Current Understanding of Androgen Signaling in Prostatitis and its Treatment: A Review


Cite item

Full Text

Abstract

Chronic prostatitis is a highly prevalent condition that significantly impacts the quality of life and fertility of men. Because of its heterogeneous nature, there is no definitive treatment, which requires ongoing research into its etiology. Additionally, the association between prostatitis and an elevated risk of prostate cancer highlights the importance of comprehending androgen involvement in prostatitis. This paper examines the current understanding of androgen signaling in prostatitis and explores contemporary therapeutic approaches. It was reviewed Medline articles comprehensively, using keywords such as nonbacterial prostatitis, prostatitis infertility, androgen role in prostatitis, and chronic pelvic pain. Several cellular targets are linked to androgen signaling. Notably, the major tyrosine phosphatase activity (cPAcP) in normal human prostate is influenced by androgen signaling, and its serum levels inversely correlate with prostate cancer progression. Androgens also regulate membrane-associated zinc and pyruvate transporters transduction in prostate cells, suggesting promising avenues for novel drug development aimed at inhibiting these molecules to reduce cancer tumor growth. Various therapies for prostatitis have been evaluated, including antibiotics, anti-inflammatory medications (including bioflavonoids), neuromodulators, alpha-blockers, 5α-reductase inhibitors, and androgen receptor antagonists. These therapies have demonstrated varying degrees of success in ameliorating symptoms.In conclusion, aging decreases circulating T and intraprostatic DHT, altering the proper functioning of the prostate, reducing the ability of androgens to maintain normal Zn2+ levels, and diminishing the secretion of citrate, PAcP, and other proteins into the prostatic fluid. The Zn2+-transporter decreases or is absent in prostate cancer, so the pyruvate transporter activates. Consequently, the cell ATP increases, inducing tumor growth.

About the authors

Marisa Cabeza

Departamento de Sistemas Biológicos,, Universidad Autónoma Metropolitana-Xochimilco

Author for correspondence.
Email: info@benthamscience.net

References

  1. Huggins, C.; Hodges, C.V. Studies on prostatic cancer. Cancer Res., 1941, 1(4), 293-297.
  2. Han, M.; Piantadosi, S.; Zahurak, M.L.; Sokoll, L.J.; Chan, D.W.; Epstein, J.I.; Walsh, P.C.; Partin, A.W. Serum acid phosphatase level and biochemical recurrence following radical prostatectomy for men with clinically localized prostate cancer. Urology, 2001, 57(4), 707-711. doi: 10.1016/S0090-4295(00)01073-6 PMID: 11306387
  3. Veeramani, S.; Yuan, T.C.; Chen, S.J.; Lin, F.F.; Petersen, J.E.; Shaheduzzaman, S.; Srivastava, S.; MacDonald, R.G.; Lin, M.F. Cellular prostatic acid phosphatase: A protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr. Relat. Cancer, 2005, 12(4), 805-822. doi: 10.1677/erc.1.00950 PMID: 16322323
  4. Garcia-Arenas, R.; Lin, F-F.; Lin, D.; Jin, L-P.; Shih, C.C.; Chang, C.; Lin, M.F. The expression of prostatic acid phosphatase is transcriptionally regulated in human prostate carcinoma cells. Mol. Cell. Endocrinol., 1995, 111(1), 29-37. doi: 10.1016/0303-7207(95)03544-H PMID: 7649350
  5. Tanaka, M.; Kishi, Y.; Takanezawa, Y.; Kakehi, Y.; Aoki, J.; Arai, H. Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett., 2004, 571(1-3), 197-204. doi: 10.1016/j.febslet.2004.06.083
  6. Sakai, H.; Yogi, Y.; Minami, Y.; Yushita, Y.; Kanetake, H.; Saito, Y. Prostate specific antigen and prostatic acid phosphatase immunoreactivity as prognostic indicators of advanced prostatic carcinoma. J. Urol., 1993, 149(5 Part 1), 1020-1023. doi: 10.1016/S0022-5347(17)36285-7 PMID: 7683340
  7. Castillejos-Molina, R.A.; Gabilondo-Navarro, F.B. Prostate cancer. Salud Publica Mex., 2016, 58(2), 279-284. doi: 10.21149/spm.v58i2.7797 PMID: 27557386
  8. Ahmann, F.R.; Schifman, R.B. Prospective comparison between serum monoclonal prostate specific antigen and acid phosphatase measurements in metastatic prostatic cancer. J. Urol., 1987, 137(3), 431-434. doi: 10.1016/S0022-5347(17)44057-2 PMID: 2434667
  9. Vu, P.L.; Vadakekolathu, J.; Idri, S.; Nicholls, H.; Cavaignac, M.; Reeder, S.; Khan, M.A.; Christensen, D.; Pockley, A.G.; McArdle, S.E. A Mutated Prostatic Acid Phosphatase (PAP) peptide-based vaccine induces pap-specific CD8+ t cells with ex vivo cytotoxic capacities in HHDII/DR1 Transgenic Mice. Cancers, 2022, 14(8) doi: 10.3390/cancers14081970 PMID: 35454873
  10. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386. doi: 10.1002/ijc.29210 PMID: 25220842
  11. Kavanagh, J.P. Sodium, potassium, calcium, magnesium, zinc, citrate and chloride content of human prostatic and seminal fluid. Reproduction, 1985, 75(1), 35-41. doi: 10.1530/jrf.0.0750035 PMID: 4032375
  12. Gilany, K.; Minai-Tehrani, A.; Savadi-Shiraz, E.; Rezadoost, H.; Lakpour, N. Exploring the human seminal plasma proteome: An unexplored gold mine of biomarker for male infertility and male reproduction disorder. J. Reprod. Infertil., 2015, 16(2), 61-71. PMID: 25927022
  13. Huggins, C.; Neal, W. Coagulation and liquefaction of semen. J. Exp. Med., 1942, 76(6), 527-541. doi: 10.1084/jem.76.6.527 PMID: 19871256
  14. Kavanagh, J.P.; Darby, C. Creatine kinase and ATPase in human seminal fluid and prostatic fluid. Reproduction, 1983, 68(1), 51-56. doi: 10.1530/jrf.0.0680051 PMID: 6221096
  15. Lin, M.F.; Lee, M.S.; Zhou, X.W.; Andressen, J.C.; Meng, T.C.; Johansson, S.L.; West, W.W.; Taylor, R.J.; Anderson, J.R.; Lin, F.F. Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J. Urol., 2001, 166(5), 1943-1950. doi: 10.1016/S0022-5347(05)65725-4 PMID: 11586265
  16. Stenman, U.H.; Leinonen, J.; Zhang, W.M.; Finne, P. Prostate-specific antigen. Semin. Cancer Biol., 1999, 9(2), 83-93. doi: 10.1006/scbi.1998.0086 PMID: 10202130
  17. Andersson, S.; Bishop, R.W.; Russell, D.W. Expression cloning and regulation of steroid 5 α-reductase, an enzyme essential for male sexual differentiation. J. Biol. Chem., 1989, 264(27), 16249-16255. doi: 10.1016/S0021-9258(18)71614-1 PMID: 2476440
  18. Franklin, R. B.; Zou, J.; Yu, Z.; Costello, L. C. EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone. BMC Biochem., 2008, 7, 1-8. doi: 10.1186/1471-2091-7-10
  19. Takayama, K.; Horie-Inoue, K.; Ikeda, K.; Urano, T.; Murakami, K.; Hayashizaki, Y.; Ouchi, Y.; Inoue, S. FOXP1 is an androgen-responsive transcription factor that negatively regulates androgen receptor signaling in prostate cancer cells. Biochem. Biophys. Res. Commun., 2008, 374(2), 388-393. doi: 10.1016/j.bbrc.2008.07.056
  20. Takayama, K.; Tsutsumi, S.; Katayama, S.; Okayama, T.; Horie-Inoue, K.; Ikeda, K.; Urano, T.; Kawazu, C.; Hasegawa, A.; Ikeo, K.; Gojyobori, T.; Ouchi, Y.; Hayashizaki, Y.; Aburatani, H.; Inoue, S. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene, 2011, 30(5), 619-630. doi: 10.1038/onc.2010.436 PMID: 20890304
  21. Gnanapragasam, V.J.; Robson, C.N.; Neal, D.E.; Leung, H.Y. Regulation of FGF8 expression by the androgen receptor in human prostate cancer. Oncogene, 2002, 21(33), 5069-5080. doi: 10.1038/sj.onc.1205663 PMID: 12140757
  22. van Heijster, F.H.A.; Breukels, V.; Jansen, K.C.F.J.; Schalken, J.A.; Heerschap, A. Carbon sources and pathways for citrate secreted by human prostate cancer cells determined by NMR tracing and metabolic modeling. Proc. Natl. Acad. Sci., 2022, 119(14), e2024357119. doi: 10.1073/pnas.2024357119 PMID: 35353621
  23. Costello, L.C.; Liu, Y.; Zou, J.; Franklin, R.B. Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J. Biol. Chem., 1999, 274(25), 17499-17504. doi: 10.1074/jbc.274.25.17499 PMID: 10364181
  24. Li, C.; He, C.; Xu, Y.; Xu, H.; Tang, Y.; Chavan, H.; Duan, S.; Artigues, A.; Forrest, M.L.; Krishnamurthy, P.; Han, S.; Holzbeierlein, J.M.; Li, B. Alternol eliminates excessive ATP production by disturbing Krebs cycle in prostate cancer. Prostate, 2019, 79(6), 628-639. doi: 10.1002/pros.23767 PMID: 30663084
  25. Costello, L.C.; Franklin, R.B.; Liu, Y.; Kennedy, M.C. Zinc causes a shift toward citrate at equilibrium of the m-aconitase reaction of prostate mitochondria. J. Inorg. Biochem., 2000, 78(2), 161-165. doi: 10.1016/S0162-0134(99)00225-1 PMID: 10766339
  26. Verze, P.; Cai, T.; Lorenzetti, S. The role of the prostate in male fertility, health and disease. Nat. Rev. Urol., 2016, 13(7), 379-386. doi: 10.1038/nrurol.2016.89 PMID: 27245504
  27. Hasumi, M.; Suzuki, K.; Matsui, H.; Koike, H.; Ito, K.; Yamanaka, H. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett., 2003, 200(2), 187-195. doi: 10.1016/S0304-3835(03)00441-5 PMID: 14568174
  28. Sukhorukov, V.M.; Bereiter-Hahn, J. Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane. PLoS One, 2009, 4(2), e4604. doi: 10.1371/journal.pone.0004604 PMID: 19242541
  29. Bader, D.A.; Hartig, S.M.; Putluri, V.; Foley, C.; Hamilton, M.P.; Smith, E.A.; Saha, P.K.; Panigrahi, A.; Walker, C.; Zong, L.; Martini-Stoica, H.; Chen, R.; Rajapakshe, K.; Coarfa, C.; Sreekumar, A.; Mitsiades, N.; Bankson, J.A.; Ittmann, M.M.; O’Malley, B.W.; Putluri, N.; McGuire, S.E. Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nat. Metab., 2018, 1(1), 70-85. doi: 10.1038/s42255-018-0002-y PMID: 31198906
  30. Li, L.; Wen, M.; Run, C.; Wu, B.; OuYang, B. Experimental investigations on the structure of yeast mitochondrial pyruvate carriers. Membranes, 2022, 12(10), 916. doi: 10.3390/membranes12100916 PMID: 36295675
  31. Quesñay, J.E.N.; Pollock, N.L.; Nagampalli, R.S.K.; Lee, S.C.; Balakrishnan, V.; Dias, S.M.G.; Moraes, I.; Dafforn, T.R.; Ambrosio, A.L.B. Insights on the quest for the structure-function relationship of the mitochondrial pyruvate carrier. Biology, 2020, 9(11), 407. doi: 10.3390/biology9110407 PMID: 33227948
  32. Caldamone, A.A.; Freytag, M.K.; Cockett, A.T.K.; Cockett, T.K. Seminal zinc and male infertility. Urology, 1979, 13(3), 280-281. doi: 10.1016/0090-4295(79)90421-7 PMID: 442346
  33. Bedwal, R.S.; Bahuguna, A. Zinc, copper and selenium in reproduction. Experientia, 1994, 50(7), 626-640. doi: 10.1007/BF01952862 PMID: 8033970
  34. Björndahl, L.; Kvist, U. A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability. Syst. Biol. Reprod. Med., 2011, 57(1-2), 86-92. doi: 10.3109/19396368.2010.516306 PMID: 21204594
  35. Barratt, C.L.; De Jonge, C.J. Clinical relevance of sperm DNA assessment: An update. Fertility and Sterility, 2010, 94(6), 1958-1953. doi: 10.1016/j.fertnstert.2010.07.1050
  36. Fair, W.R.; Couch, J.; Wehner, N. Prostatic antibacterial factor identity and significance. Urology, 1976, 7(2), 169-177. doi: 10.1016/0090-4295(76)90305-8 PMID: 1023218
  37. Reeves, P.G.; O’Dell, B.L. Zinc deficiency in rats and angiotensin-converting enzyme activity: Comparative effects on lung and testis. J. Nutr., 1988, 118(5), 622-626. doi: 10.1093/jn/118.5.622 PMID: 2835463
  38. Kavanagh, J. P. Isocitric and citric acid in human prostatic and seminal fluid: Implications for prostatic metabolism and secretion. Prostate, 1994, 24(3), 139-142. doi: 10.1002/pros.2990240307
  39. Singh, K.K.; Desouki, M.M.; Franklin, R.B.; Costello, L.C. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol. Cancer, 2006, 5(1), 14. doi: 10.1186/1476-4598-5-14 PMID: 16595004
  40. Roberts, R.O.; Lieber, M.M.; Bostwick, D.G.; Jacobsen, S.J. A review of clinical and pathological prostatitis syndromes. Urology, 1997, 49(6), 809-821. doi: 10.1016/S0090-4295(97)00235-5 PMID: 9187684
  41. De La Rosette, J.J.M.C.H.; Hubregtse, M.R.; Meuleman, E.J.H.; Stolk-engelaar, M.V.M.; Debruyne, F.M.J. Diagnosis and treatment of 409 patients with prostatitis syndromes. Urology, 1993, 41(4), 301-307. doi: 10.1016/0090-4295(93)90584-W PMID: 8470312
  42. Persson, B.E.; Ronquist, G. Evidence for a mechanistic association between nonbacterial prostatitis and levels of urate and creatinine in expressed prostatic secretion. J. Urol., 1996, 155(3), 958-960. doi: 10.1016/S0022-5347(01)66357-2 PMID: 8583617
  43. Gandaglia, G.; Briganti, A.; Gontero, P.; Mondaini, N.; Novara, G.; Salonia, A.; Sciarra, A.; Montorsi, F. The role of chronic prostatic inflammation in the pathogenesis and progression of benign prostatic hyperplasia (BPH). BJU Int., 2013, 112(4), 432-441. doi: 10.1111/bju.12118 PMID: 23650937
  44. Kaur, K.; Prabha, V. Impairment by sperm agglutinating factor isolated from Escherichia coli: Receptor specific interactions. Biomed .Res . Int. 2013, 2013, 548497. doi: 10.1155/2013/548497
  45. Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W.J.; Allen, E.L.; Jha, A.K. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer Cancer Cell, 2013, 24(2), 213-228. doi: 10.1016/j.ccr.2013.06.014
  46. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033. doi: 10.1126/science.1160809 PMID: 19460998
  47. Yun, J.; Rago, C.; Cheong, I.; Pagliarini, R.; Angenendt, P.; Rajagopalan, H.; Schmidt, K.; Willson, J.K.V.; Markowitz, S.; Zhou, S.; Diaz, L.A., Jr; Velculescu, V.E.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science, 2009, 325(5947), 1555-1559. doi: 10.1126/science.1174229 PMID: 19661383
  48. Han, Y.H.; Kim, S.H.; Kim, S.Z.; Park, W.H. Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol. Rep., 2008, 20(3), 689-693. doi: 10.3892/or_00000061 PMID: 18695925
  49. Schell, J.C.; Olson, K.A.; Jiang, L.; Hawkins, A.J.; Van Vranken, J.G.; Xie, J.; Egnatchik, R.A.; Earl, E.G.; DeBerardinis, R.J.; Rutter, J. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell, 2014, 56(3), 400-413. doi: 10.1016/j.molcel.2014.09.026 PMID: 25458841
  50. Herzig, S.; Raemy, E.; Montessuit, S.; Veuthey, J.L.; Zamboni, N.; Westermann, B.; Kunji, E.R.S.; Martinou, J.C. Identification and functional expression of the mitochondrial pyruvate carrier. Science, 2012, 337(6090), 93-96. doi: 10.1126/science.1218530 PMID: 22628554
  51. Paradies, G.; Capuano, F.; Palombini, G.; Galeotti, T.; Papa, S. Transport of pyruvate in mitochondria from different tumor cells. Cancer Res., 1983, 43(11), 5068-5071. PMID: 6616443
  52. Massie, C.E.; Lynch, A.; Ramos-Montoya, A.; Boren, J.; Stark, R.; Fazli, L.; Warren, A.; Scott, H.; Madhu, B.; Sharma, N.; Bon, H.; Zecchini, V.; Smith, D.M.; DeNicola, G.M.; Mathews, N.; Osborne, M.; Hadfield, J.; MacArthur, S.; Adryan, B.; Lyons, S.K.; Brindle, K.M.; Griffiths, J.; Gleave, M.E.; Rennie, P.S.; Neal, D.E.; Mills, I.G. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J., 2011, 30(13), 2719-2733. doi: 10.1038/emboj.2011.158 PMID: 21602788
  53. Kolenko, V.; Teper, E.; Kutikov, A.; Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol., 2013, 10(4), 219-226. doi: 10.1038/nrurol.2013.43 PMID: 23478540
  54. Murphy, A.B.; Nadler, R.B. Pharmacotherapy strategies in chronic prostatitis/chronic pelvic pain syndrome management. Expert Opin. Pharmacother., 2010, 11(8), 1255-1261. doi: 10.1517/14656561003709748 PMID: 20429665
  55. Magri, V.; Montanari, E.; Škerk, V.; Markotić, A.; Marras, E.; Restelli, A.; Naber, K.G.; Perletti, G. Fluoroquinolone–macrolide combination therapy for chronic bacterial prostatitis: retrospective analysis of pathogen eradication rates, inflammatory findings and sexual dysfunction. Asian J. Androl., 2011, 13(6), 819-827. doi: 10.1038/aja.2011.36 PMID: 21765442
  56. Seo, M.J.; Lee, Y.J.; Hwang, J.H.; Kim, K.J.; Lee, B.Y. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J. Nutr. Biochem., 2015, 26(11), 1308-1316. doi: 10.1016/j.jnutbio.2015.06.005 PMID: 26277481
  57. Liao, Y.R.; Lin, J.Y. Quercetin intraperitoneal administration ameliorates lipopolysaccharide-induced systemic inflammation in mice. Life Sci., 2015, 137, 89-97. doi: 10.1016/j.lfs.2015.07.015 PMID: 26209141
  58. Shoskes, D.A.; Zeitlin, S.I.; Shahed, A.; Rajfer, J. Quercetin in men with category III chronic prostatitis: A preliminary prospective, double-blind, placebo-controlled trial. Urology, 1999, 54(6), 960-963. doi: 10.1016/S0090-4295(99)00358-1 PMID: 10604689
  59. Wagenlehner, F.M.E.; Schneider, H.; Ludwig, M.; Schnitker, J.; Brähler, E.; Weidner, W. A pollen extract (Cernilton) in patients with inflammatory chronic prostatitis-chronic pelvic pain syndrome: A multicentre, randomised, prospective, double-blind, placebo-controlled phase 3 study. Eur. Urol., 2009, 56(3), 544-551. doi: 10.1016/j.eururo.2009.05.046 PMID: 19524353
  60. Nickel, J.C.; Pontari, M.; Moon, T.; Gittelman, M.; Malek, G.; Farrington, J.; Pearson, J.; Krupa, D.; Bach, M.; Drisko, J. A randomized, placebo controlled, multicenter study to evaluate the safety and efficacy of rofecoxib in the treatment of chronic nonbacterial prostatitis. J. Urol., 2003, 169(4), 1401-1405. doi: 10.1097/01.ju.0000054983.45096.16 PMID: 12629372
  61. Zhao, W.P.; Zhang, Z.G.; Li, X.D.; Yu, D.; Rui, X.F.; Li, G.H.; Ding, G.Q. Celecoxib reduces symptoms in men with difficult chronic pelvic pain syndrome (Category IIIA). Braz. J. Med. Biol. Res., 2009, 42(10), 963-967. doi: 10.1590/S0100-879X2009005000021 PMID: 19787151
  62. Bates, S.M.; Hill, V.A.; Anderson, J.B.; Chapple, C.R.; Spence, R.; Ryan, C.; Talbot, M.D. A prospective, randomized, double-blind trial to evaluate the role of a short reducing course of oral corticosteroid therapy in the treatment of chronic prostatitis/chronic pelvic pain syndrome. BJU Int., 2007, 99(2), 355-359. doi: 10.1111/j.1464-410X.2007.06667.x PMID: 17313424
  63. Pontari, M.A.; Krieger, J.N.; Litwin, M.S.; White, P.C.; Anderson, R.U.; McNaughton-Collins, M.; Nickel, J.C.; Shoskes, D.A.; Alexander, R.B.; O’Leary, M.; Zeitlin, S.; Chuai, S.; Landis, J.R.; Cen, L.; Propert, K.J.; Kusek, J.W.; Nyberg, L.M., Jr; Schaeffer, A.J. Pregabalin for the treatment of men with chronic prostatitis/chronic pelvic pain syndrome: A randomized controlled trial. Arch. Intern. Med., 2010, 170(17), 1586-1593. doi: 10.1001/archinternmed.2010.319 PMID: 20876412
  64. Sator-Katzenschlager, S.M.; Scharbert, G.; Kress, H.G.; Frickey, N.; Ellend, A.; Gleiss, A.; Kozek-Langenecker, S.A. Chronic pelvic pain treated with gabapentin and amitriptyline: A randomized controlled pilot study. Wien. Klin. Wochenschr., 2005, 117(21-22), 761-768. doi: 10.1007/s00508-005-0464-2 PMID: 16416358
  65. Berger, R.E. Re: Pregabalin for the treatment of men with chronic prostatitis/chronic pelvic pain syndrome: A randomized controlled trial. J. Urol., 2011, 185(4), 1302-1303. doi: 10.1016/S0022-5347(11)60282-6 PMID: 22098964
  66. Manjunatha, R.; Pundarikaksha, H.P.; Madhusudhana, H.R.; Amarkumar, J.; Hanumantharaju, B.K. A randomized, comparative, open-label study of efficacy and tolerability of alfuzosin, tamsulosin and silodosin in benign prostatic hyperplasia. Indian J. Pharmacol., 2016, 48(2), 134-140. doi: 10.4103/0253-7613.178825 PMID: 27127315
  67. Mirone, V.; Sessa, A.; Giuliano, F.; Berges, R.; Kirby, M.; Moncada, I. Current benign prostatic hyperplasia treatment: Impact on sexual function and management of related sexual adverse events. Int. J. Clin. Pract., 2011, 65(9), 1005-1013. doi: 10.1111/j.1742-1241.2011.02731.x PMID: 21718399
  68. Mari, A.; Antonelli, A.; Cindolo, L.; Fusco, F.; Minervini, A.; De Nunzio, C. Alfuzosin for the medical treatment of benign prostatic hyperplasia and lower urinary tract symptoms: A systematic review of the literature and narrative synthesis. Ther. Adv. Urol., 2021, 13, 1756287221993283. doi: 10.1177/1756287221993283 PMID: 33912246
  69. Chen, Y.; Wu, X.; Liu, J.; Tang, W.; Zhao, T.; Zhang, J. Effects of a 6-month course of tamsulosin for chronic prostatitis/chronic pelvic pain syndrome: A multicenter, randomized trial. World J. Urol., 2011, 29(3), 381-385. doi: 10.1007/s00345-010-0537-3 PMID: 20336302
  70. Rossi, M.; Roumeguère, T. Silodosin in the treatment of benign prostatic hyperplasia. Drug. Des. Devel. Ther., 2010, 4, 291-297. doi: 10.2147/dddt.s10428
  71. McVary, K.T. Alfuzosin for symptomatic benign prostatic hyperplasia: Long-term experience. J. Urol., 2006, 175(1), 35-42. doi: 10.1016/S0022-5347(05)00032-7 PMID: 16406865
  72. Sebastianelli, A.; Spatafora, P.; Morselli, S.; Vignozzi, L.; Serni, S.; McVary, K.T.; Kaplan, S.; Gravas, S.; Chapple, C.; Gacci, M. Tadalafil alone or in combination with tamsulosin for the management for LUTS/BPH and ED. Curr. Urol. Rep., 2020, 21(12), 56. doi: 10.1007/s11934-020-01009-7 PMID: 33108544
  73. Imperato-McGinley, J.; Zhu, Y. S. Androgens and male physiology the syndrome of 5α-reductase-2 deficiency. Mol. Cell Endocrinol., 2002, 198(1-2), 51-59.
  74. Walsh, P.C.; Madden, J.D.; Harrod, M.J.; Goldstein, J.L.; MacDonald, P.C.; Wilson, J.D. Familial incomplete male pseudohermaphroditism, type 2. Decreased dihydrotestosterone formation in pseudovaginal perineoscrotal hypospadias. N. Engl. J. Med., 1974, 291(18), 944-949. doi: 10.1056/NEJM197410312911806 PMID: 4413434
  75. Dadras, S. S.; Cai, X.; Abasolo, I.; Wang, Z. Inhibition of 5α-reductase in rat prostate reveals differential regulation of androgen-response gene expression by testosterone and dihydrotestosterone. Gene Expr., 2001, 9(4-5), 183-194.
  76. Raynaud, J.P. Prostate cancer risk in testosterone-treated men. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 261-266. doi: 10.1016/j.jsbmb.2006.09.032
  77. Wright, A.S.; Douglas, R.C.; Thomas, L.N.; Lazier, C.B.; Rittmaster, R.S. Androgen-induced regrowth in the castrated rat ventral prostate: Role of 5α-reductase. Endocrinology, 1999, 140(10), 4509-4515. doi: 10.1210/endo.140.10.7039 PMID: 10499505
  78. Bosland, M.C. The role of steroid hormones in prostate carcinogenesis. JNCI Monographs, 2000, 2000(27), 39-66.
  79. Bratoeff, E.; Sánchez, A.; Arellano, Y.; Heuze, Y.; Soriano, J.; Cabeza, M. In vivo and in vitro effect of androstene derivatives as 5α-reductase type 1 enzyme inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1247-1254. doi: 10.3109/14756366.2012.729827 PMID: 23051174
  80. Xiao, Q.; Wang, L.; Supekar, S.; Shen, T.; Liu, H.; Ye, F.; Huang, J.; Fan, H.; Wei, Z.; Zhang, C. Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nat. Commun., 2020, 11(1), 5430. doi: 10.1038/s41467-020-19249-z PMID: 33110062
  81. Wu, Y.; Godoy, A.; Azzouni, F.; Wilton, J.H.; Ip, C.; Mohler, J.L. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors. Prostate, 2013, 73(13), 1470-1482. doi: 10.1002/pros.22694
  82. Russell, D.W.; Wilson, J.D. Steroid 5α-reductase: Two genes/two enzymes. Annu. Rev. Biochem., 1994, 63(1), 25-61. doi: 10.1146/annurev.bi.63.070194.000325 PMID: 7979239
  83. Uemura, M.; Tamura, K.; Chung, S.; Honma, S.; Okuyama, A.; Nakamura, Y.; Nakagawa, H. Novel 5α-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci., 2008, 99(1), 81-86. doi: 10.1111/j.1349-7006.2007.00656.x PMID: 17986282
  84. Normington, K.; Russell, D.W. Tissue distribution and kinetic characteristics of rat steroid 5 α-reductase isozymes. Evidence for distinct physiological functions. J. Biol. Chem., 1992, 267(27), 19548-19554. doi: 10.1016/S0021-9258(18)41809-1 PMID: 1527072
  85. McEwan, I.J.; Brinkmann, A.O. Androgen physiology: Receptor and metabolic disorders. In: Endotext; MDText.com, Inc. 2000.
  86. Mai, Q.; Sheng, D.; Chen, C.; Gou, Q.; Chen, M.; Huang, X.; Yin, H.; Chen, X.; Chen, Z. Steroid 5 α-reductase 3 (SRD5A3) promotes tumor growth and predicts poor survival of human hepatocellular carcinoma (HCC). Aging, 2020, 12(24), 25395-25411. doi: 10.18632/aging.104142 PMID: 33229626
  87. Cantagrel, V.; Lefeber, D.J.; Ng, B.G.; Guan, Z.; Silhavy, J.L.; Bielas, S.L.; Lehle, L.; Hombauer, H.; Adamowicz, M.; Swiezewska, E.; De Brouwer, A.P.; Blümel, P.; Sykut-Cegielska, J.; Houliston, S.; Swistun, D.; Ali, B.R.; Dobyns, W.B.; Babovic-Vuksanovic, D.; van Bokhoven, H.; Wevers, R.A.; Raetz, C.R.H.; Freeze, H.H.; Morava, É.; Al-Gazali, L.; Gleeson, J.G. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell, 2010, 142(2), 203-217. doi: 10.1016/j.cell.2010.06.001 PMID: 20637498
  88. Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S. Maintenance of intratumoral androgens in metastatic prostate cancer: A mechanism for castration-resistant tumor growth. Cancer Res., 2008, 68(11), 4447-4454. doi: 10.1158/0008-5472.CAN-08-0249 PMID: 18519708
  89. Thigpen, A.E.; Silver, R.I.; Guileyardo, J.M.; Casey, M.L.; McConnell, J.D.; Russell, D.W. Tissue distribution and ontogeny of steroid 5 α-reductase isozyme expression. J. Clin. Invest., 1993, 92(2), 903-910. doi: 10.1172/JCI116665 PMID: 7688765
  90. Madersbacher, S.; Sampson, N.; Culig, Z. Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: A mini-review. Gerontology, 2019, 65(5), 458-464. doi: 10.1159/000496289 PMID: 30943489
  91. Chan, W.K.; Fong, C.Y.; Tiong, H.H.; Tan, C.H. The ihibition of 3βHSD activity in porcine granulosa cells by 4- MA, a potent 5α-reductase inhibitor. Biochem. Biophys. Res. Commun., 1987, 144(1), 166-171. doi: 10.1016/S0006-291X(87)80490-4 PMID: 3107552
  92. McConnell, J.D. The pathophysiology of benign prostatic hyperplasia. J. Androl., 1991, 12(6), 356-363. doi: 10.1002/j.1939-4640.1991.tb00272.x PMID: 1722791
  93. Di Salle, E.; Briatico, G.; Giudici, D.; Ornati, G.; Panzeri, A. Endocrine properties of the testosterone 5α-reductase inhibitor turosteride (FCE 26073). J. Steroid Biochem. Mol. Biol., 1994, 48(2-3), 241-248. doi: 10.1016/0960-0760(94)90151-1 PMID: 8142301
  94. Sonoda, J.; Pei, L.; Evans, R.M. Nuclear receptors: Decoding metabolic disease. FEBS Lett., 2008, 582(1), 2-9. doi: 10.1016/j.febslet.2007.11.016 PMID: 18023286
  95. Wilde, M.I.; Goa, K.L. Finasteride. Drugs, 1999, 57(4), 557-581. doi: 10.2165/00003495-199957040-00008 PMID: 10235693
  96. Faller, B.; Farley, D.; Nick, H. Finasteride: A slow-binding 5α-reductase inhibitor. Biochemistry, 1993, 32(21), 5705-5710. doi: 10.1021/bi00072a028
  97. Darren Stuart, J.; Lee, F.W.; Simpson Noel, D.; Kadwell, S.H.; Overton, L.K.; Hoffman, C.R.; Kost, T.A.; Tippin, T.K.; Yeager, R.L.; Batchelor, K.W.; Neal Bramson, H. Pharmacokinetic parameters and mechanisms of inhibition of rat type 1 and 2 steroid 5α-reductases: Determinants for different in vivo activities of GI198745 and finasteride in the rat. Biochem. Pharmacol., 2001, 62(7), 933-942. doi: 10.1016/S0006-2952(01)00728-6 PMID: 11543729
  98. Evans, H.C.; Goa, K.L. Dutasteride. Drugs Aging, 2003, 20(12), 905-916. doi: 10.2165/00002512-200320120-00005 PMID: 14565784
  99. Clark, R.V.; Hermann, D.J.; Cunningham, G.R.; Wilson, T.H.; Morrill, B.B.; Hobbs, S. Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5α-reductase inhibitor. J. Clin. Endocrinol. Metab., 2004, 89(5), 2179-2184. doi: 10.1210/jc.2003-030330 PMID: 15126539
  100. Schulman, C.; Pommerville, P.; Höfner, K.; Wachs, B. Long-term therapy with the dual 5α-reductase inhibitor dutasteride is well tolerated in men with symptomatic benign prostatic hyperplasia. BJU Int., 2006, 97(1), 73-80. doi: 10.1111/j.1464-410X.2005.05909.x PMID: 16336332
  101. Andriole, G.L.; Kirby, R. Safety and tolerability of the dual 5α-reductase inhibitor dutasteride in the treatment of benign prostatic hyperplasia. Eur. Urol., 2003, 44(1), 82-88. doi: 10.1016/S0302-2838(03)00198-2 PMID: 12814679
  102. Lazier, C. B.; Thomas, L. N.; Douglas, R. C.; Vessey, J. P.; Rittmaster, R. S. Dutasteride, the dual 5α-reductase inhibitor, inhibits androgen action and promotes cell death in the LNCaP prostate cancer cell line. Prostate, 2004, 58(2), 130-144. doi: 10.1002/pros.10340
  103. Frye, S. V.; Haffner, C. D.; Maloney, P. R.; Hiner, R. N.; Dorsey, G. F.; Noe, R. A.; Unwalla, R. J.; Batchelor, K. W.; Bramson, H. N.; Stuart, J. D. Structure-activity relationships for inhibition of type 1 and 2 human 5α-reductase and human adrenal 3β-hydroxy-Δ5-steroid dehydrogenase/3-keto-Δ5-steroid isomerase by 6-azaandrost-4-en-3-ones: Optimization of the C-17 substituent. J. Med. Chem., 1995, 38(14), 2621-2627. doi: 10.1021/jm00014a015
  104. Pérez-ornelas, V.; Cabeza, M.; Bratoeff, E.; Heuze, I.; Sánchez, M.; Ramírez, E.; Naranjorodríguez, E. New 5α-reductase inhibitors: In vitro and in vivo effects. Steroids, 2005, 70(3), 217-224. doi: 10.1016/j.steroids.2004.11.008 PMID: 15763601
  105. Bratoeff, E.; Cabeza, M.; Pérez-Ornelas, V.; Recillas, S.; Heuze, I. In vivo and in vitro effect of novel 4,16-pregnadiene-6,20-dione derivatives, as 5α-reductase inhibitors. J. Steroid Biochem. Mol. Biol., 2008, 111(3-5), 275-281. doi: 10.1016/j.jsbmb.2008.06.014 PMID: 18644453
  106. Cabeza, M.; Bratoeff, E.; Ramírez, E.; Heuze, I.; Recillas, S.; Berrios, H.; Cruz, A.; Cabrera, O.; Pérez, V. Biological activity of novel progesterone derivatives having a bulky ester side chains at C-3. Steroids, 2008, 73(8), 838-843. doi: 10.1016/j.steroids.2008.03.006 PMID: 18472120
  107. Cabeza, M.; Bratoeff, E.; Gómez, G.; Heuze, I.; Rojas, A.; Ochoa, M.; Palomino, M.A.; Revilla, C. Synthesis and biological effect of halogen substituted phenyl acetic acid derivatives of progesterone as potent progesterone receptor antagonists. J. Steroid Biochem. Mol. Biol., 2008, 111(3-5), 232-239. doi: 10.1016/j.jsbmb.2008.06.011 PMID: 18625316
  108. Bratoeff, E.; Sainz, T.; Cabeza, M.; Heuze, I.; Recillas, S.; Pérez, V.; Rodríguez, C.; Segura, T.; Gonzáles, J.; Ramírez, E. Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5α-reductase. J. Steroid Biochem. Mol. Biol., 2007, 107(1-2), 48-56. doi: 10.1016/j.jsbmb.2007.03.038 PMID: 17629476
  109. Arellano, Y.; Bratoeff, E.; Garrido, M.; Soriano, J.; Heuze, Y.; Cabeza, M. New ester derivatives of dehydroepiandrosterone as 5α-reductase inhibitors. Steroids, 2011, 76(12), 1241-1246. doi: 10.1016/j.steroids.2011.05.015 PMID: 21729714
  110. Garrido, M.; Bratoeff, E.; Bonilla, D.; Soriano, J.; Heuze, Y.; Cabeza, M. New steroidal lactones as 5α-reductase inhibitors and antagonists for the androgen receptor. J. Steroid Biochem. Mol. Biol., 2011, 127(3-5), 367-373. doi: 10.1016/j.jsbmb.2011.07.001 PMID: 21782943
  111. Di Silverio, F.; Flammia, G.P.; Sciarra, A.; Caponera, M.; Mauro, M.; Buscarini, M.; Tavani, M.; D’Eramo, G. Plant extracts in BPH. Minerva Urol. Nefrol., 1993, 45(4), 143-149. PMID: 7517582
  112. Buck, A. C. Phytotherapy for the prostate. Brit. J. Urol., 1996, 78(3), 325-336. doi: 10.1046/j.1464-410X.1996.00104.x
  113. Ishani, A.; MacDonald, R.; Nelson, D.; Rutks, I.; Wilt, T.J. Pygeum africanum for the treatment of patients with benign prostatic hyperplasia: A systematic review and quantitative meta-analysis. Am. J. Med., 2000, 109(8), 654-664. doi: 10.1016/S0002-9343(00)00604-5 PMID: 11099686
  114. Bales, G.T.; Christiano, A.P.; Kirsh, E.J.; Gerber, G.S. Phytotherapeutic agents in the treatment of lower urinary tract symptoms: A demographic analysis of awareness and use at the University of Chicago. Urology, 1999, 54(1), 86-89. doi: 10.1016/S0090-4295(99)00028-X PMID: 10414732
  115. Carraro, J.C.; Raynaud, J.P.; Koch, G.; Chisholm, G.D.; Di Silverio, F.; Teillac, P.; Da Silva, F.C.; Cauquil, J.; Chopin, D.K.; Hamdy, F.C.; Hanus, M.; Hauri, D.; Kalinteris, A.; Marencak, J.; Perier, A.; Perrin, P. Comparison of phytotherapy (Permixon®) with finasteride in the treatment of benign prostate hyperplasia: A randomized international study of 1,098 patients. Prostate, 1996, 29(4), 231-240. doi: 10.1002/(SICI)1097-0045(199610)29:43.0.CO;2-E PMID: 8876706
  116. Wilt, T.J.; Ishani, A.; Stark, G.; MacDonald, R.; Lau, J.; Mulrow, C. Saw palmetto extracts for treatment of benign prostatic hyperplasia: A systematic review. JAMA, 1998, 280(18), 1604-1609. doi: 10.1001/jama.280.18.1604 PMID: 9820264
  117. Morzycki, J.W.; Sicinski, R.R. Synthesis of 6,7-diazacholestane derivatives. Acta Chir. Hung., 1985, 120(4), 239-246.
  118. Wilt, T.J.; Ishani, A.; Rutks, I.; MacDonald, R. Phytotherapy for benign prostatic hyperplasia. Public Health Nutr., 2000, 3(4a), 459-472. doi: 10.1017/S1368980000000549 PMID: 11276294
  119. Marks, L.S.; Hess, D.L.; Dorey, F.J.; Luz Macairan, M.; Cruz Santos, P.B.; Tyler, V.E. Tissue effects of saw palmetto and finasteride: use of biopsy cores for in situ quantification of prostatic androgens. Urology, 2001, 57(5), 999-1005. doi: 10.1016/S0090-4295(00)01052-9 PMID: 11337315
  120. Cabeza, M.; Bratoeff, E.; Heuze, I.; Ramírez, E.; Sánchez, M.; Flores, E. Effect of beta-sitosterol as inhibitor of 5 α-reductase in hamster prostate. Proc. West. Pharmacol. Soc., 2003, 46, 153-155. PMID: 14699915
  121. Kadow, C.; Abrams, P.H. A double-blind trial of the effect of β-sitosteryl glucoside (WA184) in the treatment of benign prostatic hyperplasia. Eur. Urol., 1986, 12(3), 187-189. doi: 10.1159/000472613 PMID: 2423337
  122. Berges, R.R.; Windeler, J.; Trampisch, H.J.; Senge, T. β-sitosterol study, Randomized, placebo-controlled, double-blind clinical trial of β-sitosterol in patients with benign prostatic hyperplasia. Lancet, 1995, 345(8964), 1529-1532. doi: 10.1016/S0140-6736(95)91085-9 PMID: 7540705
  123. Cambronero, J.; Osca-García, J.M.; Merino-Salas, S.; Miguel, J.M.; Borralleras, C.; López-Alcina, E. Effectiveness of treatment with Pygeum africanum in patients with lower urinary tract symptoms and benign prostatic hyperplasia: A cross-sectional study in the real-world clinical practice in Spain (The PROFIT Study). Arch. Esp. Urol., 2022, 75(3), 219-227. PMID: 35435166
  124. Schleich, S.; Papaioannou, M.; Baniahmad, A.; Matusch, R. Extracts from Pygeum africanum and other ethnobotanical species with antiandrogenic activity. Planta Med., 2006, 72(9), 807-813. doi: 10.1055/s-2006-946638 PMID: 16783690
  125. Shenouda, N.S.; Sakla, M.S.; Newton, L.G.; Besch-Williford, C.; Greenberg, N.M.; MacDonald, R.S.; Lubahn, D.B. Phytosterol Pygeum africanum regulates prostate cancer in vitro and in vivo. Endocr. J., 2007, 31(1), 72-81. doi: 10.1007/s12020-007-0014-y PMID: 17709901
  126. Wang, T.; Xie, Z.; Huang, Z.; Li, H.; Wei, A.; Di, J.; Xiao, H.; Zhang, Z.; Cai, L.; Tao, X.; Qi, T.; Chen, D.; Chen, J. Total triterpenoids from Ganoderma lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2015, 35(5), 736-741. doi: 10.1007/s11596-015-1499-x PMID: 26489631
  127. Fujita, R.; Liu, J.; Shimizu, K.; Konishi, F.; Noda, K.; Kumamoto, S.; Ueda, C.; Tajiri, H.; Kaneko, S.; Suimi, Y.; Kondo, R. Anti-androgenic activities of Ganoderma lucidum. J. Ethnopharmacol., 2005, 102(1), 107-112. doi: 10.1016/j.jep.2005.05.041 PMID: 16029938
  128. Liu, J.; Shimizu, K.; Konishi, F.; Kumamoto, S.; Kondo, R. The anti-androgen effect of ganoderol B isolated from the fruiting body of Ganoderma lucidum. Bioorg. Med. Chem., 2007, 15(14), 4966-4972. doi: 10.1016/j.bmc.2007.04.036 PMID: 17499997
  129. Loyd, A.L.; Barnes, C.W.; Held, B.W.; Schink, M.J.; Smith, M.E.; Smith, J.A.; Blanchette, R.A. Elucidating "lucidum": Distinguishing the diverse laccate Ganoderma species of the United States. PLoS One, 2018, 13(7), e0199738. doi: 10.1371/journal.pone.0199738 PMID: 30020945
  130. Frigo, D.E.; Howe, M.K.; Wittmann, B.M.; Brunner, A.M.; Cushman, I.; Wang, Q.; Brown, M.; Means, A.R.; McDonnell, D.P. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res., 2011, 71(2), 528-537. doi: 10.1158/0008-5472.CAN-10-2581 PMID: 21098087
  131. Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The metabolic phenotype of prostate cancer. Front. Oncol., 2017, 7, 131. doi: 10.3389/fonc.2017.00131 PMID: 28674679
  132. Ryan, C.J.; Smith, A.; Lal, P.; Satagopan, J.; Reuter, V.; Scardino, P.; Gerald, W.; Scher, H.I. Persistent prostate-specific antigen expression after neoadjuvant androgen depletion: An early predictor of relapse or incomplete androgen suppression. Urology, 2006, 68(4), 834-839. doi: 10.1016/j.urology.2006.04.016 PMID: 17070363
  133. Hyytinen, E.R.; Haapala, K.; Thompson, J.; Lappalainen, I.; Roiha, M.; Rantala, I.; Helin, H.J.; Jänne, O.A.; Vihinen, M.; Palvimo, J.J.; Koivisto, P.A. Pattern of somatic androgen receptor gene mutations in patients with hormone-refractory prostate cancer. Lab. Invest., 2002, 82(11), 1591-1598. doi: 10.1097/01.LAB.0000038924.67707.75 PMID: 12429819
  134. Buskiewicz, I.A.; Huber, S.A.; Fairweather, D. Sex hormone receptor expression in the immune system. In: Sex Differences in Physiology; Neigh, G.N.; Mitzelfelt, M.M., Eds.; Academic Press, 2016; pp. 45-60. doi: 10.1016/B978-0-12-802388-4.00004-5
  135. Roden, A.C.; Moser, M.T.; Tri, S.D.; Mercader, M.; Kuntz, S.M.; Dong, H.; Hurwitz, A.A.; McKean, D.J.; Celis, E.; Leibovich, B.C.; Allison, J.P.; Kwon, E.D. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol., 2004, 173(10), 6098-6108. doi: 10.4049/jimmunol.173.10.6098 PMID: 15528346
  136. Kissick, H.T.; Sanda, M.G.; Dunn, L.K.; Pellegrini, K.L.; On, S.T.; Noel, J.K.; Arredouani, M.S. Androgens alter T- cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl. Acad. Sci., 2014, 111(27), 9887-9892. doi: 10.1073/pnas.1402468111 PMID: 24958858
  137. Drake, C.G.; Doody, A.D.H.; Mihalyo, M.A.; Huang, C.T.; Kelleher, E.; Ravi, S.; Hipkiss, E.L.; Flies, D.B.; Kennedy, E.P.; Long, M.; McGary, P.W.; Coryell, L.; Nelson, W.G.; Pardoll, D.M.; Adler, A.J. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell, 2005, 7(3), 239-249. doi: 10.1016/j.ccr.2005.01.027 PMID: 15766662
  138. Olsen, N.J.; Gu, X.; Kovacs, W.J. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J. Clin. Invest., 2001, 108(11), 1697-1704. doi: 10.1172/JCI200113183 PMID: 11733565
  139. Mercader, M.; Bodner, B.K.; Moser, M.T.; Kwon, P.S.; Park, E.S.Y.; Manecke, R.G.; Ellis, T.M.; Wojcik, E.M.; Yang, D.; Flanigan, R.C.; Waters, W.B.; Kast, W.M.; Kwon, E.D. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl. Acad. Sci., 2001, 98(25), 14565-14570. doi: 10.1073/pnas.251140998 PMID: 11734652
  140. Singh, M.; Jha, R.; Melamed, J.; Shapiro, E.; Hayward, S.W.; Lee, P. Stromal androgen receptor in prostate development and cancer. Am. J. Pathol., 2014, 184(10), 2598-2607. doi: 10.1016/j.ajpath.2014.06.022 PMID: 25088980
  141. Lin, M.C.; Rajfer, J.; Swerdloff, R.S.; González-Cadavid, N.F. Testosterone down-regulates the levels of androgen receptor mRNA in smooth muscle cells from the rat corpora cavernosa via aromatization to estrogens. J. Steroid Biochem. Mol. Biol., 1993, 45(5), 333-43. doi: 10.1016/0960-0760(93)90002-e PMID: 8499343
  142. Sehgal, P.D.; Bauman, T.M.; Nicholson, T.M.; Vellky, J.E.; Ricke, E.A.; Tang, W.; Xu, W.; Huang, W.; Ricke, W.A. Tissue-specific quantification and localization of androgen and estrogen receptors in prostate cancer. Hum. Pathol., 2019, 89, 99-108. doi: 10.1016/j.humpath.2019.04.009 PMID: 31054895
  143. Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci., 2020, 8(3), 28. doi: 10.3390/medsci8030028 PMID: 32698438
  144. Vrecl, M.; Heding, A.; Hanyaloglu, A.; Taylor, P.L.; Eidne, K.A. Internalization kinetics of the gonadotropin-releasing hormone (GnRH) receptor. Pflugers Arch., 2000, 439(S1), r019-r020. doi: 10.1007/s004240000075 PMID: 28176059
  145. Branigan, G.L.; Torrandell-Haro, G.; Soto, M.; Gelmann, E.P.; Vitali, F.; Rodgers, K.E.; Brinton, R.D. Androgen- targeting therapeutics mitigate the adverse effect of GNRH agonist on the risk of neurodegenerative disease in men treated for prostate cancer. Cancer Med., 2022, 11(13), 2687-2698. doi: 10.1002/cam4.4650 PMID: 35293700
  146. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012. PMID: 31643176
  147. de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr; Saad, F.; Staffurth, J.N.; Mainwaring, P.; Harland, S.; Flaig, T.W.; Hutson, T.E.; Cheng, T.; Patterson, H.; Hainsworth, J.D.; Ryan, C.J.; Sternberg, C.N.; Ellard, S.L.; Fléchon, A.; Saleh, M.; Scholz, M.; Efstathiou, E.; Zivi, A.; Bianchini, D.; Loriot, Y.; Chieffo, N.; Kheoh, T.; Haqq, C.M.; Scher, H.I. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med., 2011, 364(21), 1995-2005. doi: 10.1056/NEJMoa1014618 PMID: 21612468
  148. Nuhn, P.; De Bono, J.S.; Fizazi, K.; Freedland, S.J.; Grilli, M.; Kantoff, P.W.; Sonpavde, G.; Sternberg, C.N.; Yegnasubramanian, S.; Antonarakis, E.S. Update on systemic prostate cancer therapies: Management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur. Urol., 2019, 75(1), 88-99. doi: 10.1016/j.eururo.2018.03.028 PMID: 29673712
  149. Moreira, R.B.; Debiasi, M.; Francini, E.; Nuzzo, P.V.; Velasco, G.D.; Maluf, F.C.; Fay, A.P.; Bellmunt, J.; Choueiri, T.K.; Schutz, F.A. Differential side effects profile in patients with mCRPC treated with abiraterone or enzalutamide: A meta-analysis of randomized controlled trials. Oncotarget, 2017, 8(48), 84572-84578. doi: 10.18632/oncotarget.20028 PMID: 29137449
  150. Acharya, M.; González, M.; Mannens, G.; De Vries, R.; López, C.; Griffin, T.; Tran, N. A phase I, open-label, single-dose, mass balance study of 14C-labeled abiraterone acetate in healthy male subjects. Xenobiotica, 2013, 43(4), 379-389. doi: 10.3109/00498254.2012.721022 PMID: 23020788
  151. Wang, L.; Paller, C.J.; Hong, H.; De Felice, A.; Alexander, G.C.; Brawley, O. Comparison of systemic treatments for metastatic castration-sensitive prostate cancer: A systematic review and network meta-analysis. JAMA Oncol., 2021, 7(3), 412-420. doi: 10.1001/jamaoncol.2020.6973

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers