Small Molecule Inhibitors against the Bacterial Pathogen Brucella
- Authors: Wu Y.1, Guo Y.2, Ma Y.1, Yu H.3, Wang Z.4
-
Affiliations:
- College of Pharmacy, Inner Mongolia Medical University
- College of Pharmacy, Baotou Medical College
- School of Basic Medicine, Baotou Medical College
- Inner Mongolia Key Laboratory of Disease-related Biomarkers,, The Second Affiliated Hospital, Baotou Medical College
- Issue: Vol 31, No 27 (2024)
- Pages: 4267-4285
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644965
- DOI: https://doi.org/10.2174/0929867331666230915153910
- ID: 644965
Cite item
Full Text
Abstract
Brucellosis remains one of the major zoonotic diseases worldwide. As a causative agent of brucellosis, it has many ways to evade recognition by the immune system, allowing it to replicate and multiply in the host, causing significant harm to both humans and animals. The pathogenic mechanism of Brucella has not been elucidated, making the identification of drug targets from the pathogenic mechanism a challenge. Metalloenzymatic targets and some protein targets unique to Brucella are exploitable in the development of inhibitors against this disease. The development of specific small molecule inhibitors is urgently needed for brucellosis treatment due to the antibiotic resistance of Brucella. This review summarizes the research on small molecule inhibitors of Brucella, which could be instructive for subsequent studies.
Keywords
About the authors
Yingnan Wu
College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Ye Guo
College of Pharmacy, Baotou Medical College
Email: info@benthamscience.net
Yuheng Ma
College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Hui Yu
School of Basic Medicine, Baotou Medical College
Author for correspondence.
Email: info@benthamscience.net
Zhanli Wang
Inner Mongolia Key Laboratory of Disease-related Biomarkers,, The Second Affiliated Hospital, Baotou Medical College
Author for correspondence.
Email: info@benthamscience.net
References
- Boschiroli, M.L.; Foulongne, V.; OCallaghan, D. Brucellosis: A worldwide zoonosis. Curr. Opin. Microbiol., 2001, 4(1), 58-64. doi: 10.1016/S1369-5274(00)00165-X PMID: 11173035
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; Hall, A.J.; Keddy, K.H.; Lake, R.J.; Lanata, C.F.; Torgerson, P.R.; Havelaar, A.H.; Angulo, F.J. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med., 2015, 12(12), e1001921. doi: 10.1371/journal.pmed.1001921 PMID: 26633831
- Atluri, V.L.; Xavier, M.N.; de Jong, M.F.; den Hartigh, A.B.; Tsolis, R.M. Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol., 2011, 65(1), 523-541. doi: 10.1146/annurev-micro-090110-102905 PMID: 21939378
- Yu, D.; Hui, Y.; Zai, X.; Xu, J.; Liang, L.; Wang, B.; Yue, J.; Li, S. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation. Virulence, 2015, 6(8), 745-754. doi: 10.1080/21505594.2015.1038015 PMID: 26039674
- Jamil, T.; Melzer, F.; Saqib, M.; Shahzad, A.; Khan Kasi, K.; Hammad Hussain, M.; Rashid, I.; Tahir, U.; Khan, I.; Haleem Tayyab, M.; Ullah, S.; Mohsin, M.; Mansoor, M.K.; Schwarz, S.; Neubauer, H. Serological and molecular detection of bovine brucellosis at institutional livestock farms in Punjab, Pakistan. Int. J. Environ. Res. Public Health, 2020, 17(4), 1412. doi: 10.3390/ijerph17041412 PMID: 32098207
- Hassan, H.; Salami, A.; Nehme, N.; Hakeem, R.; El Hage, J.; Awada, R. In prevalence and prevention of brucellosis in cattle in Lebanon. Vet. World, 2020, 13(2), 364-371.
- Liu, Z.; Shen, T.; Wei, D.; Yu, Y.; Huang, D.; Guan, P. Analysis of the epidemiological, clinical characteristics, treatment and prognosis of human brucellosis during 20142018 in Huludao, China. Infect. Drug Resist., 2020, 13, 435-445. doi: 10.2147/IDR.S236326 PMID: 32104015
- Njenga, M.K.; Ogolla, E.; Thumbi, S.M.; Ngere, I.; Omulo, S.; Muturi, M.; Marwanga, D.; Bitek, A.; Bett, B.; Widdowson, M.A.; Munyua, P.; Osoro, E.M. Comparison of knowledge, attitude, and practices of animal and human brucellosis between nomadic pastoralists and non-pastoralists in Kenya. BMC Public Health, 2020, 20(1), 269. doi: 10.1186/s12889-020-8362-0 PMID: 32093689
- Khan, A.U.; Melzer, F.; El-Soally, S.A.G.E.; Elschner, M.C.; Mohamed, S.A.; Sayed Ahmed, M.A.; Roesler, U.; Neubauer, H.; El-Adawy, H. Serological and molecular identification of Brucella spp. in pigs from Cairo and Giza Governorates, Egypt. Pathogens, 2019, 8(4), 248. doi: 10.3390/pathogens8040248 PMID: 31756893
- Ezama, A.; Gonzalez, J.P.; Majalija, S.; Bajunirwe, F. Assessing short evolution brucellosis in a highly Brucella endemic cattle keeping population of Western Uganda: a complementary use of Rose Bengal test and IgM rapid diagnostic test. BMC Public Health, 2018, 18(1), 315. doi: 10.1186/s12889-018-5228-9 PMID: 29506522
- Zhang, X.W.; Ren, P.; Huang, T.L. Treatment of severe refractory thrombocytopenia in brucellosis with eltrombopag: A case report. Pediatr. Infect. Dis. J., 2022, 41(8), e332-e335. doi: 10.1097/INF.0000000000003555 PMID: 35421043
- Perkins, S.D.; Smither, S.J.; Atkins, H.S. Towards a Brucella vaccine for humans. FEMS Microbiol. Rev., 2010, 34(3), 379-394. doi: 10.1111/j.1574-6976.2010.00211.x PMID: 20180858
- Głowacka, P.; Żakowska, D.; Naylor, K.; Niemcewicz, M.; Bielawska-Drózd, A. Brucellavirulence factors, pathogenesis and treatment. Pol. J. Microbiol., 2018, 67(2), 151-161. doi: 10.21307/pjm-2018-029 PMID: 30015453
- Whatmore, A.M.; Perrett, L.L.; MacMillan, A.P. Characterisation of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol., 2007, 7(1), 34. doi: 10.1186/1471-2180-7-34 PMID: 17448232
- Corbel, M. Brucellosis: An overview. Emerg. Infect. Dis., 1997, 3(2), 213-221. doi: 10.3201/eid0302.970219 PMID: 9204307
- Hisham, Y.; Ashhab, Y. Identification of cross-protective potential antigens against pathogenic Brucella spp. through combining pan-genome analysis with reverse vaccinology. J. Immunol. Res., 2018.
- Ewalt, D.R.; Payeur, J.B.; Martin, B.M.; Cummins, D.R.; Miller, W.G. Characteristics of a Brucella species from a bottlenose dolphin (Tursiops truncatus). J. Vet. Diagn. Invest., 1994, 6(4), 448-452. doi: 10.1177/104063879400600408 PMID: 7858024
- Ross, H.; Foster, G.; Reid, R.; Jahans, K.; MacMillan, A. Brucella species infection in sea-mammals. Vet. Rec., 1994, 134(14), 359. doi: 10.1136/vr.134.14.359-b PMID: 8017020
- Martirosyan, A.; Moreno, E.; Gorvel, J.P. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol. Rev., 2011, 240(1), 211-234. doi: 10.1111/j.1600-065X.2010.00982.x PMID: 21349096
- Grilló, M.J.; Blasco, J.M.; Gorvel, J.P.; Moriyón, I.; Moreno, E. What have we learned from brucellosis in the mouse model? Vet. Res., 2012, 43(1), 29. doi: 10.1186/1297-9716-43-29 PMID: 22500859
- Martirosyan, A.; Gorvel, J.P. Brucella evasion of adaptive immunity. Future Microbiol., 2013, 8(2), 147-154. doi: 10.2217/fmb.12.140 PMID: 23374122
- Jansen, W.; Demars, A.; Nicaise, C.; Godfroid, J.; de Bolle, X.; Reboul, A.; Al Dahouk, S. Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci. Rep., 2020, 10(1), 9421. doi: 10.1038/s41598-020-65760-0 PMID: 32523093
- Ma, Z.; Li, R.; Hu, R.; Deng, X.; Xu, Y.; Zheng, W.; Yi, J.; Wang, Y.; Chen, C. Brucella abortus BspJ is a nucleomodulin that inhibits macrophage apoptosis and promotes intracellular survival of Brucella. Front. Microbiol., 2020, 11, 599205. doi: 10.3389/fmicb.2020.599205 PMID: 33281799
- Hop, H.T.; Reyes, A.W.B.; Huy, T.X.N.; Arayan, L.T.; Min, W.; Lee, H.J.; Rhee, M.H.; Chang, H.H.; Kim, S. Activation of NF-kB-Mediated TNF-Induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW 264.7 Cells. Front. Cell. Infect. Microbiol., 2017, 7, 437. doi: 10.3389/fcimb.2017.00437 PMID: 29062811
- Boschiroli, M.L.; Ouahrani-Bettache, S.; Foulongne, V.; Michaux-Charachon, S.; Bourg, G.; Allardet-Servent, A.; Cazevieille, C.; Liautard, J.P.; Ramuz, M.; OCallaghan, D. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. USA, 2002, 99(3), 1544-1549. doi: 10.1073/pnas.032514299 PMID: 11830669
- Celli, J.; de Chastellier, C.; Franchini, D.M.; Pizarro-Cerda, J.; Moreno, E.; Gorvel, J.P. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med., 2003, 198(4), 545-556. doi: 10.1084/jem.20030088 PMID: 12925673
- Starr, T.; Ng, T.W.; Wehrly, T.D.; Knodler, L.A.; Celli, J. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic, 2008, 9(5), 678-694. doi: 10.1111/j.1600-0854.2008.00718.x PMID: 18266913
- Roux, C.M.; Rolán, H.G.; Santos, R.L.; Beremand, P.D.; Thomas, T.L.; Adams, L.G.; Tsolis, R.M. Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell. Microbiol., 2007, 9(7), 1851-1869. doi: 10.1111/j.1462-5822.2007.00922.x PMID: 17441987
- Ahmed, W.; Zheng, K.; Liu, Z.F. Establishment of chronic infection: Brucellas stealth strategy. Front. Cell. Infect. Microbiol., 2016, 6, 30. doi: 10.3389/fcimb.2016.00030 PMID: 27014640
- Pappas, G.; Akritidis, N.; Tsianos, E. Effective treatments in the management of brucellosis. Expert Opin. Pharmacother., 2005, 6(2), 201-209. doi: 10.1517/14656566.6.2.201 PMID: 15757417
- Leite, D.M.C.; Brochet, X.; Resch, G.; Que, Y.A.; Neves, A.; Peña-Reyes, C. Computational prediction of inter-species relationships through omics data analysis and machine learning. BMC Bioinformatics, 2018, 19(S14)(Suppl. 14), 420. doi: 10.1186/s12859-018-2388-7 PMID: 30453987
- Spink, W.W. Current status of therapy of brucellosis in human beings. J. Am. Med. Assoc., 1960, 172(7), 697-698. doi: 10.1001/jama.1960.63020070004016 PMID: 13833372
- Xie, Q.; Zhang, X.; Cui, W.; Pang, Y. Construction of a nomogram for identifying refractory Mycoplasma pneumoniae pneumonia among macrolide-unresponsive Mycoplasma pneumoniae pneumonia in children. J. Inflamm. Res., 2022, 15, 6495-6504. doi: 10.2147/JIR.S387809 PMID: 36474517
- Ocon, P.; Reguera, J.M.; Morata, P.; Juarez, C.; Alonso, A.; Colmenero, J.D. Phagocytic cell function in active brucellosis. Infect. Immun., 1994, 62(3), 910-914. doi: 10.1128/iai.62.3.910-914.1994 PMID: 8112863
- Rizzo-Naudi, J.; Griscti-Soler, N.; Ganado, W. Human brucellosis: An evaluation of antibiotics in the treatment of brucellosis. Postgrad. Med. J., 1967, 43(502), 520-526. doi: 10.1136/pgmj.43.502.520 PMID: 6074152
- Alizadeh, H.; Salouti, M.; Shapouri, R. Bactericidal effect of silver nanoparticles on intramacrophage Brucella abortus 544. Jundishapur J. Microbiol., 2014, 7(3), e9039. doi: 10.5812/jjm.9039 PMID: 25147682
- Khan, A.U.; Shell, W.S.; Melzer, F.; Sayour, A.E.; Ramadan, E.S.; Elschner, M.C.; Moawad, A.A.; Roesler, U.; Neubauer, H.; El-Adawy, H. Identification, genotyping and antimicrobial susceptibility testing of Brucella spp. isolated from livestock in Egypt. Microorganisms, 2019, 7(12), 603. doi: 10.3390/microorganisms7120603 PMID: 31766725
- Hashemi, S.H.; Gachkar, L.; Keramat, F.; Mamani, M.; Hajilooi, M.; Janbakhsh, A.; Majzoobi, M.M.; Mahjub, H. Comparison of doxycyclinestreptomycin, doxycyclinerifampin, and ofloxacinrifampin in the treatment of brucellosis: A randomized clinical trial. Int. J. Infect. Dis., 2012, 16(4), e247-e251. doi: 10.1016/j.ijid.2011.12.003 PMID: 22296864
- Alavi, S.M.; Alavi, L. Treatment of brucellosis: A systematic review of studies in recent twenty years. Caspian J. Intern. Med., 2013, 4(2), 636-641. PMID: 24009951
- Johansen, T.B.; Scheffer, L.; Jensen, V.K.; Bohlin, J.; Feruglio, S.L. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective. Sci. Rep., 2018, 8(1), 8538. doi: 10.1038/s41598-018-26906-3 PMID: 29867163
- Majzoobi, M.M.; Hashmi, S.H.; Emami, K.; Soltanian, A.R. Combination of doxycycline, streptomycin and hydroxychloroquine for short-course treatment of brucellosis: A single-blind randomized clinical trial. Infection, 2022, 50(5), 1267-1271. doi: 10.1007/s15010-022-01806-x PMID: 35353333
- Peponis, V.; Kyttaris, V.C.; Chalkiadakis, S.E.; Bonovas, S.; Sitaras, N.M. Review: Ocular side effects of anti-rheumatic medications: What a rheumatologist should know. Lupus, 2010, 19(6), 675-682. doi: 10.1177/0961203309360539 PMID: 20144965
- Shah, V.A.; Pandya, H.K.; Robinson, M.; Mandal, N. Hydroxychloroquine retinopathy: A review of imaging. Indian J. Ophthalmol., 2015, 63(7), 570-574. doi: 10.4103/0301-4738.167120 PMID: 26458473
- del Pozo, J.S.G.; Solera, J. Treatment of human brucellosis-Review of evidence from clinical trials. In: Updates on Brucellosis; Baddour, M.M., Ed.; InTech, 2015. Available from: doi: 10.5772/59890.
- Hosseini, S.M.; Farmany, A.; Alikhani, M.Y.; Taheri, M.; Asl, S.S.; Alamian, S.; Arabestani, M.R. Co-Delivery of Doxycycline and hydroxychloroquine using CdTe-Labeled solid lipid nanoparticles for treatment of acute and chronic Brucellosis. Front Chem., 2022, 10, 890252. doi: 10.3389/fchem.2022.890252 PMID: 35646816
- Zai, X.; Yin, Y.; Guo, F.; Yang, Q.; Li, R.; Li, Y.; Zhang, J.; Xu, J.; Chen, W. Screening of potential vaccine candidates against pathogenic Brucella spp. using compositive reverse vaccinology. Vet. Res., 2021, 52(1), 75. doi: 10.1186/s13567-021-00939-5 PMID: 34078437
- Zhu, L.; Feng, Y.; Zhang, G.; Jiang, H.; Zhang, Z.; Wang, N.; Ding, J.; Suo, X. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections. Vaccine, 2016, 34(3), 395-400. doi: 10.1016/j.vaccine.2015.09.116 PMID: 26626213
- Chen, F.; He, Y. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS One, 2009, 4(8), e6830. doi: 10.1371/journal.pone.0006830 PMID: 19714247
- Yang, X.; Skyberg, J.A.; Cao, L.; Clapp, B.; Thornburg, T.; Pascual, D.W. Progress in Brucella vaccine development. Front. Biol., 2013, 8(1), 60-77. doi: 10.1007/s11515-012-1196-0 PMID: 23730309
- Wang, B. Drug design of zinc-enzyme inhibitors: Functional, structural, and disease applications; John Wiley & Sons, 2009.
- Baglini, E.; Ravichandran, R.; Berrino, E.; Salerno, S.; Barresi, E.; Marini, A.M.; Viviano, M.; Castellano, S.; Da Settimo, F.; Supuran, C.T.; Cosconati, S.; Taliani, S. Tetrahydroquinazole-based secondary sulphonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IV, and IX, and computational studies. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1874-1883. doi: 10.1080/14756366.2021.1956913 PMID: 34340614
- Winum, J.Y.; Köhler, S.; Supuran, C.T. Brucella carbonic anhydrases: New targets for designing anti-infective agents. Curr. Pharm. Des., 2010, 16(29), 3310-3316. doi: 10.2174/138161210793429850 PMID: 20819063
- Joseph, P.; Turtaut, F.; Ouahrani-Bettache, S.; Montero, J.L.; Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Köhler, S.; Winum, J.Y.; Supuran, C.T. Cloning, characterization, and inhibition studies of a beta-carbonic anhydrase from Brucella suis. J. Med. Chem., 2010, 53(5), 2277-2285. doi: 10.1021/jm901855h PMID: 20158185
- Lopez, M.; Köhler, S.; Winum, J.Y. Zinc metalloenzymes as new targets against the bacterial pathogen Brucella. J. Inorg. Biochem., 2012, 111, 138-145. doi: 10.1016/j.jinorgbio.2011.10.019 PMID: 22196018
- Joseph, P.; Ouahrani-Bettache, S.; Montero, J.L.; Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Winum, J.Y.; Köhler, S.; Supuran, C.T. A new β-carbonic anhydrase from Brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth. Bioorg. Med. Chem., 2011, 19(3), 1172-1178. doi: 10.1016/j.bmc.2010.12.048 PMID: 21251841
- Vullo, D.; Nishimori, I.; Scozzafava, A.; Köhler, S.; Winum, J.Y.; Supuran, C.T. Inhibition studies of a β-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorg. Med. Chem. Lett., 2010, 20(7), 2178-2182. doi: 10.1016/j.bmcl.2010.02.042 PMID: 20211561
- Riafrecha, L.E.; Vullo, D.; Supuran, C.T.; Colinas, P.A. C -glycosides incorporating the 6-methoxy-2-naphthyl moiety are selective inhibitors of fungal and bacterial carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 857-861. doi: 10.3109/14756366.2014.967233 PMID: 25291009
- Ombouma, J.; Vullo, D.; Köhler, S.; Dumy, P.; Supuran, C.T.; Winum, J.Y. N-glycosyl-N-hydroxysulfamides as potent inhibitors of Brucella suis carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 1010-1012. doi: 10.3109/14756366.2014.986119 PMID: 25792504
- Köhler, S.; Ouahrani-Bettache, S.; Winum, J.Y. Brucella suis carbonic anhydrases and their inhibitors: Towards alternative antibiotics? J. Enzyme Inhib. Med. Chem., 2017, 32(1), 683-687. doi: 10.1080/14756366.2017.1295451 PMID: 28274160
- Maresca, A.; Scozzafava, A.; Köhler, S.; Winum, J.Y.; Supuran, C.T. Inhibition of beta-carbonic anhydrases from the bacterial pathogen Brucella suis with inorganic anions. J. Inorg. Biochem., 2012, 110, 36-39. doi: 10.1016/j.jinorgbio.2012.02.009 PMID: 22459172
- Ceruso, M.; Carta, F.; Osman, S.M.; Alothman, Z.; Monti, S.M.; Supuran, C.T. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg. Med. Chem., 2015, 23(15), 4181-4187. doi: 10.1016/j.bmc.2015.06.050 PMID: 26145821
- Vullo, D.; Del Prete, S.; Di Fonzo, P.; Carginale, V.; Donald, W.; Supuran, C.; Capasso, C. Comparison of the sulfonamide inhibition profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. Molecules, 2017, 22(3), 421. doi: 10.3390/molecules22030421 PMID: 28272358
- Köhler, S.; Foulongne, V.; Ouahrani-Bettache, S.; Bourg, G.; Teyssier, J.; Ramuz, M.; Liautard, J.P. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc. Natl. Acad. Sci., 2002, 99(24), 15711-15716. doi: 10.1073/pnas.232454299 PMID: 12438693
- Abdo, M.R.; Joseph, P.; Boigegrain, R.A.; Liautard, J.P.; Montero, J.L.; Köhler, S.; Winum, J.Y. Brucella suis histidinol dehydrogenase: Synthesis and inhibition studies of a series of substituted benzylic ketones derived from histidine. Bioorg. Med. Chem., 2007, 15(13), 4427-4433. doi: 10.1016/j.bmc.2007.04.027 PMID: 17481905
- Dambrosio, K.; Lopez, M.; Dathan, N.A.; Ouahrani-Bettache, S.; Köhler, S.; Ascione, G.; Monti, S.M.; Winum, J.Y.; De Simone, G. Structural basis for the rational design of new anti-Brucella agents: The crystal structure of the C366S mutant of l-histidinol dehydrogenase from Brucella suis. Biochimie, 2014, 97, 114-120. doi: 10.1016/j.biochi.2013.09.028 PMID: 24140957
- Monti, S.M.; De Simone, G.; DAmbrosio, K.S.; De Simone, G.; Ambrosio, K. L-Histidinol dehydrogenase as a new target for old diseases. Curr. Top. Med. Chem., 2016, 16(21), 2369-2378. doi: 10.2174/1568026616666160413140000 PMID: 27072690
- Abdo, M.R.; Joseph, P.; Mortier, J.; Turtaut, F.; Montero, J.L.; Masereel, B.; Köhler, S.; Winum, J.Y. Anti-virulence strategy against Brucella suis: Synthesis, biological evaluation and molecular modeling of selective histidinol dehydrogenase inhibitors. Org. Biomol. Chem., 2011, 9(10), 3681-3690. doi: 10.1039/c1ob05149k PMID: 21461427
- Turtaut, F.; Lopez, M.; Ouahrani-Bettache, S.; Köhler, S.; Winum, J.Y. Oxo- and thiooxo-imidazo1,5-cpyrimidine molecule library: Beyond their interest in inhibition of Brucella suis histidinol dehydrogenase, a powerful protection tool in the synthesis of histidine analogues. Bioorg. Med. Chem. Lett., 2014, 24(21), 5008-5010. doi: 10.1016/j.bmcl.2014.09.020 PMID: 25278235
- Turtaut, F.; Ouahrani-Bettache, S.; Montero, J.L.; Köhler, S.; Winum, J.Y. Synthesis and biological evaluation of a new class of anti-Brucella compounds targeting histidinol dehydrogenase: α-O-arylketones and α-S-arylketones derived from histidine. MedChemComm, 2011, 2(10), 995-1000. doi: 10.1039/c1md00146a
- Abdo, M.R.; Joseph, P.; Boigegrain, R.A.; Montero, J.L.; Köhler, S.; Winum, J.Y. Brucella suis histidinol dehydrogenase: Synthesis and inhibition studies of substituted N-L-histidinylphenylsulfonyl hydrazide. J. Enzyme Inhib. Med. Chem., 2008, 23(3), 357-361. doi: 10.1080/14756360701617107 PMID: 18569340
- Green, E.R.; Mecsas, J. Bacterial secretion systems: An overview. Microbiol. Spectr., 2016, 4(1), 4.1.13.. doi: 10.1128/microbiolspec.VMBF-0012-2015 PMID: 26999395
- Baron, C. VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem. Cell Biol., 2006, 84(6), 890-899. doi: 10.1139/o06-148 PMID: 17215876
- OCallaghan, D.; Cazevieille, C.; Allardet-Servent, A.; Boschiroli, M.L.; Bourg, G.; Foulongne, V.; Frutos, P.; Kulakov, Y.; Ramuz, M. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol., 1999, 33(6), 1210-1220. doi: 10.1046/j.1365-2958.1999.01569.x PMID: 10510235
- Sieira, R.; Comerci, D.J.; Sánchez, D.O.; Ugalde, R.A. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J. Bacteriol., 2000, 182(17), 4849-4855. doi: 10.1128/JB.182.17.4849-4855.2000 PMID: 10940027
- Ke, Y.; Wang, Y.; Li, W.; Chen, Z. Type IV secretion system of Brucella spp. and its effectors. Front. Cell. Infect. Microbiol., 2015, 5, 72. doi: 10.3389/fcimb.2015.00072 PMID: 26528442
- Xiong, X.; Li, B.; Zhou, Z.; Gu, G.; Li, M.; Liu, J.; Jiao, H. The VirB system plays a crucial role in Brucella intracellular infection. Int. J. Mol. Sci., 2021, 22(24), 13637. doi: 10.3390/ijms222413637 PMID: 34948430
- Fronzes, R.; Schäfer, E.; Wang, L.; Saibil, H.R.; Orlova, E.V.; Waksman, G. Structure of a type IV secretion system core complex. Science, 2009, 323(5911), 266-268. doi: 10.1126/science.1166101 PMID: 19131631
- Sun, Y.H.; Rolán, H.G.; den Hartigh, A.B.; Sondervan, D.; Tsolis, R.M. Brucella abortus virB12 is expressed during infection but is not an essential component of the type IV secretion system. Infect. Immun., 2005, 73(9), 6048-6054. doi: 10.1128/IAI.73.9.6048-6054.2005 PMID: 16113325
- Atmakuri, K.; Cascales, E.; Christie, P.J. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol. Microbiol., 2004, 54(5), 1199-1211. doi: 10.1111/j.1365-2958.2004.04345.x PMID: 15554962
- Paschos, A.; Patey, G.; Sivanesan, D.; Gao, C.; Bayliss, R.; Waksman, G.; OCallaghan, D.; Baron, C. Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc. Natl. Acad. Sci. USA, 2006, 103(19), 7252-7257. doi: 10.1073/pnas.0600862103 PMID: 16648257
- Terradot, L.; Bayliss, R.; Oomen, C.; Leonard, G.A.; Baron, C.; Waksman, G. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc. Natl. Acad. Sci. USA, 2005, 102(12), 4596-4601. doi: 10.1073/pnas.0408927102 PMID: 15764702
- Paschos, A.; den Hartigh, A.; Smith, M.A.; Atluri, V.L.; Sivanesan, D.; Tsolis, R.M.; Baron, C. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect. Immun., 2011, 79(3), 1033-1043. doi: 10.1128/IAI.00993-10 PMID: 21173315
- Smith, M.A.; Coinçon, M.; Paschos, A.; Jolicoeur, B.; Lavallée, P.; Sygusch, J.; Baron, C. Identification of the binding site of Brucella VirB8 interaction inhibitors. Chem. Biol., 2012, 19(8), 1041-1048. doi: 10.1016/j.chembiol.2012.07.007 PMID: 22921071
- Sharifahmadian, M.; Arya, T.; Bessette, B.; Lecoq, L.; Ruediger, E.; Omichinski, J.G.; Baron, C. Monomer‐to‐dimer transition of Brucella suis type IV secretion system component VirB8 induces conformational changes. FEBS J., 2017, 284(8), 1218-1232. doi: 10.1111/febs.14049 PMID: 28236662
- Woese, C.R.; Olsen, G.J.; Ibba, M.; Söll, D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev., 2000, 64(1), 202-236. doi: 10.1128/MMBR.64.1.202-236.2000 PMID: 10704480
- Deniziak, M.A.; Barciszewski, J. Methionyl-tRNA synthetase. Acta Biochim. Pol., 2001, 48(2), 337-350. doi: 10.18388/abp.2001_3919 PMID: 11732605
- Ojo, K.K.; Ranade, R.M.; Zhang, Z.; Dranow, D.M.; Myers, J.B.; Choi, R.; Nakazawa Hewitt, S.; Edwards, T.E.; Davies, D.R.; Lorimer, D.; Boyle, S.M.; Barrett, L.K.; Buckner, F.S.; Fan, E.; Van Voorhis, W.C. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a potential drug target for Brucellosis. PLoS One, 2016, 11(8), e0160350. doi: 10.1371/journal.pone.0160350 PMID: 27500735
- Shibata, S.; Gillespie, J.R.; Kelley, A.M.; Napuli, A.J.; Zhang, Z.; Kovzun, K.V.; Pefley, R.M.; Lam, J.; Zucker, F.H.; Van Voorhis, W.C.; Merritt, E.A.; Hol, W.G.J.; Verlinde, C.L.M.J.; Fan, E.; Buckner, F.S. Selective inhibitors of methionyl-tRNA synthetase have potent activity against Trypanosoma brucei infection in mice. Antimicrob. Agents Chemother., 2011, 55(5), 1982-1989. doi: 10.1128/AAC.01796-10 PMID: 21282428
- Shibata, S.; Gillespie, J.R.; Ranade, R.M.; Koh, C.Y.; Kim, J.E.; Laydbak, J.U.; Zucker, F.H.; Hol, W.G.J.; Verlinde, C.L.M.J.; Buckner, F.S.; Fan, E. Urea-based inhibitors of Trypanosoma brucei methionyl-tRNA synthetase: Selectivity and in vivo characterization. J. Med. Chem., 2012, 55(14), 6342-6351. doi: 10.1021/jm300303e PMID: 22720744
- Regan, J.; Capolino, A.; Cirillo, P.F.; Gilmore, T.; Graham, A.G.; Hickey, E.; Kroe, R.R.; Madwed, J.; Moriak, M.; Nelson, R.; Pargellis, C.A.; Swinamer, A.; Torcellini, C.; Tsang, M.; Moss, N. Structure−activity relationships of the p38α MAP kinase inhibitor 1-(5-tert-Butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-4-(2-morpholin-4-yl-ethoxy)naph-thalen-1-ylurea (BIRB 796). J. Med. Chem., 2003, 46(22), 4676-4686. doi: 10.1021/jm030121k PMID: 14561087
- Rowaiye, A.B.; Ogugua, A.J.; Ibeanu, G.; Bur, D.; Asala, M.T.; Ogbeide, O.B.; Abraham, E.O.; Usman, H.B. Identifying potential natural inhibitors of Brucella melitensis Methionyl-tRNA synthetase through an in-silico approach. PLoS Negl. Trop. Dis., 2022, 16(3), e0009799. doi: 10.1371/journal.pntd.0009799 PMID: 35312681
- Kumari, M.; chandra, S.; Tiwari, N.; Subbarao, N. High throughput virtual screening to identify novel natural product inhibitors for MethionyltRNA-Synthetase of Brucella melitensis. Bioinformation, 2017, 13(1), 8-16. doi: 10.6026/97320630013008 PMID: 28479744
- Li, M.; Wen, F.; Zhao, S.; Wang, P.; Li, S.; Zhang, Y.; Zheng, N.; Wang, J. Exploring the molecular basis for binding of inhibitors by Threonyl-tRNA synthetase from Brucella abortus: A virtual screening study. Int. J. Mol. Sci., 2016, 17(7), 1078. doi: 10.3390/ijms17071078 PMID: 27447614
- Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr., 2003, 77(6), 1352-1360. doi: 10.1093/ajcn/77.6.1352 PMID: 12791609
- Walsh, C.T.; Wencewicz, T.A. Flavoenzymes: Versatile catalysts in biosynthetic pathways. Nat. Prod. Rep., 2013, 30(1), 175-200. doi: 10.1039/C2NP20069D PMID: 23051833
- Leys, D.; Scrutton, N.S. Sweating the assets of flavin cofactors: New insight of chemical versatility from knowledge of structure and mechanism. Curr. Opin. Struct. Biol., 2016, 41, 19-26. doi: 10.1016/j.sbi.2016.05.014 PMID: 27266331
- Long, Q.; Ji, L.; Wang, H.; Xie, J. Riboflavin biosynthetic and regulatory factors as potential novel anti-infective drug targets. Chem. Biol. Drug Des., 2010, 75(4), 339-347. doi: 10.1111/j.1747-0285.2010.00946.x PMID: 20148904
- Moreno, A.; Taleb, V.; Sebastián, M.; Anoz-Carbonell, E.; Martínez-Júlvez, M.; Medina, M. Cofactors and pathogens: Flavin mononucleotide and flavin adenine dinucleotide (FAD) biosynthesis by the FAD synthase from Brucella ovis. IUBMB Life, 2022, 74(7), 655-671. doi: 10.1002/iub.2576 PMID: 34813144
- Cushman, M.; Jin, G.; Illarionov, B.; Fischer, M.; Ladenstein, R.; Bacher, A.; Bacher, A. Design, synthesis, and biochemical evaluation of 1,5,6,7-tetrahydro-6,7-dioxo-9-D-ribitylaminolumazines bearing alkyl phosphate substituents as inhibitors of lumazine synthase and riboflavin synthase. J. Org. Chem., 2005, 70(20), 8162-8170. doi: 10.1021/jo051332v PMID: 16277343
- Zhang, Y.; Illarionov, B.; Morgunova, E.; Jin, G.; Bacher, A.; Fischer, M.; Ladenstein, R.; Cushman, M. A new series of N-2,4-dioxo-6-d-ribitylamino-1,2,3,4-tetrahydropyrimi-din-5-yloxalamic acid derivatives as inhibitors of lumazine synthase and riboflavin synthase: design, synthesis, biochemical evaluation, crystallography, and mechanistic implications. J. Org. Chem., 2008, 73(7), 2715-2724. doi: 10.1021/jo702631a PMID: 18331058
- Serer, M.I.; Bonomi, H.R.; Guimarães, B.G.; Rossi, R.C.; Goldbaum, F.A.; Klinke, S. Crystallographic and kinetic study of riboflavin synthase from Brucella abortus, a chemotherapeutic target with an enhanced intrinsic flexibility. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(5), 1419-1434. doi: 10.1107/S1399004714005161 PMID: 24816110
- Serer, M.I.; Carrica, M.C.; Trappe, J.; López Romero, S.; Bonomi, H.R.; Klinke, S.; Cerutti, M.L.; Goldbaum, F.A. A high‐throughput screening for inhibitors of riboflavin synthase identifies novel antimicrobial compounds to treat brucellosis. FEBS J., 2019, 286(13), 2522-2535. doi: 10.1111/febs.14829 PMID: 30927485
- Kumar, R.; Bhakuni, V. A functionally active dimer of Mycobacterium tuberculosis malate synthase G. Eur. Biophys. J., 2010, 39(11), 1557-1562. doi: 10.1007/s00249-010-0598-7 PMID: 20306314
- Adi, P.J.; Yellapu, N.K.; Matcha, B. Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in Brucella melitensis 16M. Biochem. Biophys. Rep., 2016, 8, 192-199. doi: 10.1016/j.bbrep.2016.08.020 PMID: 28955956
- Muhammad, I.; Niaz, S.; Hussain, A.; Ahmad, S.; Rahman, N.; Khan, H.; Ali, A. Nayab, Gul E. Molecular docking and in vitro analysis of Fagonia cretica and Berberis lyceum extracts against Brucella melitensis. Curr. Computeraided Drug Des., 2021, 17(7), 946-956. doi: 10.2174/1573409916666200612145712 PMID: 32532195
- Kamal, I.M.; Chakrabarti, S. MetaDOCK: A combinatorial molecular docking approach. ACS Omega, 2023, 8(6), 5850-5860. doi: 10.1021/acsomega.2c07619 PMID: 36816658
- Pradeepkiran, J.A.; konidala, K.; Yellapu, N.; Bhaskar, M. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M. Drug Des. Devel. Ther., 2015, 9, 1897-1912. doi: 10.2147/DDDT.S77020 PMID: 25848225
- Kushwaha, S.K.; Shakya, M. Protein interaction network analysisApproach for potential drug target identification in Mycobacterium tuberculosis. J. Theor. Biol., 2010, 262(2), 284-294. doi: 10.1016/j.jtbi.2009.09.029 PMID: 19833135
- Gupta, M.; Prasad, Y.; Sharma, S.K.; Jain, C.K. Identification of Phosphoribosyl-AMP cyclohydrolase, as drug target and its inhibitors in Brucella melitensis bv. 1 16M using metabolic pathway analysis. J. Biomol. Struct. Dyn., 2017, 35(2), 287-299. doi: 10.1080/07391102.2015.1137229 PMID: 26725317
- Mancini, D.T.; Matos, K.S.; da Cunha, E.F.F.; Assis, T.M.; Guimarães, A.P.; França, T.C.C.; Ramalho, T.C. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis. J. Biomol. Struct. Dyn., 2012, 30(1), 125-136. doi: 10.1080/07391102.2012.674293 PMID: 22571438
- Bie, P.; Yang, X.; Zhang, C.; Wu, Q. Identification of small-molecule inhibitors of Brucella diaminopimelate decarboxylase by using a high-throughput screening assay. Front. Microbiol., 2020, 10, 2936. doi: 10.3389/fmicb.2019.02936 PMID: 32038511
- Scarff, J.M.; Waidyarachchi, S.L.; Meyer, C.J.; Lane, D.J.; Chai, W.; Lemmon, M.M.; Liu, J.; Butler, M.M.; Bowlin, T.L.; Lee, R.E.; Panchal, R.G. Aminomethyl spectinomycins: A novel antibacterial chemotype for biothreat pathogens. J. Antibiot., 2019, 72(9), 693-701. doi: 10.1038/s41429-019-0194-8 PMID: 31164713
- Reuter, S.; Gupta, S.C.; Phromnoi, K.; Aggarwal, B.B. Thiocolchicoside suppresses osteoclastogenesis induced by RANKL and cancer cells through inhibition of inflammatory pathways: A new use for an old drug. Br. J. Pharmacol., 2012, 165(7), 2127-2139. doi: 10.1111/j.1476-5381.2011.01702.x PMID: 21955206
- Gross, A.; Terraza, A.; Marchant, J.; Bouaboula, M.; Ouahrani-Bettache, S.; Liautard, J.P.; Casellas, P.; Dornand, J. A beneficial aspect of a CB1 cannabinoid receptor antagonist: SR141716A is a potent inhibitor of macrophage infection by the intracellular pathogen Brucella suis. J. Leukoc. Biol., 2000, 67(3), 335-344. doi: 10.1002/jlb.67.3.335 PMID: 10733093
- Boigegrain, R.A.; Liautard, J.P.; Köhler, S. Targeting of the virulence factor acetohydroxyacid synthase by sulfonylureas results in inhibition of intramacrophagic multiplication of Brucella suis. Antimicrob. Agents Chemother., 2005, 49(9), 3922-3925. doi: 10.1128/AAC.49.9.3922-3925.2005 PMID: 16127072
- Kutlu, M.; Ergin, Ç.; Sen-Türk, N.; Sayin-Kutlu, S.; Zorbozan, O.; Akalın, S.; Şahin, B.; Çobankara, V.; Demirkan, N. Acute Brucella melitensis m16 infection model in mice treated with tumor necrosis factor-alpha inhibitors. J. Infect. Dev. Ctries., 2015, 9(2), 141-148. doi: 10.3855/jidc.5155 PMID: 25699488
- Gagnaire, A.; Gorvel, L.; Papadopoulos, A.; Von Bargen, K.; Mège, J.L.; Gorvel, J.P. COX-2 inhibition reduces Brucella bacterial burden in draining lymph nodes. Front. Microbiol., 2016, 7, 1987. doi: 10.3389/fmicb.2016.01987 PMID: 28018318
- Czyż, D.M.; Jain-Gupta, N.; Shuman, H.A.; Crosson, S. A dual-targeting approach to inhibit Brucella abortus replication in human cells. Sci. Rep., 2016, 6(1), 35835. doi: 10.1038/srep35835 PMID: 27767061
- Reyes, A.W.B.; Hop, H.T.; Arayan, L.T.; Huy, T.X.N.; Min, W.; Lee, H.J.; Chang, H.H.; Kim, S. Nocodazole treatment interrupted Brucella abortus invasion in RAW 264.7 cells, and successfully attenuated splenic proliferation with enhanced inflammatory response in mice. Microb. Pathog., 2017, 103, 87-93. doi: 10.1016/j.micpath.2016.11.028 PMID: 28017899
- Wang, Y.; Li, Y.; Li, H.; Song, H.; Zhai, N.; Lou, L.; Wang, F.; Zhang, K.; Bao, W.; Jin, X.; Su, L.; Tu, Z. Brucella dysregulates monocytes and inhibits macrophage polarization through LC3-Dependent autophagy. Front. Immunol., 2017, 8, 691. doi: 10.3389/fimmu.2017.00691 PMID: 28659924
- Reyes, A.W.B.; Arayan, L.T.; Huy, T.X.N.; Vu, S.H.; Kang, C.K.; Min, W.; Lee, H.J.; Lee, J.H.; Kim, S. Chemokine receptor 4 (CXCR4) blockade enhances resistance to bacterial internalization in RAW264.7 cells and AMD3100, a CXCR4 antagonist, attenuates susceptibility to Brucella abortus 544 infection in a murine model. Vet. Microbiol., 2019, 237, 108402. doi: 10.1016/j.vetmic.2019.108402 PMID: 31585647
- Nguyen, T.T.; Kim, H.; Huy, T.X.N.; Min, W.; Lee, H.; Reyes, A.W.B.; Lee, J.; Kim, S. Simvastatin inhibits Brucella abortus invasion into RAW 264.7 cells through suppression of the mevalonate pathway and promotes host immunity during infection in a mouse model. Int. J. Mol. Sci., 2022, 23(15), 8337. doi: 10.3390/ijms23158337 PMID: 35955474
- Reyes, A.W.B.; Kim, H.; Huy, T.X.N.; Nguyen, T.T.; Min, W.; Lee, D.; Hur, J.; Lee, J.H.; Kim, S. The in vitro and in vivo effect of lipoxygenase pathway inhibitors nordihydroguaiaretic acid and its derivative tetra-O-methyl Nordihydroguaiaretic acid against Brucella abortus 544. J. Microbiol. Biotechnol., 2022, 32(9), 1126-1133. doi: 10.4014/jmb.2207.07026 PMID: 36039381
- Reyes, A.W.B.; Vu, S.H.; Huy, T.X.N.; Min, W.; Lee, H.J.; Chang, H.H.; Lee, J.H.; Kim, S. Adenosine receptor Adora2b antagonism attenuates Brucella abortus 544 infection in professional phagocyte RAW 264.7 cells and BALB/c mice. Vet. Microbiol., 2020, 242, 108586. doi: 10.1016/j.vetmic.2020.108586 PMID: 32122590
- Reyes, A.W.B.; Huy, T.X.N.; Vu, S.H.; Kang, C.K.; Min, W.; Lee, H.J.; Lee, J.H.; Kim, S. Formyl peptide receptor 2 (FPR2) antagonism is a potential target for the prevention of Brucella abortus 544 infection. Immunobiology, 2021, 226(3), 152073. doi: 10.1016/j.imbio.2021.152073 PMID: 33657463
- Wang, L.L.; Chen, X.F.; Hu, P.; Lu, S.Y.; Fu, B.Q.; Li, Y.S.; Zhai, F.F.; Ju, D.D.; Zhang, S.J.; Shui, Y.M.; Chang, J.; Ma, X.L.; Su, B.; Zhou, Y.; Liu, Z.S.; Ren, H.L. Host Prdx6 contributing to the intracellular survival of Brucella suis S2 strain. BMC Vet. Res., 2019, 15(1), 304. doi: 10.1186/s12917-019-2049-8 PMID: 31438945
Supplementary files
