf, A.E.; Silva, C.A. Inhaled ultrafine particles, epigenetics and systemic autoimmune rheumatic diseases. Autoimmun. Rev., 2020, 19(10), 102640. doi: 10.1016/j.autrev.2020.102640 PMID: 32801038
  30. O’Connell, R.M.; Rao, D.S.; Baltimore, D. microRNA regulation of inflammatory responses. Annu. Rev. Immunol., 2012, 30(1), 295-312. doi: 10.1146/annurev-immunol-020711-075013 PMID: 22224773
  31. Qureshi, I.A.; Mehler, M.F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci., 2012, 13(8), 528-541. doi: 10.1038/nrn3234 PMID: 22814587
  32. Pivarcsi, A.; Ståhle, M.; Sonkoly, E. Genetic polymorphisms altering microRNA activity in psoriasis - a key to solve the puzzle of missing heritability? Exp. Dermatol., 2014, 23(9), 620-624. doi: 10.1111/exd.12469 PMID: 24917490
  33. Kulkarni, S.; Qi, Y.; O’hUigin, C.; Pereyra, F.; Ramsuran, V.; McLaren, P.; Fellay, J.; Nelson, G.; Chen, H.; Liao, W.; Bass, S.; Apps, R.; Gao, X.; Yuki, Y.; Lied, A.; Ganesan, A.; Hunt, P.W.; Deeks, S.G.; Wolinsky, S.; Walker, B.D.; Carrington, M. Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc. Natl. Acad. Sci. USA, 2013, 110(51), 20705-20710. doi: 10.1073/pnas.1312237110 PMID: 24248364
  34. Aslani, S.; Mahmoudi, M.; Karami, J.; Jamshidi, A.R.; Malekshahi, Z.; Nicknam, M.H. Epigenetic alterations underlying autoimmune diseases. Autoimmunity, 2016, 49(2), 69-83. doi: 10.3109/08916934.2015.1134511 PMID: 26761426
  35. Mahmoudi, M.; Aslani, S.; Nicknam, M.H.; Karami, J.; Jamshidi, A.R. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod. Rheumatol., 2017, 27(2), 198-209. doi: 10.1080/14397595.2016.1206174 PMID: 27425039
  36. Krueger, G.G.; Duvic, M. Epidemiology of psoriasis: Clinical issues. J. Invest. Dermatol., 1994, 102(6), 14S-18S. doi: 10.1111/1523-1747.ep12386079 PMID: 8006427
  37. Zeng, J.; Luo, S.; Huang, Y.; Lu, Q. Critical role of environmental factors in the pathogenesis of psoriasis. J. Dermatol., 2017, 44(8), 863-872. doi: 10.1111/1346-8138.13806 PMID: 28349593
  38. Um, J.Y.; Chung, B.Y.; Kim, H.B.; Kim, J.C.; Park, C.W.; Kim, H.O. Aryl hydrocarbon receptor repressor is hypomethylated in psoriasis and promotes psoriasis-like inflammation in HaCaT cells. Int. J. Mol. Sci., 2021, 22(23), 12715. doi: 10.3390/ijms222312715 PMID: 34884515
  39. Chandra, A.; Senapati, S.; Roy, S.; Chatterjee, G.; Chatterjee, R. Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin. Epigenetics, 2018, 10(1), 108. doi: 10.1186/s13148-018-0541-9 PMID: 30092825
  40. Verma, D.; Ekman, A.K.; Bivik Eding, C.; Enerbäck, C. Genome-wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis. J. Invest. Dermatol., 2018, 138(5), 1088-1093. doi: 10.1016/j.jid.2017.11.036 PMID: 29247660
  41. Deng, M.; Su, Y.; Wu, R.; Li, S.; Zhu, Y.; Tang, G.; Shi, X.; Zhou, T.; Zhao, M.; Lu, Q. DNA methylation markers in peripheral blood for psoriatic arthritis. J. Dermatol. Sci., 2022, 108(1), 39-47. doi: 10.1016/j.jdermsci.2022.11.001 PMID: 36404219
  42. Charras, A.; Garau, J.; Hofmann, S.R.; Carlsson, E.; Cereda, C.; Russ, S.; Abraham, S.; Hedrich, C.M. DNA methylation patterns in CD8+ T cells discern psoriasis From psoriatic arthritis and correlate with cutaneous disease activity. Front. Cell Dev. Biol., 2021, 9, 746145. doi: 10.3389/fcell.2021.746145 PMID: 34746142
  43. Zhou, F.; Shen, C.; Hsu, Y.H.; Gao, J.; Dou, J.; Ko, R.; Zheng, X.; Sun, L.; Cui, Y.; Zhang, X. DNA methylation-based subclassification of psoriasis in the Chinese Han population. Front. Med., 2018, 12(6), 717-725. doi: 10.1007/s11684-017-0588-6 PMID: 29623515
  44. Pollock, R.A.; Zaman, L.; Chandran, V.; Gladman, D.D. Epigenome-wide analysis of sperm cells identifies IL22 as a possible germ line risk locus for psoriatic arthritis. PLoS One, 2019, 14(2), e0212043. doi: 10.1371/journal.pone.0212043 PMID: 30779748
  45. Wu, M.; Li, X.; Zhang, C.; Zhang, C.; Qian, D.; Ma, J.; Cai, M.; Tang, L.; Cheng, H.; Shen, C.; Chen, G.; Zheng, X.; Zhang, X.; Zhou, F. DNA methylation profile of psoriatic skins from different body locations. Epigenomics, 2019, 11(14), 1613-1625. doi: 10.2217/epi-2018-0225 PMID: 31701765
  46. Deb, S.; Bandiera, S.M. Characterization and expression of extrahepatic CYP2S1. Expert Opin. Drug Metab. Toxicol., 2009, 5(4), 367-380. doi: 10.1517/17425250902865586 PMID: 19368491
  47. Smith, G.; Wolf, C.R.; Deeni, Y.Y.; Dawe, R.S.; Evans, A.T.; Comrie, M.M.; Ferguson, J.; Ibbotson, S.H. Cutaneous expression of cytochrome P450 CYP2S1: Individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Lancet, 2003, 361(9366), 1336-1343. doi: 10.1016/S0140-6736(03)13081-4 PMID: 12711469
  48. Zhou, F.; Wang, W.; Shen, C.; Li, H.; Zuo, X.; Zheng, X.; Yue, M.; Zhang, C.; Yu, L.; Chen, M.; Zhu, C.; Yin, X.; Tang, M.; Li, Y.; Chen, G.; Wang, Z.; Liu, S.; Zhou, Y.; Zhang, F.; Zhang, W.; Li, C.; Yang, S.; Sun, L.; Zhang, X. Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J. Invest. Dermatol., 2016, 136(4), 779-787. doi: 10.1016/j.jid.2015.12.029 PMID: 26743604
  49. Sheng, Y.; Wen, L.; Zheng, X.; Li, M.; Wang, D.; Chen, S.; Li, R.; Tang, L.; Zhou, F. CYP2S1 might regulate proliferation and immune response of keratinocyte in psoriasis. Epigenetics, 2021, 16(6), 618-628. doi: 10.1080/15592294.2020.1814486 PMID: 32924783
  50. Krueger, G.G.; Hill, H.R.; Jederberg, W.W. Inflammatory and immune cell function in psoriasis-a subtle disorder I. in vivo and in vitro survey. J. Invest. Dermatol., 1978, 71(3), 189-194. doi: 10.1111/1523-1747.ep12547129 PMID: 690482
  51. Zarrabeitia, M.T.; Fariñas, M.C.; Rodríguez-Valverde, V.; Riancho, J.A.; Llaca, H.F. T and B cell function in psoriasis and psoriatic arthropathy. Allergol. Immunopathol. (Madr.), 1989, 17(3), 155-159. PMID: 2816658
  52. Schön, M.; Kubitza, R.C.; Ruzicka, T.; Schön, M.P.; Denzer, D. Critical role of neutrophils for the generation of psoriasiform skin lesions in flaky skin mice. J. Invest. Dermatol., 2000, 114(5), 976-983. doi: 10.1046/j.1523-1747.2000.00953.x PMID: 10771480
  53. Rocha-Pereira, P.; Santos-Silva, A.; Rebelo, I.; FigneiRedo, A.; Quintanilha, A.; Teixeira, F. Erythrocyte damage in mild and severe psoriasis. Br. J. Dermatol., 2004, 150(2), 232-244. doi: 10.1111/j.1365-2133.2004.05801.x PMID: 14996093
  54. Zhang, K.; Zhang, R.; Li, X.; Yin, G.; Niu, X. Promoter methylation status of p15 and p21 genes in HPP-CFCs of bone marrow of patients with psoriasis. Eur. J. Dermatol., 2009, 19(2), 141-146. doi: 10.1684/ejd.2008.0618 PMID: 19153068
  55. Zhang, R.L.; Niu, X.P.; Li, X.H.; Zhang, K.M.; Yin, G.H. CFU-HPP colony formation of bone marrow hematopoietic proginitor cells in psoriatic patients and methylation of p16 gene promotor in CFU-HPP colony cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2007, 15(4), 780-784. PMID: 17708803
  56. Griffiths, C.E.M.; Barker, J.N.W.N. Pathogenesis and clinical features of psoriasis. Lancet, 2007, 370(9583), 263-271. doi: 10.1016/S0140-6736(07)61128-3 PMID: 17658397
  57. Wrone-Smith, T.; Mitra, R.S.; Thompson, C.B.; Jasty, R.; Castle, V.P.; Nickoloff, B.J. Keratinocytes derived from psoriatic plaques are resistant to apoptosis compared with normal skin. Am. J. Pathol., 1997, 151(5), 1321-1329. PMID: 9358758
  58. Chen, M.; Chen, Z-Q.; Cui, P-G.; Yao, X.; Li, Y-M.; Li, A-S.; Gong, J-Q.; Cao, Y-H. The methylation pattern of p16 INK4a gene promoter in psoriatic epidermis and its clinical significance. Br. J. Dermatol., 2008, 158(5), 987-993. doi: 10.1111/j.1365-2133.2008.08505.x PMID: 18373711
  59. Ruchusatsawat, K.; Wongpiyabovorn, J.; Shuangshoti, S.; Hirankarn, N.; Mutirangura, A. SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J. Mol. Med. (Berl.), 2006, 84(2), 175-182. doi: 10.1007/s00109-005-0020-6 PMID: 16389548
  60. Chen, M.; Wang, Y.; Yao, X.; Li, C.; Jiang, M.; Cui, P.; Wang, B. Hypermethylation of HLA-C may be an epigenetic marker in psoriasis. J. Dermatol. Sci., 2016, 83(1), 10-16. doi: 10.1016/j.jdermsci.2016.04.003 PMID: 27132688
  61. Zong, W.; Ge, Y.; Han, Y.; Yang, X.; Li, Q.; Chen, M. Hypomethylation of HLA-DRB1 and its clinical significance in psoriasis. Oncotarget, 2017, 8(7), 12323-12332. doi: 10.18632/oncotarget.12468 PMID: 27713139
  62. Tang, L.; Yao, T.; Fang, M.; Zheng, X.; Chen, G.; Li, M.; Wang, D.; Li, X.; Ma, H.; Wang, X.; Qian, Y.; Zhou, F. Genomic DNA methylation in HLA-Cw*0602 carriers and non-carriers of psoriasis. J. Dermatol. Sci., 2020, 99(1), 23-29. doi: 10.1016/j.jdermsci.2020.05.006 PMID: 32522384
  63. Zhou, F.; Shen, C.; Xu, J.; Gao, J.; Zheng, X.; Ko, R.; Dou, J.; Cheng, Y.; Zhu, C.; Xu, S.; Tang, X.; Zuo, X.; Yin, X.; Cui, Y.; Sun, L.; Tsoi, L.C.; Hsu, Y.H.; Yang, S.; Zhang, X. Epigenome-wide association data implicates DNA methylation-mediated genetic risk in psoriasis. Clin. Epigenetics, 2016, 8(1), 131. doi: 10.1186/s13148-016-0297-z PMID: 27980695
  64. Ruchusatsawat, K.; Thiemsing, L.; Mutirangura, A.; Wongpiyabovorn, J. BCAP 31 expression and promoter demethylation in psoriasis. Asian Pac. J. Allergy Immunol., 2016. PMID: 27996285
  65. Black, J.C.; Van Rechem, C.; Whetstine, J.R. Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol. Cell, 2012, 48(4), 491-507. doi: 10.1016/j.molcel.2012.11.006 PMID: 23200123
  66. Peserico, A.; Simone, C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J. Biomed. Biotechnol., 2011, 2011, 1-10. doi: 10.1155/2011/371832 PMID: 21151613
  67. Masalha, M.; Ben-Dov, I.Z.; Ram, O.; Meningher, T.; Jacob-Hirsch, J.; Kassem, R.; Sidi, Y.; Avni, D. H3K27Ac modification and gene expression in psoriasis. J. Dermatol. Sci., 2021, 103(2), 93-100. doi: 10.1016/j.jdermsci.2021.07.003 PMID: 34281744
  68. Liao, Y.; Su, Y.; Wu, R.; Zhang, P.; Feng, C. Overexpression of Wilms tumor 1 promotes IL-1β expression by upregulating histone acetylation in keratinocytes. Int. Immunopharmacol., 2021, 96, 107793. doi: 10.1016/j.intimp.2021.107793 PMID: 34162155
  69. Zeng, J.; Zhang, Y.; Zhang, H.; Zhang, Y.; Gao, L.; Tong, X.; Xie, Y.; Hu, Q.; Chen, C.; Ding, S.; Lu, J. RPL22 overexpression promotes psoriasis-like lesion by inducing keratinocytes abnormal biological behavior. Front. Immunol., 2021, 12, 699900. doi: 10.3389/fimmu.2021.699900 PMID: 34220863
  70. Zhang, T.; Yang, L.; Ke, Y.; Lei, J.; Shen, S.; Shao, S.; Zhang, C.; Zhu, Z.; Dang, E.; Wang, G. EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation. Cell Death Dis., 2020, 11(10), 826. doi: 10.1038/s41419-020-03028-1 PMID: 33011750
  71. Li, H.; Yao, Q.; Mariscal, A.G.; Wu, X.; Hülse, J.; Pedersen, E.; Helin, K.; Waisman, A.; Vinkel, C.; Thomsen, S.F.; Avgustinova, A.; Benitah, S.A.; Lovato, P.; Norsgaard, H.; Mortensen, M.S.; Veng, L.; Rozell, B.; Brakebusch, C. Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat. Commun., 2018, 9(1), 1420. doi: 10.1038/s41467-018-03704-z PMID: 29650963
  72. Xia, X.; Cao, G.; Sun, G.; Zhu, L.; Tian, Y.; Song, Y.; Guo, C.; Wang, X.; Zhong, J.; Zhou, W.; Li, P.; Zhang, H.; Hao, J.; Li, Z.; Deng, L.; Yin, Z.; Gao, Y. GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J. Clin. Invest., 2020, 130(10), 5180-5196. doi: 10.1172/JCI129269 PMID: 32831293
  73. Zhang, P.; Su, Y.; Zhao, M.; Huang, W.; Lu, Q. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur. J. Dermatol., 2011, 21(4), 552-557. doi: 10.1684/ejd.2011.1383 PMID: 21715244
  74. Trowbridge, R.M.; Pittelkow, M.R. Epigenetics in the pathogenesis and pathophysiology of psoriasis vulgaris. J. Drugs Dermatol., 2014, 13(2), 111-118. PMID: 24509958
  75. Ovejero-Benito, M.C.; Reolid, A.; Sánchez-Jiménez, P.; Saiz-Rodríguez, M.; Muñoz-Aceituno, E.; Llamas-Velasco, M.; Martín-Vilchez, S.; Cabaleiro, T.; Román, M.; Ochoa, D.; Daudén, E.; Abad-Santos, F. Histone modifications associated with biological drug response in moderate-to-severe psoriasis. Exp. Dermatol., 2018, 27(12), 1361-1371. doi: 10.1111/exd.13790 PMID: 30260532
  76. Blander, G.; Bhimavarapu, A.; Mammone, T.; Maes, D.; Elliston, K.; Reich, C.; Matsui, M.S.; Guarente, L.; Loureiro, J.J. SIRT1 promotes differentiation of normal human keratinocytes. J. Invest. Dermatol., 2009, 129(1), 41-49. doi: 10.1038/jid.2008.179 PMID: 18563176
  77. Hwang, Y.J.; Na, J.I.; Byun, S.Y.; Kwon, S.H.; Yang, S.H.; Lee, H.S.; Choi, H.R.; Cho, S.; Youn, S.W.; Park, K.C. Histone deacetylase 1 and sirtuin 1 expression in psoriatic skin: A comparison between guttate and plaque psoriasis. Life (Basel), 2020, 10(9), 157. doi: 10.3390/life10090157 PMID: 32825671
  78. Shukla, G.C.; Singh, J.; Barik, S. MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol. Cell. Pharmacol., 2011, 3(3), 83-92. PMID: 22468167
  79. Baltimore, D.; Boldin, M.P.; O’Connell, R.M.; Rao, D.S.; Taganov, K.D. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol., 2008, 9(8), 839-845. doi: 10.1038/ni.f.209 PMID: 18645592
  80. Qiao, M.; Ding, J.; Yan, J.; Li, R.; Jiao, J.; Sun, Q. Circular RNA expression profile and analysis of their potential function in psoriasis. Cell. Physiol. Biochem., 2018, 50(1), 15-27. doi: 10.1159/000493952 PMID: 30278433
  81. Liu, R.; Wang, Q.; Chang, W.; Zhou, L.; Li, J.; Zhang, K. Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions. Eur. J. Dermatol., 2019, 29(1), 29-38. PMID: 30827946
  82. Haschka, J.; Simon, D.; Bayat, S.; Messner, Z.; Kampylafka, E.; Fagni, F.; Skalicky, S.; Hackl, M.; Resch, H.; Zwerina, J.; Kleyer, A.; Cavallaro, A.; Sticherling, M.; Schett, G.; Kocijan, R.; Rech, J. Identification of circulating microRNA patterns in patients in psoriasis and psoriatic arthritis. Rheumatology, 2023.
  83. Soonthornchai, W.; Tangtanatakul, P.; Meesilpavikkai, K.; Dalm, V.; Kueanjinda, P.; Wongpiyabovorn, J. MicroRNA-378a-3p is overexpressed in psoriasis and modulates cell cycle arrest in keratinocytes via targeting BMP2 gene. Sci. Rep., 2021, 11(1), 14186. doi: 10.1038/s41598-021-93616-8 PMID: 34244572
  84. Sonkoly, E.; Wei, T.; Janson, P.C.J.; Sääf, A.; Lundeberg, L.; Tengvall-Linder, M.; Norstedt, G.; Alenius, H.; Homey, B.; Scheynius, A.; Ståhle, M.; Pivarcsi, A. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One, 2007, 2(7), e610. doi: 10.1371/journal.pone.0000610 PMID: 17622355
  85. Primo, M.N.; Bak, R.O.; Schibler, B.; Mikkelsen, J.G. Regulation of pro-inflammatory cytokines TNFα and IL24 by microRNA-203 in primary keratinocytes. Cytokine, 2012, 60(3), 741-748. doi: 10.1016/j.cyto.2012.07.031 PMID: 22917968
  86. Mostafa, S.A.; Mohammad, M.H.S.; Negm, W.A.; Batiha, G.E.S.; Alotaibi, S.S.; Albogami, S.M.; Waard, M.D.; Tawfik, N.Z.; Abdallah, H.Y. Circulating microRNA203 and its target genes’ role in psoriasis pathogenesis. Front. Med. (Lausanne), 2022, 9, 988962. doi: 10.3389/fmed.2022.988962 PMID: 36341243
  87. Leal, B.; Carvalho, C.; Ferreira, A.M.; Nogueira, M.; Brás, S.; Silva, B.M.; Selores, M.; Costa, P.P.; Torres, T. Serum levels of miR-146a in patients with psoriasis. Mol. Diagn. Ther., 2021, 25(4), 475-485. doi: 10.1007/s40291-021-00531-9 PMID: 33937970
  88. Shen, H.; Wang, D.; Zhan, M.; Ding, H.; Zhao, H. MicroRNA-146a and microRNA-146b deficiency correlates with exacerbated disease activity, and their longitude increment relates to etanercept response in psoriasis patients. J. Clin. Lab. Anal., 2022, 36(2), e24198. doi: 10.1002/jcla.24198 PMID: 34952998
  89. Lena, A.M.; Shalom-Feuerstein, R.; di Val Cervo, P.R.; Aberdam, D.; Knight, R.A.; Melino, G.; Candi, E. miR-203 represses ‘stemness’ by repressing ΔNp63. Cell Death Differ., 2008, 15(7), 1187-1195. doi: 10.1038/cdd.2008.69 PMID: 18483491
  90. Zibert, J.R.; Løvendorf, M.B.; Litman, T.; Olsen, J.; Kaczkowski, B.; Skov, L. MicroRNAs and potential target interactions in psoriasis. J. Dermatol. Sci., 2010, 58(3), 177-185. doi: 10.1016/j.jdermsci.2010.03.004 PMID: 20417062
  91. Meng, Z.; Qiu, J.; Zhang, H. MiR-221-3p as a potential bfor Patients with psoriasis and its role in inflammatory responses in keratinocytes. Skin Pharmacol. Physiol., 2021, 34(5), 300-306. doi: 10.1159/000515114 PMID: 34091460
  92. Xu, N.; Brodin, P.; Wei, T.; Meisgen, F.; Eidsmo, L.; Nagy, N.; Kemeny, L.; Ståhle, M.; Sonkoly, E.; Pivarcsi, A. MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J. Invest. Dermatol., 2011, 131(7), 1521-1529. doi: 10.1038/jid.2011.55 PMID: 21412257
  93. Su, F.; Jin, L.; Liu, W. MicroRNA-125acorrelates with decreased psoriasis severity and inflammation and represses keratinocyte proliferation. Dermatology, 2021, 237(4), 568-578. doi: 10.1159/000510681 PMID: 33735868
  94. Joyce, C.E.; Zhou, X.; Xia, J.; Ryan, C.; Thrash, B.; Menter, A.; Zhang, W.; Bowcock, A.M. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum. Mol. Genet., 2011, 20(20), 4025-4040. doi: 10.1093/hmg/ddr331 PMID: 21807764
  95. Meisgen, F.; Xu, N.; Wei, T.; Janson, P.C.; Obad, S.; Broom, O.; Nagy, N.; Kauppinen, S.; Kemény, L.; Ståhle, M.; Pivarcsi, A.; Sonkoly, E. MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp. Dermatol., 2012, 21(4), 312-314. doi: 10.1111/j.1600-0625.2012.01462.x PMID: 22417311
  96. Xu, N.; Meisgen, F.; Butler, L.M.; Han, G.; Wang, X.J.; Söderberg-Nauclér, C.; Ståhle, M.; Pivarcsi, A.; Sonkoly, E. MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. J. Immunol., 2013, 190(2), 678-688. doi: 10.4049/jimmunol.1202695 PMID: 23233723
  97. Ye, Y.; Wang, P.; Zhou, F. miR-489-3p inhibits TLR4/NF-κB signaling to prevent inflammation in psoriasis. Exp. Ther. Med., 2021, 22(1), 744. doi: 10.3892/etm.2021.10176 PMID: 34055060
  98. Lerman, G.; Avivi, C.; Mardoukh, C.; Barzilai, A.; Tessone, A.; Gradus, B.; Pavlotsky, F.; Barshack, I.; Polak-Charcon, S.; Orenstein, A.; Hornstein, E.; Sidi, Y.; Avni, D. MiRNA expression in psoriatic skin: reciprocal regulation of hsa-miR-99a and IGF-1R. PLoS One, 2011, 6(6), e20916. doi: 10.1371/journal.pone.0020916 PMID: 21687694
  99. Choi, H.R.; Nam, K.M.; Park, S.J.; Kim, D.S.; Huh, C.H.; Park, W.Y.; Park, K.C. Suppression of miR135b increases the proliferative potential of normal human keratinocytes. J. Invest. Dermatol., 2014, 134(4), 1161-1164. doi: 10.1038/jid.2013.427 PMID: 24129066
  100. Ichihara, A.; Jinnin, M.; Yamane, K.; Fujisawa, A.; Sakai, K.; Masuguchi, S.; Fukushima, S.; Maruo, K.; Ihn, H. microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris. Br. J. Dermatol., 2011, 165(5), 1003-1010. doi: 10.1111/j.1365-2133.2011.10497.x PMID: 21711342
  101. Ichihara, A.; Jinnin, M.; Oyama, R.; Yamane, K.; Fujisawa, A.; Sakai, K.; Masuguchi, S.; Fukushima, S.; Maruo, K.; Ihn, H. Increased serum levels of miR-1266 in patients with psoriasis vulgaris. Eur. J. Dermatol., 2012, 22(1), 68-71. doi: 10.1684/ejd.2011.1600 PMID: 22133505
  102. Bian, J.; Liu, R.; Fan, T.; Liao, L.; Wang, S.; Geng, W.; Wang, T.; Shi, W.; Ruan, Q. miR-340 alleviates psoriasis in mice through direct targeting of IL-17A. J. Immunology, 2018, 201(5), 1412-1420.
  103. Zhao, M.; Wang, L.; Liang, G.; Zhang, P.; Deng, X.; Tang, Q.; Zhai, H.; Chang, C.C.; Su, Y.; Lu, Q. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4+ T cells of psoriasis vulgaris. Clin. Immunol., 2014, 150(1), 22-30. doi: 10.1016/j.clim.2013.10.009 PMID: 24316592
  104. Wu, R.; Zeng, J.; Yuan, J.; Deng, X.; Huang, Y.; Chen, L.; Zhang, P.; Feng, H.; Liu, Z.; Wang, Z.; Gao, X.; Wu, H.; Wang, H.; Su, Y.; Zhao, M.; Lu, Q. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Invest., 2018, 128(6), 2551-2568. doi: 10.1172/JCI97426 PMID: 29757188
  105. Jiang, M.; Sun, Z.; Dang, E.; Li, B.; Fang, H.; Li, J.; Gao, L.; Zhang, K.; Wang, G. TGFβ/SMAD/microRNA-486-3p signaling axis mediates keratin 17 expression and keratinocyte hyperproliferation in psoriasis. J. Invest. Dermatol., 2017, 137(10), 2177-2186. doi: 10.1016/j.jid.2017.06.005
  106. Zhang, W.; Yi, X.; An, Y.; Guo, S.; Li, S.; Song, P.; Chang, Y.; Zhang, S.; Gao, T.; Wang, G.; Li, C. MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: Implication for the pathogenesis of psoriasis. Cell Death Dis., 2018, 9(5), 567. doi: 10.1038/s41419-018-0621-y PMID: 29752469
  107. Li, Q.; Zhang, J.; Liu, S.; Zhang, F.; Zhuang, J.; Chen, Y. MicroRNA-17-3p is upregulated in psoriasis and regulates keratinocyte hyperproliferation and pro-inflammatory cytokine secretion by targeting CTR9. Eur. J. Histochem., 2022, 66(1), 66. doi: 10.4081/ejh.2022.3275 PMID: 35016493
  108. Liu, S.; Gong, J. miR-124-3p delivered using exosomes attenuates the keratinocyte response to IL-17A stimulation in psoriasis. Oxid. Med. Cell. Longev., 2022, 2022, 1-11. doi: 10.1155/2022/6264474 PMID: 36275890
  109. Yan, J.J.; Qiao, M.; Li, R.H.; Zhao, X.T.; Wang, X.Y.; Sun, Q. Downregulation of miR-145-5p contributes to hyperproliferation of keratinocytes and skin inflammation in psoriasis. Br. J. Dermatol., 2019, 180(2), 365-372. doi: 10.1111/bjd.17256 PMID: 30269330
  110. Shen, H.; Zeng, B.; Wang, C.; Tang, X.; Wang, H.; Liu, W.; Yang, Z. MiR-330 inhibits IL-22-induced keratinocyte proliferation through targeting CTNNB1. Biomed. Pharmacother., 2017, 91, 803-811. doi: 10.1016/j.biopha.2017.05.005 PMID: 28501007
  111. Zheng, Y.Z.; Chen, C.F.; Jia, L.Y.; Yu, T.G.; Sun, J.; Wang, X.Y. Correlation between microRNA-143 in peripheral blood mononuclear cells and disease severity in patients with psoriasis vulgaris. Oncotarget, 2017, 8(31), 51288-51295. doi: 10.18632/oncotarget.17260 PMID: 28881648
  112. Xu, L.; Leng, H.; Shi, X.; Ji, J.; Fu, J.; Leng, H. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed. Pharmacother., 2017, 90, 524-530. doi: 10.1016/j.biopha.2017.03.105 PMID: 28402921
  113. Koga, Y.; Jinnin, M.; Ichihara, A.; Fujisawa, A.; Moriya, C.; Sakai, K.; Fukushima, S.; Inoue, Y.; Ihn, H. Analysis of expression pattern of serum microRNA levels in patients with psoriasis. J. Dermatol. Sci., 2014, 74(2), 170-171. doi: 10.1016/j.jdermsci.2014.01.005 PMID: 24517871
  114. Jorn Bovenschen, H.; van de Kerkhof, P.C.; van Erp, P.E.; Woestenenk, R.; Joosten, I.; Koenen, H.J.P.M. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Invest. Dermatol., 2011, 131(9), 1853-1860. doi: 10.1038/jid.2011.139 PMID: 21654831
  115. Hammitzsch, A.; Tallant, C.; Fedorov, O.; O’Mahony, A.; Brennan, P.E.; Hay, D.A.; Martinez, F.O.; Al-Mossawi, M.H.; de Wit, J.; Vecellio, M.; Wells, C.; Wordsworth, P.; Müller, S.; Knapp, S.; Bowness, P. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc. Natl. Acad. Sci. USA, 2015, 112(34), 10768-10773. doi: 10.1073/pnas.1501956112 PMID: 26261308
  116. Samuelov, L.; Bochner, R.; Magal, L.; Malovitski, K.; Sagiv, N.; Nousbeck, J.; Keren, A.; Fuchs-Telem, D.; Sarig, O.; Gilhar, A.; Sprecher, E. Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Exp. Dermatol., 2022, 31(4), 567-576. doi: 10.1111/exd.14502 PMID: 34787924
  117. Orecchia, A.; Scarponi, C.; Di Felice, F.; Cesarini, E.; Avitabile, S.; Mai, A.; Mauro, M.L.; Sirri, V.; Zambruno, G.; Albanesi, C.; Camilloni, G.; Failla, C.M. Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells. PLoS One, 2011, 6(9), e24307. doi: 10.1371/journal.pone.0024307 PMID: 21931678
  118. Thatikonda, S.; Pooladanda, V.; Sigalapalli, D.K.; Godugu, C. Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation. Cell Death Dis., 2020, 11(1), 21. doi: 10.1038/s41419-019-2212-y PMID: 31924750
  119. Feng, H.; Wu, R.; Zhang, S.; Kong, Y.; Liu, Z.; Wu, H.; Wang, H.; Su, Y.; Zhao, M.; Lu, Q. Topical administration of nanocarrier miRNA-210 antisense ameliorates imiquimod-induced psoriasis-like dermatitis in mice. J. Dermatol., 2020, 47(2), 147-154. doi: 10.1111/1346-8138.15149 PMID: 31773789
  120. Rajitha, P.; Biswas, R.; Sabitha, M.; Jayakumar, R. Methotrexate in the treatment of psoriasis and rheumatoid arthritis: mechanistic insights, current issues and novel delivery approaches. Curr. Pharm. Des., 2017, 23(24), 3550-3566. PMID: 28571554

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024