Small Molecule Inhibitors against the Bacterial Pathogen Brucella


Cite item

Full Text

Abstract

Brucellosis remains one of the major zoonotic diseases worldwide. As a causative agent of brucellosis, it has many ways to evade recognition by the immune system, allowing it to replicate and multiply in the host, causing significant harm to both humans and animals. The pathogenic mechanism of Brucella has not been elucidated, making the identification of drug targets from the pathogenic mechanism a challenge. Metalloenzymatic targets and some protein targets unique to Brucella are exploitable in the development of inhibitors against this disease. The development of specific small molecule inhibitors is urgently needed for brucellosis treatment due to the antibiotic resistance of Brucella. This review summarizes the research on small molecule inhibitors of Brucella, which could be instructive for subsequent studies.

About the authors

Yingnan Wu

College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Ye Guo

College of Pharmacy, Baotou Medical College

Email: info@benthamscience.net

Yuheng Ma

College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Hui Yu

School of Basic Medicine, Baotou Medical College

Author for correspondence.
Email: info@benthamscience.net

Zhanli Wang

Inner Mongolia Key Laboratory of Disease-related Biomarkers,, The Second Affiliated Hospital, Baotou Medical College

Author for correspondence.
Email: info@benthamscience.net

References

  1. Boschiroli, M.L.; Foulongne, V.; O’Callaghan, D. Brucellosis: A worldwide zoonosis. Curr. Opin. Microbiol., 2001, 4(1), 58-64. doi: 10.1016/S1369-5274(00)00165-X PMID: 11173035
  2. Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; Hall, A.J.; Keddy, K.H.; Lake, R.J.; Lanata, C.F.; Torgerson, P.R.; Havelaar, A.H.; Angulo, F.J. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med., 2015, 12(12), e1001921. doi: 10.1371/journal.pmed.1001921 PMID: 26633831
  3. Atluri, V.L.; Xavier, M.N.; de Jong, M.F.; den Hartigh, A.B.; Tsolis, R.M. Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol., 2011, 65(1), 523-541. doi: 10.1146/annurev-micro-090110-102905 PMID: 21939378
  4. Yu, D.; Hui, Y.; Zai, X.; Xu, J.; Liang, L.; Wang, B.; Yue, J.; Li, S. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation. Virulence, 2015, 6(8), 745-754. doi: 10.1080/21505594.2015.1038015 PMID: 26039674
  5. Jamil, T.; Melzer, F.; Saqib, M.; Shahzad, A.; Khan Kasi, K.; Hammad Hussain, M.; Rashid, I.; Tahir, U.; Khan, I.; Haleem Tayyab, M.; Ullah, S.; Mohsin, M.; Mansoor, M.K.; Schwarz, S.; Neubauer, H. Serological and molecular detection of bovine brucellosis at institutional livestock farms in Punjab, Pakistan. Int. J. Environ. Res. Public Health, 2020, 17(4), 1412. doi: 10.3390/ijerph17041412 PMID: 32098207
  6. Hassan, H.; Salami, A.; Nehme, N.; Hakeem, R.; El Hage, J.; Awada, R. In prevalence and prevention of brucellosis in cattle in Lebanon. Vet. World, 2020, 13(2), 364-371.
  7. Liu, Z.; Shen, T.; Wei, D.; Yu, Y.; Huang, D.; Guan, P. Analysis of the epidemiological, clinical characteristics, treatment and prognosis of human brucellosis during 2014–2018 in Huludao, China. Infect. Drug Resist., 2020, 13, 435-445. doi: 10.2147/IDR.S236326 PMID: 32104015
  8. Njenga, M.K.; Ogolla, E.; Thumbi, S.M.; Ngere, I.; Omulo, S.; Muturi, M.; Marwanga, D.; Bitek, A.; Bett, B.; Widdowson, M.A.; Munyua, P.; Osoro, E.M. Comparison of knowledge, attitude, and practices of animal and human brucellosis between nomadic pastoralists and non-pastoralists in Kenya. BMC Public Health, 2020, 20(1), 269. doi: 10.1186/s12889-020-8362-0 PMID: 32093689
  9. Khan, A.U.; Melzer, F.; El-Soally, S.A.G.E.; Elschner, M.C.; Mohamed, S.A.; Sayed Ahmed, M.A.; Roesler, U.; Neubauer, H.; El-Adawy, H. Serological and molecular identification of Brucella spp. in pigs from Cairo and Giza Governorates, Egypt. Pathogens, 2019, 8(4), 248. doi: 10.3390/pathogens8040248 PMID: 31756893
  10. Ezama, A.; Gonzalez, J.P.; Majalija, S.; Bajunirwe, F. Assessing short evolution brucellosis in a highly Brucella endemic cattle keeping population of Western Uganda: a complementary use of Rose Bengal test and IgM rapid diagnostic test. BMC Public Health, 2018, 18(1), 315. doi: 10.1186/s12889-018-5228-9 PMID: 29506522
  11. Zhang, X.W.; Ren, P.; Huang, T.L. Treatment of severe refractory thrombocytopenia in brucellosis with eltrombopag: A case report. Pediatr. Infect. Dis. J., 2022, 41(8), e332-e335. doi: 10.1097/INF.0000000000003555 PMID: 35421043
  12. Perkins, S.D.; Smither, S.J.; Atkins, H.S. Towards a Brucella vaccine for humans. FEMS Microbiol. Rev., 2010, 34(3), 379-394. doi: 10.1111/j.1574-6976.2010.00211.x PMID: 20180858
  13. Głowacka, P.; Żakowska, D.; Naylor, K.; Niemcewicz, M.; Bielawska-Drózd, A. Brucella–virulence factors, pathogenesis and treatment. Pol. J. Microbiol., 2018, 67(2), 151-161. doi: 10.21307/pjm-2018-029 PMID: 30015453
  14. Whatmore, A.M.; Perrett, L.L.; MacMillan, A.P. Characterisation of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol., 2007, 7(1), 34. doi: 10.1186/1471-2180-7-34 PMID: 17448232
  15. Corbel, M. Brucellosis: An overview. Emerg. Infect. Dis., 1997, 3(2), 213-221. doi: 10.3201/eid0302.970219 PMID: 9204307
  16. Hisham, Y.; Ashhab, Y. Identification of cross-protective potential antigens against pathogenic Brucella spp. through combining pan-genome analysis with reverse vaccinology. J. Immunol. Res., 2018.
  17. Ewalt, D.R.; Payeur, J.B.; Martin, B.M.; Cummins, D.R.; Miller, W.G. Characteristics of a Brucella species from a bottlenose dolphin (Tursiops truncatus). J. Vet. Diagn. Invest., 1994, 6(4), 448-452. doi: 10.1177/104063879400600408 PMID: 7858024
  18. Ross, H.; Foster, G.; Reid, R.; Jahans, K.; MacMillan, A. Brucella species infection in sea-mammals. Vet. Rec., 1994, 134(14), 359. doi: 10.1136/vr.134.14.359-b PMID: 8017020
  19. Martirosyan, A.; Moreno, E.; Gorvel, J.P. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol. Rev., 2011, 240(1), 211-234. doi: 10.1111/j.1600-065X.2010.00982.x PMID: 21349096
  20. Grilló, M.J.; Blasco, J.M.; Gorvel, J.P.; Moriyón, I.; Moreno, E. What have we learned from brucellosis in the mouse model? Vet. Res., 2012, 43(1), 29. doi: 10.1186/1297-9716-43-29 PMID: 22500859
  21. Martirosyan, A.; Gorvel, J.P. Brucella evasion of adaptive immunity. Future Microbiol., 2013, 8(2), 147-154. doi: 10.2217/fmb.12.140 PMID: 23374122
  22. Jansen, W.; Demars, A.; Nicaise, C.; Godfroid, J.; de Bolle, X.; Reboul, A.; Al Dahouk, S. Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci. Rep., 2020, 10(1), 9421. doi: 10.1038/s41598-020-65760-0 PMID: 32523093
  23. Ma, Z.; Li, R.; Hu, R.; Deng, X.; Xu, Y.; Zheng, W.; Yi, J.; Wang, Y.; Chen, C. Brucella abortus BspJ is a nucleomodulin that inhibits macrophage apoptosis and promotes intracellular survival of Brucella. Front. Microbiol., 2020, 11, 599205. doi: 10.3389/fmicb.2020.599205 PMID: 33281799
  24. Hop, H.T.; Reyes, A.W.B.; Huy, T.X.N.; Arayan, L.T.; Min, W.; Lee, H.J.; Rhee, M.H.; Chang, H.H.; Kim, S. Activation of NF-kB-Mediated TNF-Induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW 264.7 Cells. Front. Cell. Infect. Microbiol., 2017, 7, 437. doi: 10.3389/fcimb.2017.00437 PMID: 29062811
  25. Boschiroli, M.L.; Ouahrani-Bettache, S.; Foulongne, V.; Michaux-Charachon, S.; Bourg, G.; Allardet-Servent, A.; Cazevieille, C.; Liautard, J.P.; Ramuz, M.; O’Callaghan, D. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. USA, 2002, 99(3), 1544-1549. doi: 10.1073/pnas.032514299 PMID: 11830669
  26. Celli, J.; de Chastellier, C.; Franchini, D.M.; Pizarro-Cerda, J.; Moreno, E.; Gorvel, J.P. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med., 2003, 198(4), 545-556. doi: 10.1084/jem.20030088 PMID: 12925673
  27. Starr, T.; Ng, T.W.; Wehrly, T.D.; Knodler, L.A.; Celli, J. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic, 2008, 9(5), 678-694. doi: 10.1111/j.1600-0854.2008.00718.x PMID: 18266913
  28. Roux, C.M.; Rolán, H.G.; Santos, R.L.; Beremand, P.D.; Thomas, T.L.; Adams, L.G.; Tsolis, R.M. Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell. Microbiol., 2007, 9(7), 1851-1869. doi: 10.1111/j.1462-5822.2007.00922.x PMID: 17441987
  29. Ahmed, W.; Zheng, K.; Liu, Z.F. Establishment of chronic infection: Brucella’s stealth strategy. Front. Cell. Infect. Microbiol., 2016, 6, 30. doi: 10.3389/fcimb.2016.00030 PMID: 27014640
  30. Pappas, G.; Akritidis, N.; Tsianos, E. Effective treatments in the management of brucellosis. Expert Opin. Pharmacother., 2005, 6(2), 201-209. doi: 10.1517/14656566.6.2.201 PMID: 15757417
  31. Leite, D.M.C.; Brochet, X.; Resch, G.; Que, Y.A.; Neves, A.; Peña-Reyes, C. Computational prediction of inter-species relationships through omics data analysis and machine learning. BMC Bioinformatics, 2018, 19(S14)(Suppl. 14), 420. doi: 10.1186/s12859-018-2388-7 PMID: 30453987
  32. Spink, W.W. Current status of therapy of brucellosis in human beings. J. Am. Med. Assoc., 1960, 172(7), 697-698. doi: 10.1001/jama.1960.63020070004016 PMID: 13833372
  33. Xie, Q.; Zhang, X.; Cui, W.; Pang, Y. Construction of a nomogram for identifying refractory Mycoplasma pneumoniae pneumonia among macrolide-unresponsive Mycoplasma pneumoniae pneumonia in children. J. Inflamm. Res., 2022, 15, 6495-6504. doi: 10.2147/JIR.S387809 PMID: 36474517
  34. Ocon, P.; Reguera, J.M.; Morata, P.; Juarez, C.; Alonso, A.; Colmenero, J.D. Phagocytic cell function in active brucellosis. Infect. Immun., 1994, 62(3), 910-914. doi: 10.1128/iai.62.3.910-914.1994 PMID: 8112863
  35. Rizzo-Naudi, J.; Griscti-Soler, N.; Ganado, W. Human brucellosis: An evaluation of antibiotics in the treatment of brucellosis. Postgrad. Med. J., 1967, 43(502), 520-526. doi: 10.1136/pgmj.43.502.520 PMID: 6074152
  36. Alizadeh, H.; Salouti, M.; Shapouri, R. Bactericidal effect of silver nanoparticles on intramacrophage Brucella abortus 544. Jundishapur J. Microbiol., 2014, 7(3), e9039. doi: 10.5812/jjm.9039 PMID: 25147682
  37. Khan, A.U.; Shell, W.S.; Melzer, F.; Sayour, A.E.; Ramadan, E.S.; Elschner, M.C.; Moawad, A.A.; Roesler, U.; Neubauer, H.; El-Adawy, H. Identification, genotyping and antimicrobial susceptibility testing of Brucella spp. isolated from livestock in Egypt. Microorganisms, 2019, 7(12), 603. doi: 10.3390/microorganisms7120603 PMID: 31766725
  38. Hashemi, S.H.; Gachkar, L.; Keramat, F.; Mamani, M.; Hajilooi, M.; Janbakhsh, A.; Majzoobi, M.M.; Mahjub, H. Comparison of doxycycline–streptomycin, doxycycline–rifampin, and ofloxacin–rifampin in the treatment of brucellosis: A randomized clinical trial. Int. J. Infect. Dis., 2012, 16(4), e247-e251. doi: 10.1016/j.ijid.2011.12.003 PMID: 22296864
  39. Alavi, S.M.; Alavi, L. Treatment of brucellosis: A systematic review of studies in recent twenty years. Caspian J. Intern. Med., 2013, 4(2), 636-641. PMID: 24009951
  40. Johansen, T.B.; Scheffer, L.; Jensen, V.K.; Bohlin, J.; Feruglio, S.L. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective. Sci. Rep., 2018, 8(1), 8538. doi: 10.1038/s41598-018-26906-3 PMID: 29867163
  41. Majzoobi, M.M.; Hashmi, S.H.; Emami, K.; Soltanian, A.R. Combination of doxycycline, streptomycin and hydroxychloroquine for short-course treatment of brucellosis: A single-blind randomized clinical trial. Infection, 2022, 50(5), 1267-1271. doi: 10.1007/s15010-022-01806-x PMID: 35353333
  42. Peponis, V.; Kyttaris, V.C.; Chalkiadakis, S.E.; Bonovas, S.; Sitaras, N.M. Review: Ocular side effects of anti-rheumatic medications: What a rheumatologist should know. Lupus, 2010, 19(6), 675-682. doi: 10.1177/0961203309360539 PMID: 20144965
  43. Shah, V.A.; Pandya, H.K.; Robinson, M.; Mandal, N. Hydroxychloroquine retinopathy: A review of imaging. Indian J. Ophthalmol., 2015, 63(7), 570-574. doi: 10.4103/0301-4738.167120 PMID: 26458473
  44. del Pozo, J.S.G.; Solera, J. Treatment of human brucellosis-Review of evidence from clinical trials. In: Updates on Brucellosis; Baddour, M.M., Ed.; InTech, 2015. Available from: doi: 10.5772/59890.
  45. Hosseini, S.M.; Farmany, A.; Alikhani, M.Y.; Taheri, M.; Asl, S.S.; Alamian, S.; Arabestani, M.R. Co-Delivery of Doxycycline and hydroxychloroquine using CdTe-Labeled solid lipid nanoparticles for treatment of acute and chronic Brucellosis. Front Chem., 2022, 10, 890252. doi: 10.3389/fchem.2022.890252 PMID: 35646816
  46. Zai, X.; Yin, Y.; Guo, F.; Yang, Q.; Li, R.; Li, Y.; Zhang, J.; Xu, J.; Chen, W. Screening of potential vaccine candidates against pathogenic Brucella spp. using compositive reverse vaccinology. Vet. Res., 2021, 52(1), 75. doi: 10.1186/s13567-021-00939-5 PMID: 34078437
  47. Zhu, L.; Feng, Y.; Zhang, G.; Jiang, H.; Zhang, Z.; Wang, N.; Ding, J.; Suo, X. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections. Vaccine, 2016, 34(3), 395-400. doi: 10.1016/j.vaccine.2015.09.116 PMID: 26626213
  48. Chen, F.; He, Y. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS One, 2009, 4(8), e6830. doi: 10.1371/journal.pone.0006830 PMID: 19714247
  49. Yang, X.; Skyberg, J.A.; Cao, L.; Clapp, B.; Thornburg, T.; Pascual, D.W. Progress in Brucella vaccine development. Front. Biol., 2013, 8(1), 60-77. doi: 10.1007/s11515-012-1196-0 PMID: 23730309
  50. Wang, B. Drug design of zinc-enzyme inhibitors: Functional, structural, and disease applications; John Wiley & Sons, 2009.
  51. Baglini, E.; Ravichandran, R.; Berrino, E.; Salerno, S.; Barresi, E.; Marini, A.M.; Viviano, M.; Castellano, S.; Da Settimo, F.; Supuran, C.T.; Cosconati, S.; Taliani, S. Tetrahydroquinazole-based secondary sulphonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IV, and IX, and computational studies. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1874-1883. doi: 10.1080/14756366.2021.1956913 PMID: 34340614
  52. Winum, J.Y.; Köhler, S.; Supuran, C.T. Brucella carbonic anhydrases: New targets for designing anti-infective agents. Curr. Pharm. Des., 2010, 16(29), 3310-3316. doi: 10.2174/138161210793429850 PMID: 20819063
  53. Joseph, P.; Turtaut, F.; Ouahrani-Bettache, S.; Montero, J.L.; Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Köhler, S.; Winum, J.Y.; Supuran, C.T. Cloning, characterization, and inhibition studies of a beta-carbonic anhydrase from Brucella suis. J. Med. Chem., 2010, 53(5), 2277-2285. doi: 10.1021/jm901855h PMID: 20158185
  54. Lopez, M.; Köhler, S.; Winum, J.Y. Zinc metalloenzymes as new targets against the bacterial pathogen Brucella. J. Inorg. Biochem., 2012, 111, 138-145. doi: 10.1016/j.jinorgbio.2011.10.019 PMID: 22196018
  55. Joseph, P.; Ouahrani-Bettache, S.; Montero, J.L.; Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Winum, J.Y.; Köhler, S.; Supuran, C.T. A new β-carbonic anhydrase from Brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth. Bioorg. Med. Chem., 2011, 19(3), 1172-1178. doi: 10.1016/j.bmc.2010.12.048 PMID: 21251841
  56. Vullo, D.; Nishimori, I.; Scozzafava, A.; Köhler, S.; Winum, J.Y.; Supuran, C.T. Inhibition studies of a β-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorg. Med. Chem. Lett., 2010, 20(7), 2178-2182. doi: 10.1016/j.bmcl.2010.02.042 PMID: 20211561
  57. Riafrecha, L.E.; Vullo, D.; Supuran, C.T.; Colinas, P.A. C -glycosides incorporating the 6-methoxy-2-naphthyl moiety are selective inhibitors of fungal and bacterial carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 857-861. doi: 10.3109/14756366.2014.967233 PMID: 25291009
  58. Ombouma, J.; Vullo, D.; Köhler, S.; Dumy, P.; Supuran, C.T.; Winum, J.Y. N-glycosyl-N-hydroxysulfamides as potent inhibitors of Brucella suis carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 1010-1012. doi: 10.3109/14756366.2014.986119 PMID: 25792504
  59. Köhler, S.; Ouahrani-Bettache, S.; Winum, J.Y. Brucella suis carbonic anhydrases and their inhibitors: Towards alternative antibiotics? J. Enzyme Inhib. Med. Chem., 2017, 32(1), 683-687. doi: 10.1080/14756366.2017.1295451 PMID: 28274160
  60. Maresca, A.; Scozzafava, A.; Köhler, S.; Winum, J.Y.; Supuran, C.T. Inhibition of beta-carbonic anhydrases from the bacterial pathogen Brucella suis with inorganic anions. J. Inorg. Biochem., 2012, 110, 36-39. doi: 10.1016/j.jinorgbio.2012.02.009 PMID: 22459172
  61. Ceruso, M.; Carta, F.; Osman, S.M.; Alothman, Z.; Monti, S.M.; Supuran, C.T. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg. Med. Chem., 2015, 23(15), 4181-4187. doi: 10.1016/j.bmc.2015.06.050 PMID: 26145821
  62. Vullo, D.; Del Prete, S.; Di Fonzo, P.; Carginale, V.; Donald, W.; Supuran, C.; Capasso, C. Comparison of the sulfonamide inhibition profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. Molecules, 2017, 22(3), 421. doi: 10.3390/molecules22030421 PMID: 28272358
  63. Köhler, S.; Foulongne, V.; Ouahrani-Bettache, S.; Bourg, G.; Teyssier, J.; Ramuz, M.; Liautard, J.P. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc. Natl. Acad. Sci., 2002, 99(24), 15711-15716. doi: 10.1073/pnas.232454299 PMID: 12438693
  64. Abdo, M.R.; Joseph, P.; Boigegrain, R.A.; Liautard, J.P.; Montero, J.L.; Köhler, S.; Winum, J.Y. Brucella suis histidinol dehydrogenase: Synthesis and inhibition studies of a series of substituted benzylic ketones derived from histidine. Bioorg. Med. Chem., 2007, 15(13), 4427-4433. doi: 10.1016/j.bmc.2007.04.027 PMID: 17481905
  65. D’ambrosio, K.; Lopez, M.; Dathan, N.A.; Ouahrani-Bettache, S.; Köhler, S.; Ascione, G.; Monti, S.M.; Winum, J.Y.; De Simone, G. Structural basis for the rational design of new anti-Brucella agents: The crystal structure of the C366S mutant of l-histidinol dehydrogenase from Brucella suis. Biochimie, 2014, 97, 114-120. doi: 10.1016/j.biochi.2013.09.028 PMID: 24140957
  66. Monti, S.M.; De Simone, G.; D’Ambrosio, K.S.; De Simone, G.; Ambrosio, K. L-Histidinol dehydrogenase as a new target for old diseases. Curr. Top. Med. Chem., 2016, 16(21), 2369-2378. doi: 10.2174/1568026616666160413140000 PMID: 27072690
  67. Abdo, M.R.; Joseph, P.; Mortier, J.; Turtaut, F.; Montero, J.L.; Masereel, B.; Köhler, S.; Winum, J.Y. Anti-virulence strategy against Brucella suis: Synthesis, biological evaluation and molecular modeling of selective histidinol dehydrogenase inhibitors. Org. Biomol. Chem., 2011, 9(10), 3681-3690. doi: 10.1039/c1ob05149k PMID: 21461427
  68. Turtaut, F.; Lopez, M.; Ouahrani-Bettache, S.; Köhler, S.; Winum, J.Y. Oxo- and thiooxo-imidazo1,5-cpyrimidine molecule library: Beyond their interest in inhibition of Brucella suis histidinol dehydrogenase, a powerful protection tool in the synthesis of histidine analogues. Bioorg. Med. Chem. Lett., 2014, 24(21), 5008-5010. doi: 10.1016/j.bmcl.2014.09.020 PMID: 25278235
  69. Turtaut, F.; Ouahrani-Bettache, S.; Montero, J.L.; Köhler, S.; Winum, J.Y. Synthesis and biological evaluation of a new class of anti-Brucella compounds targeting histidinol dehydrogenase: α-O-arylketones and α-S-arylketones derived from histidine. MedChemComm, 2011, 2(10), 995-1000. doi: 10.1039/c1md00146a
  70. Abdo, M.R.; Joseph, P.; Boigegrain, R.A.; Montero, J.L.; Köhler, S.; Winum, J.Y. Brucella suis histidinol dehydrogenase: Synthesis and inhibition studies of substituted N-L-histidinylphenylsulfonyl hydrazide. J. Enzyme Inhib. Med. Chem., 2008, 23(3), 357-361. doi: 10.1080/14756360701617107 PMID: 18569340
  71. Green, E.R.; Mecsas, J. Bacterial secretion systems: An overview. Microbiol. Spectr., 2016, 4(1), 4.1.13.. doi: 10.1128/microbiolspec.VMBF-0012-2015 PMID: 26999395
  72. Baron, C. VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem. Cell Biol., 2006, 84(6), 890-899. doi: 10.1139/o06-148 PMID: 17215876
  73. O’Callaghan, D.; Cazevieille, C.; Allardet-Servent, A.; Boschiroli, M.L.; Bourg, G.; Foulongne, V.; Frutos, P.; Kulakov, Y.; Ramuz, M. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol., 1999, 33(6), 1210-1220. doi: 10.1046/j.1365-2958.1999.01569.x PMID: 10510235
  74. Sieira, R.; Comerci, D.J.; Sánchez, D.O.; Ugalde, R.A. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J. Bacteriol., 2000, 182(17), 4849-4855. doi: 10.1128/JB.182.17.4849-4855.2000 PMID: 10940027
  75. Ke, Y.; Wang, Y.; Li, W.; Chen, Z. Type IV secretion system of Brucella spp. and its effectors. Front. Cell. Infect. Microbiol., 2015, 5, 72. doi: 10.3389/fcimb.2015.00072 PMID: 26528442
  76. Xiong, X.; Li, B.; Zhou, Z.; Gu, G.; Li, M.; Liu, J.; Jiao, H. The VirB system plays a crucial role in Brucella intracellular infection. Int. J. Mol. Sci., 2021, 22(24), 13637. doi: 10.3390/ijms222413637 PMID: 34948430
  77. Fronzes, R.; Schäfer, E.; Wang, L.; Saibil, H.R.; Orlova, E.V.; Waksman, G. Structure of a type IV secretion system core complex. Science, 2009, 323(5911), 266-268. doi: 10.1126/science.1166101 PMID: 19131631
  78. Sun, Y.H.; Rolán, H.G.; den Hartigh, A.B.; Sondervan, D.; Tsolis, R.M. Brucella abortus virB12 is expressed during infection but is not an essential component of the type IV secretion system. Infect. Immun., 2005, 73(9), 6048-6054. doi: 10.1128/IAI.73.9.6048-6054.2005 PMID: 16113325
  79. Atmakuri, K.; Cascales, E.; Christie, P.J. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol. Microbiol., 2004, 54(5), 1199-1211. doi: 10.1111/j.1365-2958.2004.04345.x PMID: 15554962
  80. Paschos, A.; Patey, G.; Sivanesan, D.; Gao, C.; Bayliss, R.; Waksman, G.; O’Callaghan, D.; Baron, C. Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc. Natl. Acad. Sci. USA, 2006, 103(19), 7252-7257. doi: 10.1073/pnas.0600862103 PMID: 16648257
  81. Terradot, L.; Bayliss, R.; Oomen, C.; Leonard, G.A.; Baron, C.; Waksman, G. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc. Natl. Acad. Sci. USA, 2005, 102(12), 4596-4601. doi: 10.1073/pnas.0408927102 PMID: 15764702
  82. Paschos, A.; den Hartigh, A.; Smith, M.A.; Atluri, V.L.; Sivanesan, D.; Tsolis, R.M.; Baron, C. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect. Immun., 2011, 79(3), 1033-1043. doi: 10.1128/IAI.00993-10 PMID: 21173315
  83. Smith, M.A.; Coinçon, M.; Paschos, A.; Jolicoeur, B.; Lavallée, P.; Sygusch, J.; Baron, C. Identification of the binding site of Brucella VirB8 interaction inhibitors. Chem. Biol., 2012, 19(8), 1041-1048. doi: 10.1016/j.chembiol.2012.07.007 PMID: 22921071
  84. Sharifahmadian, M.; Arya, T.; Bessette, B.; Lecoq, L.; Ruediger, E.; Omichinski, J.G.; Baron, C. Monomer‐to‐dimer transition of Brucella suis type IV secretion system component VirB8 induces conformational changes. FEBS J., 2017, 284(8), 1218-1232. doi: 10.1111/febs.14049 PMID: 28236662
  85. Woese, C.R.; Olsen, G.J.; Ibba, M.; Söll, D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev., 2000, 64(1), 202-236. doi: 10.1128/MMBR.64.1.202-236.2000 PMID: 10704480
  86. Deniziak, M.A.; Barciszewski, J. Methionyl-tRNA synthetase. Acta Biochim. Pol., 2001, 48(2), 337-350. doi: 10.18388/abp.2001_3919 PMID: 11732605
  87. Ojo, K.K.; Ranade, R.M.; Zhang, Z.; Dranow, D.M.; Myers, J.B.; Choi, R.; Nakazawa Hewitt, S.; Edwards, T.E.; Davies, D.R.; Lorimer, D.; Boyle, S.M.; Barrett, L.K.; Buckner, F.S.; Fan, E.; Van Voorhis, W.C. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a potential drug target for Brucellosis. PLoS One, 2016, 11(8), e0160350. doi: 10.1371/journal.pone.0160350 PMID: 27500735
  88. Shibata, S.; Gillespie, J.R.; Kelley, A.M.; Napuli, A.J.; Zhang, Z.; Kovzun, K.V.; Pefley, R.M.; Lam, J.; Zucker, F.H.; Van Voorhis, W.C.; Merritt, E.A.; Hol, W.G.J.; Verlinde, C.L.M.J.; Fan, E.; Buckner, F.S. Selective inhibitors of methionyl-tRNA synthetase have potent activity against Trypanosoma brucei infection in mice. Antimicrob. Agents Chemother., 2011, 55(5), 1982-1989. doi: 10.1128/AAC.01796-10 PMID: 21282428
  89. Shibata, S.; Gillespie, J.R.; Ranade, R.M.; Koh, C.Y.; Kim, J.E.; Laydbak, J.U.; Zucker, F.H.; Hol, W.G.J.; Verlinde, C.L.M.J.; Buckner, F.S.; Fan, E. Urea-based inhibitors of Trypanosoma brucei methionyl-tRNA synthetase: Selectivity and in vivo characterization. J. Med. Chem., 2012, 55(14), 6342-6351. doi: 10.1021/jm300303e PMID: 22720744
  90. Regan, J.; Capolino, A.; Cirillo, P.F.; Gilmore, T.; Graham, A.G.; Hickey, E.; Kroe, R.R.; Madwed, J.; Moriak, M.; Nelson, R.; Pargellis, C.A.; Swinamer, A.; Torcellini, C.; Tsang, M.; Moss, N. Structure−activity relationships of the p38α MAP kinase inhibitor 1-(5-tert-Butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-4-(2-morpholin-4-yl-ethoxy)naph-thalen-1-ylurea (BIRB 796). J. Med. Chem., 2003, 46(22), 4676-4686. doi: 10.1021/jm030121k PMID: 14561087
  91. Rowaiye, A.B.; Ogugua, A.J.; Ibeanu, G.; Bur, D.; Asala, M.T.; Ogbeide, O.B.; Abraham, E.O.; Usman, H.B. Identifying potential natural inhibitors of Brucella melitensis Methionyl-tRNA synthetase through an in-silico approach. PLoS Negl. Trop. Dis., 2022, 16(3), e0009799. doi: 10.1371/journal.pntd.0009799 PMID: 35312681
  92. Kumari, M.; chandra, S.; Tiwari, N.; Subbarao, N. High throughput virtual screening to identify novel natural product inhibitors for MethionyltRNA-Synthetase of Brucella melitensis. Bioinformation, 2017, 13(1), 8-16. doi: 10.6026/97320630013008 PMID: 28479744
  93. Li, M.; Wen, F.; Zhao, S.; Wang, P.; Li, S.; Zhang, Y.; Zheng, N.; Wang, J. Exploring the molecular basis for binding of inhibitors by Threonyl-tRNA synthetase from Brucella abortus: A virtual screening study. Int. J. Mol. Sci., 2016, 17(7), 1078. doi: 10.3390/ijms17071078 PMID: 27447614
  94. Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr., 2003, 77(6), 1352-1360. doi: 10.1093/ajcn/77.6.1352 PMID: 12791609
  95. Walsh, C.T.; Wencewicz, T.A. Flavoenzymes: Versatile catalysts in biosynthetic pathways. Nat. Prod. Rep., 2013, 30(1), 175-200. doi: 10.1039/C2NP20069D PMID: 23051833
  96. Leys, D.; Scrutton, N.S. Sweating the assets of flavin cofactors: New insight of chemical versatility from knowledge of structure and mechanism. Curr. Opin. Struct. Biol., 2016, 41, 19-26. doi: 10.1016/j.sbi.2016.05.014 PMID: 27266331
  97. Long, Q.; Ji, L.; Wang, H.; Xie, J. Riboflavin biosynthetic and regulatory factors as potential novel anti-infective drug targets. Chem. Biol. Drug Des., 2010, 75(4), 339-347. doi: 10.1111/j.1747-0285.2010.00946.x PMID: 20148904
  98. Moreno, A.; Taleb, V.; Sebastián, M.; Anoz-Carbonell, E.; Martínez-Júlvez, M.; Medina, M. Cofactors and pathogens: Flavin mononucleotide and flavin adenine dinucleotide (FAD) biosynthesis by the FAD synthase from Brucella ovis. IUBMB Life, 2022, 74(7), 655-671. doi: 10.1002/iub.2576 PMID: 34813144
  99. Cushman, M.; Jin, G.; Illarionov, B.; Fischer, M.; Ladenstein, R.; Bacher, A.; Bacher, A. Design, synthesis, and biochemical evaluation of 1,5,6,7-tetrahydro-6,7-dioxo-9-D-ribitylaminolumazines bearing alkyl phosphate substituents as inhibitors of lumazine synthase and riboflavin synthase. J. Org. Chem., 2005, 70(20), 8162-8170. doi: 10.1021/jo051332v PMID: 16277343
  100. Zhang, Y.; Illarionov, B.; Morgunova, E.; Jin, G.; Bacher, A.; Fischer, M.; Ladenstein, R.; Cushman, M. A new series of N-2,4-dioxo-6-d-ribitylamino-1,2,3,4-tetrahydropyrimi-din-5-yloxalamic acid derivatives as inhibitors of lumazine synthase and riboflavin synthase: design, synthesis, biochemical evaluation, crystallography, and mechanistic implications. J. Org. Chem., 2008, 73(7), 2715-2724. doi: 10.1021/jo702631a PMID: 18331058
  101. Serer, M.I.; Bonomi, H.R.; Guimarães, B.G.; Rossi, R.C.; Goldbaum, F.A.; Klinke, S. Crystallographic and kinetic study of riboflavin synthase from Brucella abortus, a chemotherapeutic target with an enhanced intrinsic flexibility. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(5), 1419-1434. doi: 10.1107/S1399004714005161 PMID: 24816110
  102. Serer, M.I.; Carrica, M.C.; Trappe, J.; López Romero, S.; Bonomi, H.R.; Klinke, S.; Cerutti, M.L.; Goldbaum, F.A. A high‐throughput screening for inhibitors of riboflavin synthase identifies novel antimicrobial compounds to treat brucellosis. FEBS J., 2019, 286(13), 2522-2535. doi: 10.1111/febs.14829 PMID: 30927485
  103. Kumar, R.; Bhakuni, V. A functionally active dimer of Mycobacterium tuberculosis malate synthase G. Eur. Biophys. J., 2010, 39(11), 1557-1562. doi: 10.1007/s00249-010-0598-7 PMID: 20306314
  104. Adi, P.J.; Yellapu, N.K.; Matcha, B. Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in Brucella melitensis 16M. Biochem. Biophys. Rep., 2016, 8, 192-199. doi: 10.1016/j.bbrep.2016.08.020 PMID: 28955956
  105. Muhammad, I.; Niaz, S.; Hussain, A.; Ahmad, S.; Rahman, N.; Khan, H.; Ali, A. Nayab, Gul E. Molecular docking and in vitro analysis of Fagonia cretica and Berberis lyceum extracts against Brucella melitensis. Curr. Computeraided Drug Des., 2021, 17(7), 946-956. doi: 10.2174/1573409916666200612145712 PMID: 32532195
  106. Kamal, I.M.; Chakrabarti, S. MetaDOCK: A combinatorial molecular docking approach. ACS Omega, 2023, 8(6), 5850-5860. doi: 10.1021/acsomega.2c07619 PMID: 36816658
  107. Pradeepkiran, J.A.; konidala, K.; Yellapu, N.; Bhaskar, M. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M. Drug Des. Devel. Ther., 2015, 9, 1897-1912. doi: 10.2147/DDDT.S77020 PMID: 25848225
  108. Kushwaha, S.K.; Shakya, M. Protein interaction network analysis—Approach for potential drug target identification in Mycobacterium tuberculosis. J. Theor. Biol., 2010, 262(2), 284-294. doi: 10.1016/j.jtbi.2009.09.029 PMID: 19833135
  109. Gupta, M.; Prasad, Y.; Sharma, S.K.; Jain, C.K. Identification of Phosphoribosyl-AMP cyclohydrolase, as drug target and its inhibitors in Brucella melitensis bv. 1 16M using metabolic pathway analysis. J. Biomol. Struct. Dyn., 2017, 35(2), 287-299. doi: 10.1080/07391102.2015.1137229 PMID: 26725317
  110. Mancini, D.T.; Matos, K.S.; da Cunha, E.F.F.; Assis, T.M.; Guimarães, A.P.; França, T.C.C.; Ramalho, T.C. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis. J. Biomol. Struct. Dyn., 2012, 30(1), 125-136. doi: 10.1080/07391102.2012.674293 PMID: 22571438
  111. Bie, P.; Yang, X.; Zhang, C.; Wu, Q. Identification of small-molecule inhibitors of Brucella diaminopimelate decarboxylase by using a high-throughput screening assay. Front. Microbiol., 2020, 10, 2936. doi: 10.3389/fmicb.2019.02936 PMID: 32038511
  112. Scarff, J.M.; Waidyarachchi, S.L.; Meyer, C.J.; Lane, D.J.; Chai, W.; Lemmon, M.M.; Liu, J.; Butler, M.M.; Bowlin, T.L.; Lee, R.E.; Panchal, R.G. Aminomethyl spectinomycins: A novel antibacterial chemotype for biothreat pathogens. J. Antibiot., 2019, 72(9), 693-701. doi: 10.1038/s41429-019-0194-8 PMID: 31164713
  113. Reuter, S.; Gupta, S.C.; Phromnoi, K.; Aggarwal, B.B. Thiocolchicoside suppresses osteoclastogenesis induced by RANKL and cancer cells through inhibition of inflammatory pathways: A new use for an old drug. Br. J. Pharmacol., 2012, 165(7), 2127-2139. doi: 10.1111/j.1476-5381.2011.01702.x PMID: 21955206
  114. Gross, A.; Terraza, A.; Marchant, J.; Bouaboula, M.; Ouahrani-Bettache, S.; Liautard, J.P.; Casellas, P.; Dornand, J. A beneficial aspect of a CB1 cannabinoid receptor antagonist: SR141716A is a potent inhibitor of macrophage infection by the intracellular pathogen Brucella suis. J. Leukoc. Biol., 2000, 67(3), 335-344. doi: 10.1002/jlb.67.3.335 PMID: 10733093
  115. Boigegrain, R.A.; Liautard, J.P.; Köhler, S. Targeting of the virulence factor acetohydroxyacid synthase by sulfonylureas results in inhibition of intramacrophagic multiplication of Brucella suis. Antimicrob. Agents Chemother., 2005, 49(9), 3922-3925. doi: 10.1128/AAC.49.9.3922-3925.2005 PMID: 16127072
  116. Kutlu, M.; Ergin, Ç.; Sen-Türk, N.; Sayin-Kutlu, S.; Zorbozan, O.; Akalın, S.; Şahin, B.; Çobankara, V.; Demirkan, N. Acute Brucella melitensis m16 infection model in mice treated with tumor necrosis factor-alpha inhibitors. J. Infect. Dev. Ctries., 2015, 9(2), 141-148. doi: 10.3855/jidc.5155 PMID: 25699488
  117. Gagnaire, A.; Gorvel, L.; Papadopoulos, A.; Von Bargen, K.; Mège, J.L.; Gorvel, J.P. COX-2 inhibition reduces Brucella bacterial burden in draining lymph nodes. Front. Microbiol., 2016, 7, 1987. doi: 10.3389/fmicb.2016.01987 PMID: 28018318
  118. Czyż, D.M.; Jain-Gupta, N.; Shuman, H.A.; Crosson, S. A dual-targeting approach to inhibit Brucella abortus replication in human cells. Sci. Rep., 2016, 6(1), 35835. doi: 10.1038/srep35835 PMID: 27767061
  119. Reyes, A.W.B.; Hop, H.T.; Arayan, L.T.; Huy, T.X.N.; Min, W.; Lee, H.J.; Chang, H.H.; Kim, S. Nocodazole treatment interrupted Brucella abortus invasion in RAW 264.7 cells, and successfully attenuated splenic proliferation with enhanced inflammatory response in mice. Microb. Pathog., 2017, 103, 87-93. doi: 10.1016/j.micpath.2016.11.028 PMID: 28017899
  120. Wang, Y.; Li, Y.; Li, H.; Song, H.; Zhai, N.; Lou, L.; Wang, F.; Zhang, K.; Bao, W.; Jin, X.; Su, L.; Tu, Z. Brucella dysregulates monocytes and inhibits macrophage polarization through LC3-Dependent autophagy. Front. Immunol., 2017, 8, 691. doi: 10.3389/fimmu.2017.00691 PMID: 28659924
  121. Reyes, A.W.B.; Arayan, L.T.; Huy, T.X.N.; Vu, S.H.; Kang, C.K.; Min, W.; Lee, H.J.; Lee, J.H.; Kim, S. Chemokine receptor 4 (CXCR4) blockade enhances resistance to bacterial internalization in RAW264.7 cells and AMD3100, a CXCR4 antagonist, attenuates susceptibility to Brucella abortus 544 infection in a murine model. Vet. Microbiol., 2019, 237, 108402. doi: 10.1016/j.vetmic.2019.108402 PMID: 31585647
  122. Nguyen, T.T.; Kim, H.; Huy, T.X.N.; Min, W.; Lee, H.; Reyes, A.W.B.; Lee, J.; Kim, S. Simvastatin inhibits Brucella abortus invasion into RAW 264.7 cells through suppression of the mevalonate pathway and promotes host immunity during infection in a mouse model. Int. J. Mol. Sci., 2022, 23(15), 8337. doi: 10.3390/ijms23158337 PMID: 35955474
  123. Reyes, A.W.B.; Kim, H.; Huy, T.X.N.; Nguyen, T.T.; Min, W.; Lee, D.; Hur, J.; Lee, J.H.; Kim, S. The in vitro and in vivo effect of lipoxygenase pathway inhibitors nordihydroguaiaretic acid and its derivative tetra-O-methyl Nordihydroguaiaretic acid against Brucella abortus 544. J. Microbiol. Biotechnol., 2022, 32(9), 1126-1133. doi: 10.4014/jmb.2207.07026 PMID: 36039381
  124. Reyes, A.W.B.; Vu, S.H.; Huy, T.X.N.; Min, W.; Lee, H.J.; Chang, H.H.; Lee, J.H.; Kim, S. Adenosine receptor Adora2b antagonism attenuates Brucella abortus 544 infection in professional phagocyte RAW 264.7 cells and BALB/c mice. Vet. Microbiol., 2020, 242, 108586. doi: 10.1016/j.vetmic.2020.108586 PMID: 32122590
  125. Reyes, A.W.B.; Huy, T.X.N.; Vu, S.H.; Kang, C.K.; Min, W.; Lee, H.J.; Lee, J.H.; Kim, S. Formyl peptide receptor 2 (FPR2) antagonism is a potential target for the prevention of Brucella abortus 544 infection. Immunobiology, 2021, 226(3), 152073. doi: 10.1016/j.imbio.2021.152073 PMID: 33657463
  126. Wang, L.L.; Chen, X.F.; Hu, P.; Lu, S.Y.; Fu, B.Q.; Li, Y.S.; Zhai, F.F.; Ju, D.D.; Zhang, S.J.; Shui, Y.M.; Chang, J.; Ma, X.L.; Su, B.; Zhou, Y.; Liu, Z.S.; Ren, H.L. Host Prdx6 contributing to the intracellular survival of Brucella suis S2 strain. BMC Vet. Res., 2019, 15(1), 304. doi: 10.1186/s12917-019-2049-8 PMID: 31438945

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers