The Epigenetic Contribution to the Pathogenesis of Psoriasis: Recent Advances
- Autores: Aslani S.1, Mirarefin S.M.2, Zarredar H.3, Asadi M.4, Javan M.5, Khosrojerdi A.6, Johnston T.7, Sahebkar A.8
-
Afiliações:
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences
- Department of Basic Oncology, Institute of Health Sciences, Ege University
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences
- Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy,, University of MissouriKansas City
- Applied Biomedical Research Center, Mashhad University of Medical Sciences
- Edição: Volume 31, Nº 29 (2024)
- Páginas: 4621-4639
- Seção: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/645003
- DOI: https://doi.org/10.2174/0929867330666230503143824
- ID: 645003
Citar
Texto integral
Resumo
Psoriasis is defined as a chronic autoimmune disorder of the skin in which abnormal proliferation and differentiation of keratinocytes are blamed as the central culprit of disease etiopathogenesis. A complex interplay between environmental factors and genetic risk factors has been suggested to trigger the disease. However, epigenetic regulation appears to connect external stimuli and genetic abnormalities in the development of psoriasis. The discordance in the prevalence of psoriasis between monozygotic twins and environmental factors that contribute to its onset have caused a paradigm shift regarding the mechanisms underlying the pathogenesis of this disease. Epigenetic dysregulation may be involved in aberrancies of keratinocyte differentiation, T-cell activation, and other plausible cells, leading to the initiation and perpetuation of psoriasis. Epigenetics is characterized by heritable alterations in the transcription of genes without nucleotide change and is commonly considered at three levels, i.e., DNA methylation, histone modifications, and microRNAs. To date, scientific evidence has indicated abnormal DNA methylation, histone modifications, and non-coding RNA transcription in psoriatic patients. In order to reverse aberrant epigenetic changes in psoriasis patients, several compounds and drugs (epi-drugs) have been developed to affect the major enzymes involved in the methylation of DNA, or the acetylation of histones, which aim to correct the aberrant methylation and acetylation patterns. A number of clinical trials have suggested the therapeutic potential of such drugs in the treatment of psoriasis. In the present review, we attempt to clarify recent findings with respect to epigenetic irregularities in psoriasis and discuss future challenges.
Psoriasis is defined as a chronic autoimmune disorder of the skin in which abnormal proliferation and differentiation of keratinocytes are blamed as the central culprit of disease etiopathogenesis. A complex interplay between environmental factors and genetic risk factors has been suggested to trigger the disease. However, epigenetic regulation appears to connect external stimuli and genetic abnormalities in the development of psoriasis. The discordance in the prevalence of psoriasis between monozygotic twins and environmental factors that contribute to its onset have caused a paradigm shift regarding the mechanisms underlying the pathogenesis of this disease. Epigenetic dysregulation may be involved in aberrancies of keratinocyte differentiation, T-cell activation, and other plausible cells, leading to the initiation and perpetuation of psoriasis. Epigenetics is characterized by heritable alterations in the transcription of genes without nucleotide change and is commonly considered at three levels, i.e., DNA methylation, histone modifications, and microRNAs. To date, scientific evidence has indicated abnormal DNA methylation, histone modifications, and non-coding RNA transcription in psoriatic patients. In order to reverse aberrant epigenetic changes in psoriasis patients, several compounds and drugs (epi-drugs) have been developed to affect the major enzymes involved in the methylation of DNA, or the acetylation of histones, which aim to correct the aberrant methylation and acetylation patterns. A number of clinical trials have suggested the therapeutic potential of such drugs in the treatment of psoriasis. In the present review, we attempt to clarify recent findings with respect to epigenetic irregularities in psoriasis and discuss future challenges.
Palavras-chave
Sobre autores
Saeed Aslani
Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University
Email: info@benthamscience.net
Seyed Mirarefin
Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University
Email: info@benthamscience.net
Habib Zarredar
Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Milad Asadi
Department of Basic Oncology, Institute of Health Sciences, Ege University
Email: info@benthamscience.net
Mohammad Javan
Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences
Email: info@benthamscience.net
Arezou Khosrojerdi
Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences
Autor responsável pela correspondência
Email: info@benthamscience.net
Thomas Johnston
Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy,, University of MissouriKansas City
Email: info@benthamscience.net
Amirhossein Sahebkar
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Frischknecht, L.; Vecellio, M.; Selmi, C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther. Adv. Musculoskeletal D., 2019, 11, 1759720X19886505.
- Iskandar, I.Y.K.; Parisi, R.; Griffiths, C.E.M.; Ashcroft, D.M.; Atlas, G.P. Systematic review examining changes over time and variation in the incidence and prevalence of psoriasis by age and gender. Br. J. Dermatol., 2021, 184(2), 243-258. doi: 10.1111/bjd.19169 PMID: 32358790
- Chandran, V.; Raychaudhuri, S.P. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J. Autoimmun., 2010, 34(3), J314-J321. doi: 10.1016/j.jaut.2009.12.001 PMID: 20034760
- Gervin, K.; Vigeland, M.D.; Mattingsdal, M.; Hammerø, M.; Nygård, H.; Olsen, A.O.; Brandt, I.; Harris, J.R.; Undlien, D.E.; Lyle, R. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: Identification of epigenetically dysregulated genes. PLoS Genet., 2012, 8(1), e1002454. doi: 10.1371/journal.pgen.1002454 PMID: 22291603
- Vecellio, M.; Paraboschi, E.M.; Ceribelli, A.; Isailovic, N.; Motta, F.; Cardamone, G.; Robusto, M.; Asselta, R.; Brescianini, S.; Sacrini, F.; Costanzo, A.; De Santis, M.; Stazi, M.A.; Duga, S.; Selmi, C. DNA methylation signature in monozygotic twins discordant for psoriatic disease. Front. Cell Dev. Biol., 2021, 9, 778677. doi: 10.3389/fcell.2021.778677 PMID: 34901024
- Zhao, M.; Wang, Z.; Yung, S.; Lu, Q. Epigenetic dynamics in immunity and autoimmunity. Int. J. Biochem. Cell Biol., 2015, 67, 65-74. doi: 10.1016/j.biocel.2015.05.022 PMID: 26026281
- Zhao, S.; Long, H.; Lu, Q. Epigenetic perspectives in systemic lupus erythematosus: pathogenesis, biomarkers, and therapeutic potentials. Clin. Rev. Allergy Immunol., 2010, 39(1), 3-9. doi: 10.1007/s12016-009-8165-7 PMID: 19639427
- Hedrich, C.M.; Tsokos, G.C. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol. Med., 2011, 17(12), 714-724. doi: 10.1016/j.molmed.2011.07.005 PMID: 21885342
- Jeffries, M.A.; Sawalha, A.H. Autoimmune disease in the epigenetic era: How has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev. Clin. Immunol., 2015, 11(1), 45-58. doi: 10.1586/1744666X.2015.994507 PMID: 25534978
- Long, H.; Yin, H.; Wang, L.; Gershwin, M.E.; Lu, Q. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J. Autoimmun., 2016, 74, 118-138. doi: 10.1016/j.jaut.2016.06.020 PMID: 27396525
- Okada, S.; Weatherhead, E.; Targoff, I.N.; Wesley, R.; Miller, F.W. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum., 2003, 48(8), 2285-2293. doi: 10.1002/art.11090 PMID: 12905483
- Tan, G.; Niu, J.; Shi, Y.; Ouyang, H.; Wu, Z.H. NF-κB-dependent microRNA-125b up-regulation promotes cell survival by targeting p38α upon ultraviolet radiation. J. Biol. Chem., 2012, 287(39), 33036-33047. doi: 10.1074/jbc.M112.383273 PMID: 22854965
- Chen, I.P.; Henning, S.; Faust, A.; Boukamp, P.; Volkmer, B.; Greinert, R. UVA-induced epigenetic regulation of P16INK4a in human epidermal keratinocytes and skin tumor derived cells. Photochem. Photobiol. Sci., 2012, 11(1), 180-190. doi: 10.1039/c1pp05197k PMID: 21986889
- Shahrad M, B.; Shahdad E, B.; John Y, K. Smoking and Psoriasis. Skinmed, 2005, 4(3), 174-176. doi: 10.1111/j.1540-9740.2005.03716.x PMID: 15891254
- Harlid, S.; Xu, Z.; Panduri, V.; Sandler, D.P.; Taylor, J.A. CpG sites associated with cigarette smoking: Analysis of epigenome-wide data from the Sister Study. Environ. Health Perspect., 2014, 122(7), 673-678. doi: 10.1289/ehp.1307480 PMID: 24704585
- Aslani, S.; Jafari, N.; Javan, M.R.; Karami, J.; Ahmadi, M.; Jafarnejad, M. Epigenetic modifications and therapy in multiple sclerosis. Neuromole. Med., 2017, 19(1), 11-23. doi: 10.1007/s12017-016-8422-x PMID: 27382982
- Aslani, S.; Mahmoudi, M.; Garshasbi, M.; Jamshidi, A.R.; Karami, J.; Nicknam, M.H. Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis. Clin. Rheumatol., 2016, 35(11), 2723-2731. doi: 10.1007/s10067-016-3403-x PMID: 27637577
- Mousavi, M.J.; Jamshidi, A.; Chopra, A.; Aslani, S.; Akhlaghi, M.; Mahmoudi, M. Implications of the noncoding RNAs in rheumatoid arthritis pathogenesis. J. Cell. Physiol., 2019, 234(1), 335-347. doi: 10.1002/jcp.26911 PMID: 30069877
- Karami, J.; Mahmoudi, M.; Amirzargar, A.; Gharshasbi, M.; Jamshidi, A.; Aslani, S.; Nicknam, M.H. Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients. Genes Immun., 2017, 18(3), 170-175. doi: 10.1038/gene.2017.17 PMID: 28794504
- Soltanzadeh-Yamchi, M.; Shahbazi, M.; Aslani, S.; Mohammadnia-Afrouzi, M. MicroRNA signature of regulatory T cells in health and autoimmunity. Biomed. Pharmacother., 2018, 100, 316-323. doi: 10.1016/j.biopha.2018.02.030 PMID: 29453041
- Aslani, S.; Sobhani, S.; Gharibdoost, F.; Jamshidi, A.; Mahmoudi, M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum. Immunol., 2018, 79(3), 178-187. doi: 10.1016/j.humimm.2018.01.003 PMID: 29330110
- Ahmadi, M.; Gharibi, T.; Dolati, S.; Rostamzadeh, D.; Aslani, S.; Baradaran, B.; Younesi, V.; Yousefi, M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed. Pharmacother., 2017, 87, 596-608. doi: 10.1016/j.biopha.2016.12.072 PMID: 28086135
- Fathollahi, A.; Aslani, S.; Jamshidi, A.; Mahmoudi, M. Epigenetics in osteoarthritis: Novel spotlight. J. Cell. Physiol., 2019, 234(8), 12309-12324. doi: 10.1002/jcp.28020 PMID: 30659623
- Foma, A.M.; Aslani, S.; Karami, J.; Jamshidi, A.; Mahmoudi, M. Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm. Res., 2017, 66(12), 1057-1073. doi: 10.1007/s00011-017-1082-y PMID: 28741130
- Karami, J.; Aslani, S.; Tahmasebi, M.N.; Mousavi, M.J.; Sharafat Vaziri, A.; Jamshidi, A.; Farhadi, E.; Mahmoudi, M. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol. Cell Biol., 2020, 98(3), 171-186. doi: 10.1111/imcb.12311 PMID: 31856314
- Feinberg, A.P. The key role of epigenetics in human disease prevention and mitigation. N. Engl. J. Med., 2018, 378(14), 1323-1334. doi: 10.1056/NEJMra1402513 PMID: 29617578
- Pacini, G.; Paolino, S.; Andreoli, L.; Tincani, A.; Gerosa, M.; Caporali, R.; Iagnocco, A.; Ospelt, C.; Smith, V.; Cutolo, M. Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmun. Rev., 2020, 19(12), 102685. doi: 10.1016/j.autrev.2020.102685 PMID: 33115633
- Zouali, M. B lymphocytes, the gastrointestinal tract and autoimmunity. Autoimmun. Rev., 2021, 20(4), 102777. doi: 10.1016/j.autrev.2021.102777 PMID: 33609796
- Farhat, S.C.L.; Yariwake, V.Y.; Veras, M.M.; Braga, A.L.F.; Maluf, A.E.; Silva, C.A. Inhaled ultrafine particles, epigenetics and systemic autoimmune rheumatic diseases. Autoimmun. Rev., 2020, 19(10), 102640. doi: 10.1016/j.autrev.2020.102640 PMID: 32801038
- OConnell, R.M.; Rao, D.S.; Baltimore, D. microRNA regulation of inflammatory responses. Annu. Rev. Immunol., 2012, 30(1), 295-312. doi: 10.1146/annurev-immunol-020711-075013 PMID: 22224773
- Qureshi, I.A.; Mehler, M.F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci., 2012, 13(8), 528-541. doi: 10.1038/nrn3234 PMID: 22814587
- Pivarcsi, A.; Ståhle, M.; Sonkoly, E. Genetic polymorphisms altering microRNA activity in psoriasis - a key to solve the puzzle of missing heritability? Exp. Dermatol., 2014, 23(9), 620-624. doi: 10.1111/exd.12469 PMID: 24917490
- Kulkarni, S.; Qi, Y.; OhUigin, C.; Pereyra, F.; Ramsuran, V.; McLaren, P.; Fellay, J.; Nelson, G.; Chen, H.; Liao, W.; Bass, S.; Apps, R.; Gao, X.; Yuki, Y.; Lied, A.; Ganesan, A.; Hunt, P.W.; Deeks, S.G.; Wolinsky, S.; Walker, B.D.; Carrington, M. Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc. Natl. Acad. Sci. USA, 2013, 110(51), 20705-20710. doi: 10.1073/pnas.1312237110 PMID: 24248364
- Aslani, S.; Mahmoudi, M.; Karami, J.; Jamshidi, A.R.; Malekshahi, Z.; Nicknam, M.H. Epigenetic alterations underlying autoimmune diseases. Autoimmunity, 2016, 49(2), 69-83. doi: 10.3109/08916934.2015.1134511 PMID: 26761426
- Mahmoudi, M.; Aslani, S.; Nicknam, M.H.; Karami, J.; Jamshidi, A.R. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod. Rheumatol., 2017, 27(2), 198-209. doi: 10.1080/14397595.2016.1206174 PMID: 27425039
- Krueger, G.G.; Duvic, M. Epidemiology of psoriasis: Clinical issues. J. Invest. Dermatol., 1994, 102(6), 14S-18S. doi: 10.1111/1523-1747.ep12386079 PMID: 8006427
- Zeng, J.; Luo, S.; Huang, Y.; Lu, Q. Critical role of environmental factors in the pathogenesis of psoriasis. J. Dermatol., 2017, 44(8), 863-872. doi: 10.1111/1346-8138.13806 PMID: 28349593
- Um, J.Y.; Chung, B.Y.; Kim, H.B.; Kim, J.C.; Park, C.W.; Kim, H.O. Aryl hydrocarbon receptor repressor is hypomethylated in psoriasis and promotes psoriasis-like inflammation in HaCaT cells. Int. J. Mol. Sci., 2021, 22(23), 12715. doi: 10.3390/ijms222312715 PMID: 34884515
- Chandra, A.; Senapati, S.; Roy, S.; Chatterjee, G.; Chatterjee, R. Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin. Epigenetics, 2018, 10(1), 108. doi: 10.1186/s13148-018-0541-9 PMID: 30092825
- Verma, D.; Ekman, A.K.; Bivik Eding, C.; Enerbäck, C. Genome-wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis. J. Invest. Dermatol., 2018, 138(5), 1088-1093. doi: 10.1016/j.jid.2017.11.036 PMID: 29247660
- Deng, M.; Su, Y.; Wu, R.; Li, S.; Zhu, Y.; Tang, G.; Shi, X.; Zhou, T.; Zhao, M.; Lu, Q. DNA methylation markers in peripheral blood for psoriatic arthritis. J. Dermatol. Sci., 2022, 108(1), 39-47. doi: 10.1016/j.jdermsci.2022.11.001 PMID: 36404219
- Charras, A.; Garau, J.; Hofmann, S.R.; Carlsson, E.; Cereda, C.; Russ, S.; Abraham, S.; Hedrich, C.M. DNA methylation patterns in CD8+ T cells discern psoriasis From psoriatic arthritis and correlate with cutaneous disease activity. Front. Cell Dev. Biol., 2021, 9, 746145. doi: 10.3389/fcell.2021.746145 PMID: 34746142
- Zhou, F.; Shen, C.; Hsu, Y.H.; Gao, J.; Dou, J.; Ko, R.; Zheng, X.; Sun, L.; Cui, Y.; Zhang, X. DNA methylation-based subclassification of psoriasis in the Chinese Han population. Front. Med., 2018, 12(6), 717-725. doi: 10.1007/s11684-017-0588-6 PMID: 29623515
- Pollock, R.A.; Zaman, L.; Chandran, V.; Gladman, D.D. Epigenome-wide analysis of sperm cells identifies IL22 as a possible germ line risk locus for psoriatic arthritis. PLoS One, 2019, 14(2), e0212043. doi: 10.1371/journal.pone.0212043 PMID: 30779748
- Wu, M.; Li, X.; Zhang, C.; Zhang, C.; Qian, D.; Ma, J.; Cai, M.; Tang, L.; Cheng, H.; Shen, C.; Chen, G.; Zheng, X.; Zhang, X.; Zhou, F. DNA methylation profile of psoriatic skins from different body locations. Epigenomics, 2019, 11(14), 1613-1625. doi: 10.2217/epi-2018-0225 PMID: 31701765
- Deb, S.; Bandiera, S.M. Characterization and expression of extrahepatic CYP2S1. Expert Opin. Drug Metab. Toxicol., 2009, 5(4), 367-380. doi: 10.1517/17425250902865586 PMID: 19368491
- Smith, G.; Wolf, C.R.; Deeni, Y.Y.; Dawe, R.S.; Evans, A.T.; Comrie, M.M.; Ferguson, J.; Ibbotson, S.H. Cutaneous expression of cytochrome P450 CYP2S1: Individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Lancet, 2003, 361(9366), 1336-1343. doi: 10.1016/S0140-6736(03)13081-4 PMID: 12711469
- Zhou, F.; Wang, W.; Shen, C.; Li, H.; Zuo, X.; Zheng, X.; Yue, M.; Zhang, C.; Yu, L.; Chen, M.; Zhu, C.; Yin, X.; Tang, M.; Li, Y.; Chen, G.; Wang, Z.; Liu, S.; Zhou, Y.; Zhang, F.; Zhang, W.; Li, C.; Yang, S.; Sun, L.; Zhang, X. Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J. Invest. Dermatol., 2016, 136(4), 779-787. doi: 10.1016/j.jid.2015.12.029 PMID: 26743604
- Sheng, Y.; Wen, L.; Zheng, X.; Li, M.; Wang, D.; Chen, S.; Li, R.; Tang, L.; Zhou, F. CYP2S1 might regulate proliferation and immune response of keratinocyte in psoriasis. Epigenetics, 2021, 16(6), 618-628. doi: 10.1080/15592294.2020.1814486 PMID: 32924783
- Krueger, G.G.; Hill, H.R.; Jederberg, W.W. Inflammatory and immune cell function in psoriasis-a subtle disorder I. in vivo and in vitro survey. J. Invest. Dermatol., 1978, 71(3), 189-194. doi: 10.1111/1523-1747.ep12547129 PMID: 690482
- Zarrabeitia, M.T.; Fariñas, M.C.; Rodríguez-Valverde, V.; Riancho, J.A.; Llaca, H.F. T and B cell function in psoriasis and psoriatic arthropathy. Allergol. Immunopathol. (Madr.), 1989, 17(3), 155-159. PMID: 2816658
- Schön, M.; Kubitza, R.C.; Ruzicka, T.; Schön, M.P.; Denzer, D. Critical role of neutrophils for the generation of psoriasiform skin lesions in flaky skin mice. J. Invest. Dermatol., 2000, 114(5), 976-983. doi: 10.1046/j.1523-1747.2000.00953.x PMID: 10771480
- Rocha-Pereira, P.; Santos-Silva, A.; Rebelo, I.; FigneiRedo, A.; Quintanilha, A.; Teixeira, F. Erythrocyte damage in mild and severe psoriasis. Br. J. Dermatol., 2004, 150(2), 232-244. doi: 10.1111/j.1365-2133.2004.05801.x PMID: 14996093
- Zhang, K.; Zhang, R.; Li, X.; Yin, G.; Niu, X. Promoter methylation status of p15 and p21 genes in HPP-CFCs of bone marrow of patients with psoriasis. Eur. J. Dermatol., 2009, 19(2), 141-146. doi: 10.1684/ejd.2008.0618 PMID: 19153068
- Zhang, R.L.; Niu, X.P.; Li, X.H.; Zhang, K.M.; Yin, G.H. CFU-HPP colony formation of bone marrow hematopoietic proginitor cells in psoriatic patients and methylation of p16 gene promotor in CFU-HPP colony cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2007, 15(4), 780-784. PMID: 17708803
- Griffiths, C.E.M.; Barker, J.N.W.N. Pathogenesis and clinical features of psoriasis. Lancet, 2007, 370(9583), 263-271. doi: 10.1016/S0140-6736(07)61128-3 PMID: 17658397
- Wrone-Smith, T.; Mitra, R.S.; Thompson, C.B.; Jasty, R.; Castle, V.P.; Nickoloff, B.J. Keratinocytes derived from psoriatic plaques are resistant to apoptosis compared with normal skin. Am. J. Pathol., 1997, 151(5), 1321-1329. PMID: 9358758
- Chen, M.; Chen, Z-Q.; Cui, P-G.; Yao, X.; Li, Y-M.; Li, A-S.; Gong, J-Q.; Cao, Y-H. The methylation pattern of p16 INK4a gene promoter in psoriatic epidermis and its clinical significance. Br. J. Dermatol., 2008, 158(5), 987-993. doi: 10.1111/j.1365-2133.2008.08505.x PMID: 18373711
- Ruchusatsawat, K.; Wongpiyabovorn, J.; Shuangshoti, S.; Hirankarn, N.; Mutirangura, A. SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J. Mol. Med. (Berl.), 2006, 84(2), 175-182. doi: 10.1007/s00109-005-0020-6 PMID: 16389548
- Chen, M.; Wang, Y.; Yao, X.; Li, C.; Jiang, M.; Cui, P.; Wang, B. Hypermethylation of HLA-C may be an epigenetic marker in psoriasis. J. Dermatol. Sci., 2016, 83(1), 10-16. doi: 10.1016/j.jdermsci.2016.04.003 PMID: 27132688
- Zong, W.; Ge, Y.; Han, Y.; Yang, X.; Li, Q.; Chen, M. Hypomethylation of HLA-DRB1 and its clinical significance in psoriasis. Oncotarget, 2017, 8(7), 12323-12332. doi: 10.18632/oncotarget.12468 PMID: 27713139
- Tang, L.; Yao, T.; Fang, M.; Zheng, X.; Chen, G.; Li, M.; Wang, D.; Li, X.; Ma, H.; Wang, X.; Qian, Y.; Zhou, F. Genomic DNA methylation in HLA-Cw*0602 carriers and non-carriers of psoriasis. J. Dermatol. Sci., 2020, 99(1), 23-29. doi: 10.1016/j.jdermsci.2020.05.006 PMID: 32522384
- Zhou, F.; Shen, C.; Xu, J.; Gao, J.; Zheng, X.; Ko, R.; Dou, J.; Cheng, Y.; Zhu, C.; Xu, S.; Tang, X.; Zuo, X.; Yin, X.; Cui, Y.; Sun, L.; Tsoi, L.C.; Hsu, Y.H.; Yang, S.; Zhang, X. Epigenome-wide association data implicates DNA methylation-mediated genetic risk in psoriasis. Clin. Epigenetics, 2016, 8(1), 131. doi: 10.1186/s13148-016-0297-z PMID: 27980695
- Ruchusatsawat, K.; Thiemsing, L.; Mutirangura, A.; Wongpiyabovorn, J. BCAP 31 expression and promoter demethylation in psoriasis. Asian Pac. J. Allergy Immunol., 2016. PMID: 27996285
- Black, J.C.; Van Rechem, C.; Whetstine, J.R. Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol. Cell, 2012, 48(4), 491-507. doi: 10.1016/j.molcel.2012.11.006 PMID: 23200123
- Peserico, A.; Simone, C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J. Biomed. Biotechnol., 2011, 2011, 1-10. doi: 10.1155/2011/371832 PMID: 21151613
- Masalha, M.; Ben-Dov, I.Z.; Ram, O.; Meningher, T.; Jacob-Hirsch, J.; Kassem, R.; Sidi, Y.; Avni, D. H3K27Ac modification and gene expression in psoriasis. J. Dermatol. Sci., 2021, 103(2), 93-100. doi: 10.1016/j.jdermsci.2021.07.003 PMID: 34281744
- Liao, Y.; Su, Y.; Wu, R.; Zhang, P.; Feng, C. Overexpression of Wilms tumor 1 promotes IL-1β expression by upregulating histone acetylation in keratinocytes. Int. Immunopharmacol., 2021, 96, 107793. doi: 10.1016/j.intimp.2021.107793 PMID: 34162155
- Zeng, J.; Zhang, Y.; Zhang, H.; Zhang, Y.; Gao, L.; Tong, X.; Xie, Y.; Hu, Q.; Chen, C.; Ding, S.; Lu, J. RPL22 overexpression promotes psoriasis-like lesion by inducing keratinocytes abnormal biological behavior. Front. Immunol., 2021, 12, 699900. doi: 10.3389/fimmu.2021.699900 PMID: 34220863
- Zhang, T.; Yang, L.; Ke, Y.; Lei, J.; Shen, S.; Shao, S.; Zhang, C.; Zhu, Z.; Dang, E.; Wang, G. EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation. Cell Death Dis., 2020, 11(10), 826. doi: 10.1038/s41419-020-03028-1 PMID: 33011750
- Li, H.; Yao, Q.; Mariscal, A.G.; Wu, X.; Hülse, J.; Pedersen, E.; Helin, K.; Waisman, A.; Vinkel, C.; Thomsen, S.F.; Avgustinova, A.; Benitah, S.A.; Lovato, P.; Norsgaard, H.; Mortensen, M.S.; Veng, L.; Rozell, B.; Brakebusch, C. Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat. Commun., 2018, 9(1), 1420. doi: 10.1038/s41467-018-03704-z PMID: 29650963
- Xia, X.; Cao, G.; Sun, G.; Zhu, L.; Tian, Y.; Song, Y.; Guo, C.; Wang, X.; Zhong, J.; Zhou, W.; Li, P.; Zhang, H.; Hao, J.; Li, Z.; Deng, L.; Yin, Z.; Gao, Y. GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J. Clin. Invest., 2020, 130(10), 5180-5196. doi: 10.1172/JCI129269 PMID: 32831293
- Zhang, P.; Su, Y.; Zhao, M.; Huang, W.; Lu, Q. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur. J. Dermatol., 2011, 21(4), 552-557. doi: 10.1684/ejd.2011.1383 PMID: 21715244
- Trowbridge, R.M.; Pittelkow, M.R. Epigenetics in the pathogenesis and pathophysiology of psoriasis vulgaris. J. Drugs Dermatol., 2014, 13(2), 111-118. PMID: 24509958
- Ovejero-Benito, M.C.; Reolid, A.; Sánchez-Jiménez, P.; Saiz-Rodríguez, M.; Muñoz-Aceituno, E.; Llamas-Velasco, M.; Martín-Vilchez, S.; Cabaleiro, T.; Román, M.; Ochoa, D.; Daudén, E.; Abad-Santos, F. Histone modifications associated with biological drug response in moderate-to-severe psoriasis. Exp. Dermatol., 2018, 27(12), 1361-1371. doi: 10.1111/exd.13790 PMID: 30260532
- Blander, G.; Bhimavarapu, A.; Mammone, T.; Maes, D.; Elliston, K.; Reich, C.; Matsui, M.S.; Guarente, L.; Loureiro, J.J. SIRT1 promotes differentiation of normal human keratinocytes. J. Invest. Dermatol., 2009, 129(1), 41-49. doi: 10.1038/jid.2008.179 PMID: 18563176
- Hwang, Y.J.; Na, J.I.; Byun, S.Y.; Kwon, S.H.; Yang, S.H.; Lee, H.S.; Choi, H.R.; Cho, S.; Youn, S.W.; Park, K.C. Histone deacetylase 1 and sirtuin 1 expression in psoriatic skin: A comparison between guttate and plaque psoriasis. Life (Basel), 2020, 10(9), 157. doi: 10.3390/life10090157 PMID: 32825671
- Shukla, G.C.; Singh, J.; Barik, S. MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol. Cell. Pharmacol., 2011, 3(3), 83-92. PMID: 22468167
- Baltimore, D.; Boldin, M.P.; OConnell, R.M.; Rao, D.S.; Taganov, K.D. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol., 2008, 9(8), 839-845. doi: 10.1038/ni.f.209 PMID: 18645592
- Qiao, M.; Ding, J.; Yan, J.; Li, R.; Jiao, J.; Sun, Q. Circular RNA expression profile and analysis of their potential function in psoriasis. Cell. Physiol. Biochem., 2018, 50(1), 15-27. doi: 10.1159/000493952 PMID: 30278433
- Liu, R.; Wang, Q.; Chang, W.; Zhou, L.; Li, J.; Zhang, K. Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions. Eur. J. Dermatol., 2019, 29(1), 29-38. PMID: 30827946
- Haschka, J.; Simon, D.; Bayat, S.; Messner, Z.; Kampylafka, E.; Fagni, F.; Skalicky, S.; Hackl, M.; Resch, H.; Zwerina, J.; Kleyer, A.; Cavallaro, A.; Sticherling, M.; Schett, G.; Kocijan, R.; Rech, J. Identification of circulating microRNA patterns in patients in psoriasis and psoriatic arthritis. Rheumatology, 2023.
- Soonthornchai, W.; Tangtanatakul, P.; Meesilpavikkai, K.; Dalm, V.; Kueanjinda, P.; Wongpiyabovorn, J. MicroRNA-378a-3p is overexpressed in psoriasis and modulates cell cycle arrest in keratinocytes via targeting BMP2 gene. Sci. Rep., 2021, 11(1), 14186. doi: 10.1038/s41598-021-93616-8 PMID: 34244572
- Sonkoly, E.; Wei, T.; Janson, P.C.J.; Sääf, A.; Lundeberg, L.; Tengvall-Linder, M.; Norstedt, G.; Alenius, H.; Homey, B.; Scheynius, A.; Ståhle, M.; Pivarcsi, A. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One, 2007, 2(7), e610. doi: 10.1371/journal.pone.0000610 PMID: 17622355
- Primo, M.N.; Bak, R.O.; Schibler, B.; Mikkelsen, J.G. Regulation of pro-inflammatory cytokines TNFα and IL24 by microRNA-203 in primary keratinocytes. Cytokine, 2012, 60(3), 741-748. doi: 10.1016/j.cyto.2012.07.031 PMID: 22917968
- Mostafa, S.A.; Mohammad, M.H.S.; Negm, W.A.; Batiha, G.E.S.; Alotaibi, S.S.; Albogami, S.M.; Waard, M.D.; Tawfik, N.Z.; Abdallah, H.Y. Circulating microRNA203 and its target genes role in psoriasis pathogenesis. Front. Med. (Lausanne), 2022, 9, 988962. doi: 10.3389/fmed.2022.988962 PMID: 36341243
- Leal, B.; Carvalho, C.; Ferreira, A.M.; Nogueira, M.; Brás, S.; Silva, B.M.; Selores, M.; Costa, P.P.; Torres, T. Serum levels of miR-146a in patients with psoriasis. Mol. Diagn. Ther., 2021, 25(4), 475-485. doi: 10.1007/s40291-021-00531-9 PMID: 33937970
- Shen, H.; Wang, D.; Zhan, M.; Ding, H.; Zhao, H. MicroRNA-146a and microRNA-146b deficiency correlates with exacerbated disease activity, and their longitude increment relates to etanercept response in psoriasis patients. J. Clin. Lab. Anal., 2022, 36(2), e24198. doi: 10.1002/jcla.24198 PMID: 34952998
- Lena, A.M.; Shalom-Feuerstein, R.; di Val Cervo, P.R.; Aberdam, D.; Knight, R.A.; Melino, G.; Candi, E. miR-203 represses stemness by repressing ΔNp63. Cell Death Differ., 2008, 15(7), 1187-1195. doi: 10.1038/cdd.2008.69 PMID: 18483491
- Zibert, J.R.; Løvendorf, M.B.; Litman, T.; Olsen, J.; Kaczkowski, B.; Skov, L. MicroRNAs and potential target interactions in psoriasis. J. Dermatol. Sci., 2010, 58(3), 177-185. doi: 10.1016/j.jdermsci.2010.03.004 PMID: 20417062
- Meng, Z.; Qiu, J.; Zhang, H. MiR-221-3p as a potential bfor Patients with psoriasis and its role in inflammatory responses in keratinocytes. Skin Pharmacol. Physiol., 2021, 34(5), 300-306. doi: 10.1159/000515114 PMID: 34091460
- Xu, N.; Brodin, P.; Wei, T.; Meisgen, F.; Eidsmo, L.; Nagy, N.; Kemeny, L.; Ståhle, M.; Sonkoly, E.; Pivarcsi, A. MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J. Invest. Dermatol., 2011, 131(7), 1521-1529. doi: 10.1038/jid.2011.55 PMID: 21412257
- Su, F.; Jin, L.; Liu, W. MicroRNA-125acorrelates with decreased psoriasis severity and inflammation and represses keratinocyte proliferation. Dermatology, 2021, 237(4), 568-578. doi: 10.1159/000510681 PMID: 33735868
- Joyce, C.E.; Zhou, X.; Xia, J.; Ryan, C.; Thrash, B.; Menter, A.; Zhang, W.; Bowcock, A.M. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum. Mol. Genet., 2011, 20(20), 4025-4040. doi: 10.1093/hmg/ddr331 PMID: 21807764
- Meisgen, F.; Xu, N.; Wei, T.; Janson, P.C.; Obad, S.; Broom, O.; Nagy, N.; Kauppinen, S.; Kemény, L.; Ståhle, M.; Pivarcsi, A.; Sonkoly, E. MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp. Dermatol., 2012, 21(4), 312-314. doi: 10.1111/j.1600-0625.2012.01462.x PMID: 22417311
- Xu, N.; Meisgen, F.; Butler, L.M.; Han, G.; Wang, X.J.; Söderberg-Nauclér, C.; Ståhle, M.; Pivarcsi, A.; Sonkoly, E. MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. J. Immunol., 2013, 190(2), 678-688. doi: 10.4049/jimmunol.1202695 PMID: 23233723
- Ye, Y.; Wang, P.; Zhou, F. miR-489-3p inhibits TLR4/NF-κB signaling to prevent inflammation in psoriasis. Exp. Ther. Med., 2021, 22(1), 744. doi: 10.3892/etm.2021.10176 PMID: 34055060
- Lerman, G.; Avivi, C.; Mardoukh, C.; Barzilai, A.; Tessone, A.; Gradus, B.; Pavlotsky, F.; Barshack, I.; Polak-Charcon, S.; Orenstein, A.; Hornstein, E.; Sidi, Y.; Avni, D. MiRNA expression in psoriatic skin: reciprocal regulation of hsa-miR-99a and IGF-1R. PLoS One, 2011, 6(6), e20916. doi: 10.1371/journal.pone.0020916 PMID: 21687694
- Choi, H.R.; Nam, K.M.; Park, S.J.; Kim, D.S.; Huh, C.H.; Park, W.Y.; Park, K.C. Suppression of miR135b increases the proliferative potential of normal human keratinocytes. J. Invest. Dermatol., 2014, 134(4), 1161-1164. doi: 10.1038/jid.2013.427 PMID: 24129066
- Ichihara, A.; Jinnin, M.; Yamane, K.; Fujisawa, A.; Sakai, K.; Masuguchi, S.; Fukushima, S.; Maruo, K.; Ihn, H. microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris. Br. J. Dermatol., 2011, 165(5), 1003-1010. doi: 10.1111/j.1365-2133.2011.10497.x PMID: 21711342
- Ichihara, A.; Jinnin, M.; Oyama, R.; Yamane, K.; Fujisawa, A.; Sakai, K.; Masuguchi, S.; Fukushima, S.; Maruo, K.; Ihn, H. Increased serum levels of miR-1266 in patients with psoriasis vulgaris. Eur. J. Dermatol., 2012, 22(1), 68-71. doi: 10.1684/ejd.2011.1600 PMID: 22133505
- Bian, J.; Liu, R.; Fan, T.; Liao, L.; Wang, S.; Geng, W.; Wang, T.; Shi, W.; Ruan, Q. miR-340 alleviates psoriasis in mice through direct targeting of IL-17A. J. Immunology, 2018, 201(5), 1412-1420.
- Zhao, M.; Wang, L.; Liang, G.; Zhang, P.; Deng, X.; Tang, Q.; Zhai, H.; Chang, C.C.; Su, Y.; Lu, Q. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4+ T cells of psoriasis vulgaris. Clin. Immunol., 2014, 150(1), 22-30. doi: 10.1016/j.clim.2013.10.009 PMID: 24316592
- Wu, R.; Zeng, J.; Yuan, J.; Deng, X.; Huang, Y.; Chen, L.; Zhang, P.; Feng, H.; Liu, Z.; Wang, Z.; Gao, X.; Wu, H.; Wang, H.; Su, Y.; Zhao, M.; Lu, Q. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Invest., 2018, 128(6), 2551-2568. doi: 10.1172/JCI97426 PMID: 29757188
- Jiang, M.; Sun, Z.; Dang, E.; Li, B.; Fang, H.; Li, J.; Gao, L.; Zhang, K.; Wang, G. TGFβ/SMAD/microRNA-486-3p signaling axis mediates keratin 17 expression and keratinocyte hyperproliferation in psoriasis. J. Invest. Dermatol., 2017, 137(10), 2177-2186. doi: 10.1016/j.jid.2017.06.005
- Zhang, W.; Yi, X.; An, Y.; Guo, S.; Li, S.; Song, P.; Chang, Y.; Zhang, S.; Gao, T.; Wang, G.; Li, C. MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: Implication for the pathogenesis of psoriasis. Cell Death Dis., 2018, 9(5), 567. doi: 10.1038/s41419-018-0621-y PMID: 29752469
- Li, Q.; Zhang, J.; Liu, S.; Zhang, F.; Zhuang, J.; Chen, Y. MicroRNA-17-3p is upregulated in psoriasis and regulates keratinocyte hyperproliferation and pro-inflammatory cytokine secretion by targeting CTR9. Eur. J. Histochem., 2022, 66(1), 66. doi: 10.4081/ejh.2022.3275 PMID: 35016493
- Liu, S.; Gong, J. miR-124-3p delivered using exosomes attenuates the keratinocyte response to IL-17A stimulation in psoriasis. Oxid. Med. Cell. Longev., 2022, 2022, 1-11. doi: 10.1155/2022/6264474 PMID: 36275890
- Yan, J.J.; Qiao, M.; Li, R.H.; Zhao, X.T.; Wang, X.Y.; Sun, Q. Downregulation of miR-145-5p contributes to hyperproliferation of keratinocytes and skin inflammation in psoriasis. Br. J. Dermatol., 2019, 180(2), 365-372. doi: 10.1111/bjd.17256 PMID: 30269330
- Shen, H.; Zeng, B.; Wang, C.; Tang, X.; Wang, H.; Liu, W.; Yang, Z. MiR-330 inhibits IL-22-induced keratinocyte proliferation through targeting CTNNB1. Biomed. Pharmacother., 2017, 91, 803-811. doi: 10.1016/j.biopha.2017.05.005 PMID: 28501007
- Zheng, Y.Z.; Chen, C.F.; Jia, L.Y.; Yu, T.G.; Sun, J.; Wang, X.Y. Correlation between microRNA-143 in peripheral blood mononuclear cells and disease severity in patients with psoriasis vulgaris. Oncotarget, 2017, 8(31), 51288-51295. doi: 10.18632/oncotarget.17260 PMID: 28881648
- Xu, L.; Leng, H.; Shi, X.; Ji, J.; Fu, J.; Leng, H. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed. Pharmacother., 2017, 90, 524-530. doi: 10.1016/j.biopha.2017.03.105 PMID: 28402921
- Koga, Y.; Jinnin, M.; Ichihara, A.; Fujisawa, A.; Moriya, C.; Sakai, K.; Fukushima, S.; Inoue, Y.; Ihn, H. Analysis of expression pattern of serum microRNA levels in patients with psoriasis. J. Dermatol. Sci., 2014, 74(2), 170-171. doi: 10.1016/j.jdermsci.2014.01.005 PMID: 24517871
- Jorn Bovenschen, H.; van de Kerkhof, P.C.; van Erp, P.E.; Woestenenk, R.; Joosten, I.; Koenen, H.J.P.M. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Invest. Dermatol., 2011, 131(9), 1853-1860. doi: 10.1038/jid.2011.139 PMID: 21654831
- Hammitzsch, A.; Tallant, C.; Fedorov, O.; OMahony, A.; Brennan, P.E.; Hay, D.A.; Martinez, F.O.; Al-Mossawi, M.H.; de Wit, J.; Vecellio, M.; Wells, C.; Wordsworth, P.; Müller, S.; Knapp, S.; Bowness, P. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc. Natl. Acad. Sci. USA, 2015, 112(34), 10768-10773. doi: 10.1073/pnas.1501956112 PMID: 26261308
- Samuelov, L.; Bochner, R.; Magal, L.; Malovitski, K.; Sagiv, N.; Nousbeck, J.; Keren, A.; Fuchs-Telem, D.; Sarig, O.; Gilhar, A.; Sprecher, E. Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Exp. Dermatol., 2022, 31(4), 567-576. doi: 10.1111/exd.14502 PMID: 34787924
- Orecchia, A.; Scarponi, C.; Di Felice, F.; Cesarini, E.; Avitabile, S.; Mai, A.; Mauro, M.L.; Sirri, V.; Zambruno, G.; Albanesi, C.; Camilloni, G.; Failla, C.M. Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells. PLoS One, 2011, 6(9), e24307. doi: 10.1371/journal.pone.0024307 PMID: 21931678
- Thatikonda, S.; Pooladanda, V.; Sigalapalli, D.K.; Godugu, C. Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation. Cell Death Dis., 2020, 11(1), 21. doi: 10.1038/s41419-019-2212-y PMID: 31924750
- Feng, H.; Wu, R.; Zhang, S.; Kong, Y.; Liu, Z.; Wu, H.; Wang, H.; Su, Y.; Zhao, M.; Lu, Q. Topical administration of nanocarrier miRNA-210 antisense ameliorates imiquimod-induced psoriasis-like dermatitis in mice. J. Dermatol., 2020, 47(2), 147-154. doi: 10.1111/1346-8138.15149 PMID: 31773789
- Rajitha, P.; Biswas, R.; Sabitha, M.; Jayakumar, R. Methotrexate in the treatment of psoriasis and rheumatoid arthritis: mechanistic insights, current issues and novel delivery approaches. Curr. Pharm. Des., 2017, 23(24), 3550-3566. PMID: 28571554
Arquivos suplementares
