Iron-related Biomarkers in the Diagnosis and Management of Iron Disorders


Cite item

Full Text

Abstract

Background:Iron deficiency and iron-related disorders are common health issues worldwide, affecting a significant proportion of the population. Diagnosis and management of these disorders rely heavily on using various iron-related biomarkers that can provide valuable clinical information.

Objective:This review article provides an overview of the most commonly used iron-related biomarkers, including serum ferritin, transferrin saturation, soluble transferrin receptor, zinc protoporphyrin, and free erythrocyte protoporphyrin. Other emerging biomarkers, such as hepcidin and retinol-binding protein 4, are also discussed.

Results:Iron plays a vital role in various physiological processes, including oxygen transport, energy metabolism, and DNA synthesis. The article highlights the advantages and limitations of iron biomarkers and their clinical applications in diagnosing and managing iron deficiency and iron-related anemia.

Conclusion:Using iron-related biomarkers in screening and monitoring programs can improve patient outcomes and reduce healthcare costs.

About the authors

Yuliya Semenova

Department of Research, Nazarbayev University School of Medicine

Email: info@benthamscience.net

Geir Bjørklund

Department of Research,, Council for Nutritional and Environmental Medicine

Author for correspondence.
Email: info@benthamscience.net

Monica Butnariu

Department of Research,, University of Life Sciences "King Mihai I" from Timisoara

Email: info@benthamscience.net

Massimiliano Peana

Department of Chemical, Physical, Mathematical and Natural Sciences,, University of Sassari

Email: info@benthamscience.net

References

  1. Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact., 2022, 367, 110173. doi: 10.1016/j.cbi.2022.110173 PMID: 36152810
  2. Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 PMID: 30939379
  3. Bjørklund, G.; Peana, M.; Pivina, L.; Dosa, A.; Aaseth, J.; Semenova, Y.; Chirumbolo, S.; Medici, S.; Dadar, M.; Costea, D.O. Iron deficiency in obesity and after bariatric surgery. Biomolecules, 2021, 11(5), 613. doi: 10.3390/biom11050613 PMID: 33918997
  4. McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr., 2009, 12(4), 444-454. doi: 10.1017/S1368980008002401 PMID: 18498676
  5. Latunde-Dada, G.O. Iron metabolism: Microbes, mouse, and man. BioEssays, 2009, 31(12), 1309-1317. doi: 10.1002/bies.200900101 PMID: 19877004
  6. Levi, M.; Rosselli, M.; Simonetti, M.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Cataldo, N.; Heiman, F.; Chelo, M.; Cricelli, I.; Cricelli, C.; Lapi, F. Epidemiology of iron deficiency anaemia in four European countries: a population-based study in primary care. Eur. J. Haematol., 2016, 97(6), 583-593. doi: 10.1111/ejh.12776 PMID: 27155295
  7. Bjørklund, G.; Hangan, T.; Semenova, Y.; Pen, J.J.; Aaseth, J.; Peana, M. Perspectives on iron deficiency as a cause of human disease in global public health. Curr. Med. Chem., 2023, 30, 1-13. doi: 10.2174/0929867330666230324154606
  8. McKie, A.T.; Barrow, D.; Latunde-Dada, G.O.; Rolfs, A.; Sager, G.; Mudaly, E.; Mudaly, M.; Richardson, C.; Barlow, D.; Bomford, A.; Peters, T.J.; Raja, K.B.; Shirali, S.; Hediger, M.A.; Farzaneh, F.; Simpson, R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science, 2001, 291(5509), 1755-1759. doi: 10.1126/science.1057206 PMID: 11230685
  9. Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin, Y.; Romero, M.F.; Boron, W.F.; Nussberger, S.; Gollan, J.L.; Hediger, M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997, 388(6641), 482-488. doi: 10.1038/41343 PMID: 9242408
  10. Mackenzie, B.; Garrick, M.D. Iron Imports. II. Iron uptake at the apical membrane in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(6), G981-G986. doi: 10.1152/ajpgi.00363.2005 PMID: 16286504
  11. Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A red carpet for iron metabolism. Cell, 2017, 168(3), 344-361. doi: 10.1016/j.cell.2016.12.034 PMID: 28129536
  12. Daru, J.; Colman, K.; Stanworth, S.J.; De La Salle, B.; Wood, E.M.; Pasricha, S.R. Serum ferritin as an indicator of iron status: what do we need to know? Am. J. Clin. Nutr., 2017, 106(Suppl. 6), 1634S-1639S. doi: 10.3945/ajcn.117.155960 PMID: 29070560
  13. Kautz, L.; Jung, G.; Nemeth, E.; Ganz, T. Erythroferrone contributes to recovery from anemia of inflammation. Blood, 2014, 124(16), 2569-2574. doi: 10.1182/blood-2014-06-584607 PMID: 25193872
  14. Girelli, D.; Ugolini, S.; Busti, F.; Marchi, G.; Castagna, A. Modern iron replacement therapy: Clinical and pathophysiological insights. Int. J. Hematol., 2018, 107(1), 16-30. doi: 10.1007/s12185-017-2373-3 PMID: 29196967
  15. Bai, S.; Cao, S.; Ma, X.; Li, X.; Liao, X.; Zhang, L.; Zhang, M.; Zhang, R.; Hou, S.; Luo, X.; Lu, L. Organic iron absorption and expression of related transporters in the small intestine of broilers. Poult. Sci., 2021, 100(8), 101182. doi: 10.1016/j.psj.2021.101182 PMID: 34198093
  16. Hooda, J.; Shah, A.; Zhang, L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients, 2014, 6(3), 1080-1102. doi: 10.3390/nu6031080 PMID: 24633395
  17. Xu, X.; Liu, Y.; Tang, M.; Yan, Y.; Gu, W.; Wang, W.; Meng, Q. The function of Eriocheir sinensis transferrin and iron in Spiroplasma eriocheiris infection. Fish Shellfish Immunol., 2018, 79, 79-85. doi: 10.1016/j.fsi.2018.05.019 PMID: 29753143
  18. Keleş Altun, İ.; Atagün, M.İ.; Erdoğan, A.; Oymak Yenilmez, D.; Yusifova, A.; Şenat, A.; Erel, Ö. Serum hepcidin / ferroportin levels in bipolar disorder and schizophrenia. J. Trace Elem. Med. Biol., 2021, 68, 126843. doi: 10.1016/j.jtemb.2021.126843 PMID: 34416474
  19. Nemeth, E.; Ganz, T. Hepcidin and iron in health and disease. Annu. Rev. Med., 2023, 74(1), 261-277. doi: 10.1146/annurev-med-043021-032816 PMID: 35905974
  20. Varga, E.; Pap, R.; Jánosa, G.; Sipos, K.; Pandur, E. IL-6 regulates hepcidin expression via the BMP/SMAD pathway by altering BMP6, TMPRSS6 and TfR2 expressions at normal and inflammatory conditions in BV2 microglia. Neurochem. Res., 2021, 46(5), 1224-1238. doi: 10.1007/s11064-021-03322-0 PMID: 33835366
  21. Barrows, I.R.; Devalaraja, M.; Kakkar, R.; Chen, J.; Gupta, J.; Rosas, S.E.; Saraf, S.; He, J.; Go, A.; Raj, D.S.; Amdur, R.L.; Unruh, M.L.; Shah, V.O.; Rao, P.S.; Rahman, M.; Nelson, R.G.; Lash, J.P.; Feldman, H.I.; Cohen, D.; Appel, L.J. Race, interleukin-6, TMPRSS6 genotype, and cardiovascular disease in patients with chronic kidney disease. J. Am. Heart Assoc., 2022, 11(18), e025627. doi: 10.1161/JAHA.122.025627 PMID: 36102277
  22. Rivera, S.; Liu, L.; Nemeth, E.; Gabayan, V.; Sorensen, O.E.; Ganz, T. Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia. Blood, 2005, 105(4), 1797-1802. doi: 10.1182/blood-2004-08-3375 PMID: 15479721
  23. Menon, A.V.; Liu, J.; Tsai, H.P.; Zeng, L.; Yang, S.; Asnani, A.; Kim, J. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood, 2022, 139(6), 936-941. doi: 10.1182/blood.2020008455 PMID: 34388243
  24. Lisova, A.E.; Baranovskiy, A.G.; Morstadt, L.M.; Babayeva, N.D.; Stepchenkova, E.I.; Tahirov, T.H. The iron-sulfur cluster is essential for DNA binding by human DNA polymerase ε. Sci. Rep., 2022, 12(1), 17436. doi: 10.1038/s41598-022-21550-4 PMID: 36261579
  25. Burn, M.S.; Lundsberg, L.S.; Culhane, J.F.; Partridge, C.; Son, M. Intravenous iron for treatment of iron deficiency anemia during pregnancy and associated maternal outcomes. J. Matern. Fetal Neonatal Med., 2023, 36(1), 2192855. doi: 10.1080/14767058.2023.2192855 PMID: 36958808
  26. Pivina, L.; Semenova, Y.; Doşa, M.D.; Dauletyarova, M.; Bjørklund, G. Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J. Mol. Neurosci., 2019, 68(1), 1-10. doi: 10.1007/s12031-019-01276-1 PMID: 30778834
  27. Vinkenoog, M.; de Groot, R.; Lakerveld, J.; Janssen, M.; van den Hurk, K. Individual and environmental determinants of serum ferritin levels: A structural equation model. Transfus. Med., 2023, 33(2), 113-122. doi: 10.1111/tme.12902 PMID: 37009681
  28. Parida, A.; Mohanty, A.; Kansara, B.T.; Behera, R.K. Impact of phosphate on iron mineralization and mobilization in nonheme bacterioferritin b from Mycobacterium tuberculosis. Inorg. Chem., 2020, 59(1), 629-641. doi: 10.1021/acs.inorgchem.9b02894 PMID: 31820939
  29. Bjørklund, G.; Aaseth, J.; Skalny, A.V.; Suliburska, J.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J. Trace Elem. Med. Biol., 2017, 41, 41-53. doi: 10.1016/j.jtemb.2017.02.005 PMID: 28347462
  30. Young, B.; Zaritsky, J. Hepcidin for clinicians. Clin. J. Am. Soc. Nephrol., 2009, 4(8), 1384-1387. doi: 10.2215/CJN.02190309 PMID: 19556376
  31. Kuruppu, A.I.; Turyanska, L.; Bradshaw, T.D.; Manickam, S.; Galhena, B.P.; Paranagama, P.; De Silva, R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(2), 130067. doi: 10.1016/j.bbagen.2021.130067 PMID: 34896255
  32. Guo, M.; Gao, M.; Liu, J.; Xu, N.; Wang, H. Bacterioferritin nanocage: Structure, biological function, catalytic mechanism, self-assembly and potential applications. Biotechnol. Adv., 2022, 61, 108057. doi: 10.1016/j.biotechadv.2022.108057 PMID: 36328189
  33. Theil, E.C. Ferritin protein nanocages—the story. Nanotechnol. Percept., 2012, 8(1), 7-16. doi: 10.4024/N03TH12A.ntp.08.01 PMID: 24198751
  34. Reyes-Becerril, M.; Angulo-Valadez, C.; Macias, M.E.; Angulo, M.; Ascencio-Valle, F. Iron bioavailability in larvae yellow snapper (Lutjanus argentiventris): Cloning and expression analysis of ferritin-H. Fish Shellfish Immunol., 2014, 37(2), 248-255. doi: 10.1016/j.fsi.2014.02.011 PMID: 24561126
  35. Meyron-Holtz, E.G.; Fibach, E.; Gelvan, D.; Konijn, A.M. Binding and uptake of exogenous isoferritins by cultured human erythroid precursor cells. Br. J. Haematol., 1994, 86(3), 635-641. doi: 10.1111/j.1365-2141.1994.tb04797.x PMID: 8043447
  36. World Health Organization. WHO guideline on use of ferritin concentrations to assess iron status in populations. World Health Organization, 2020, 82. https://www.who.int/publications/i/item/9789240000124
  37. Finch, C.A.; Bellotti, V.; Stray, S.; Lipschitz, D.A.; Cook, J.D.; Pippard, M.J.; Huebers, H.A. Plasma ferritin determination as a diagnostic tool. West. J. Med., 1986, 145(5), 657-663. PMID: 3541387
  38. Weiss, G. Modification of iron regulation by the inflammatory response. Best Pract. Res. Clin. Haematol., 2005, 18(2), 183-201. doi: 10.1016/j.beha.2004.09.001 PMID: 15737884
  39. Kalantar-Zadeh, K.; Kalantar-Zadeh, K.; Lee, G.H. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin. J. Am. Soc. Nephrol., 2006, 1(Suppl. 1), S9-S18. doi: 10.2215/CJN.01390406 PMID: 17699375
  40. Alves, M.T.; Vilaça, S.S.; Carvalho, M.G.; Fernandes, A.P.; Dusse, L.M.S.A.; Gomes, K.B. Resistance of dialyzed patients to erythropoietin. Rev. Bras. Hematol. Hemoter., 2015, 37(3), 190-197. doi: 10.1016/j.bjhh.2015.02.001 PMID: 26041422
  41. Wish, J.B. Assessing iron status: Beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol., 2006, 1(Suppl. 1), S4-S8. doi: 10.2215/CJN.01490506 PMID: 17699374
  42. Guyatt, G.H.; Oxman, A.D.; Ali, M.; Willan, A.; McIlroy, W.; Patterson, C. Laboratory diagnosis of iron-deficiency anemia. J. Gen. Intern. Med., 1992, 7(2), 145-153. doi: 10.1007/BF02598003 PMID: 1487761
  43. Peirano, P.D.; Algarin, C.R.; Chamorro, R.; Reyes, S.; Garrido, M.I.; Duran, S.; Lozoff, B. Sleep and neurofunctions throughout child development: lasting effects of early iron deficiency. J. Pediatr. Gastroenterol. Nutr, 2009, 48(1), 8-15. doi: 10.1097/MPG.0b013e31819773b
  44. Zaritsky, J.; Young, B.; Wang, H.J.; Westerman, M.; Olbina, G.; Nemeth, E.; Ganz, T.; Rivera, S.; Nissenson, A.R.; Salusky, I.B. Hepcidin--a potential novel biomarker for iron status in chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2009, 4(6), 1051-1056. doi: 10.2215/CJN.05931108 PMID: 19406957
  45. Baumgartner, J.; Barth-Jaeggi, T. Iron interventions in children from low-income and middle-income populations. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(3), 289-294. doi: 10.1097/MCO.0000000000000168 PMID: 25807351
  46. Blanchette, N.L.; Manz, D.H.; Torti, F.M.; Torti, S.V. Modulation of hepcidin to treat iron deregulation: Potential clinical applications. Expert Rev. Hematol., 2016, 9(2), 169-186. doi: 10.1586/17474086.2016.1124757 PMID: 26669208
  47. Cherayil, B.J. Iron and immunity: Immunological consequences of iron deficiency and overload. Arch. Immunol. Ther. Exp., 2010, 58(6), 407-415. doi: 10.1007/s00005-010-0095-9 PMID: 20878249
  48. Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev., 2015, 16(12), 1081-1093. doi: 10.1111/obr.12323 PMID: 26395622
  49. De Falco, L.; Sanchez, M.; Silvestri, L.; Kannengiesser, C.; Muckenthaler, M.U.; Iolascon, A.; Gouya, L.; Camaschella, C.; Beaumont, C. Iron refractory iron deficiency anemia. Haematologica, 2013, 98(6), 845-853. doi: 10.3324/haematol.2012.075515 PMID: 23729726
  50. Ding, H.; Yu, X.; Feng, J. Iron homeostasis disorder in piglet intestine. Metallomics, 2020, 12(10), 1494-1507. doi: 10.1039/d0mt00149j PMID: 32852491
  51. Beguin, Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin. Chim. Acta, 2003, 329(1-2), 9-22. doi: 10.1016/S0009-8981(03)00005-6 PMID: 12589962
  52. Rieu, J.B.; Largeaud, L.; Da Costa, L.; Cougoul, P. Unexplained iron overload with haemolytic anaemia should prompt looking for morphological changes in erythroid precursors. Br. J. Haematol., 2022, 197(2), 132-132. doi: 10.1111/bjh.18030 PMID: 35178704
  53. Abdel Noor, R.A.; Abu-Zaid, M.H.; Elshweikh, S.A.; Rabee, E.S.; Khedr, G.E. FRI0081 The importance of transferrin saturation, serum ferritin, log ferritin and transferrin/log ferritin in differentiating iron deficiency anaemia from anaemia of chronic disease in rheumatoid arthritispatients. Ann. Rheum. Dis., 2018, 77(Suppl. 2), 586.2-587. doi: 10.1136/annrheumdis-2018-eular.3969
  54. Rathnayake, G.; Badrick, T. Is total iron binding capacity (TIBC) calculation correct? Pathology, 2019, 51(4), 451-452. doi: 10.1016/j.pathol.2018.12.419 PMID: 31000172
  55. Barton, J.C.; Acton, R.T. Hepcidin, iron, and bacterial infection. Vitam. Horm., 2019, 110, 223-242. doi: 10.1016/bs.vh.2019.01.011 PMID: 30798814
  56. Faruqi, A.; Mukkamalla, S.K.R. Iron binding capacity. 2023 Jan 2. In: StatPearls Internet.: Treasure Island (FL): StatPearls Publishing;, 2024. https://pubmed.ncbi.nlm.nih.gov/32644545/ PMID: 32644545
  57. Lu, H.Y.; Orkin, S.H.; Sankaran, V.G. Fetal hemoglobin regulation in beta-thalassemia. Hematol. Oncol. Clin. North Am., 2023, 37(2), 301-312. doi: 10.1016/j.hoc.2022.12.002 PMID: 36907604
  58. Ikeda-Taniguchi, M.; Takahashi, K.; Shishido, K.; Honda, H. Total iron binding capacity is a predictor for muscle loss in maintenance hemodialysis patients. Clin. Exp. Nephrol., 2022, 26(6), 583-592. doi: 10.1007/s10157-022-02193-1 PMID: 35179679
  59. Porter, J.L.; Rawla, P. Hemochromatosis; StatPearls Publishing: Treasure Island, FL, 2022, 68, pp. (4)179-182. doi: 10.2478/amma-2022-0031
  60. Rozema, J.; van Asten, I.; Kwant, B.; Kibbelaar, R.E.; Veeger, N.J.G.M.; de Wit, H.; van Roon, E.N.; Hoogendoorn, M. Clinical view versus guideline adherence in ferritin monitoring and initiating iron chelation therapy in patients with myelodysplastic syndromes. Eur. J. Haematol., 2022, 109(6), 772-778. doi: 10.1111/ejh.13865 PMID: 36130872
  61. Kernan, K.F.; Carcillo, J.A. Hyperferritinemia and inflammation. Int. Immunol., 2017, 29(9), 401-409. doi: 10.1093/intimm/dxx031 PMID: 28541437
  62. Leitch, H.A.; Fibach, E.; Rachmilewitz, E. Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell transplantation for hematologic malignancies. Crit. Rev. Oncol. Hematol., 2017, 113, 156-170. doi: 10.1016/j.critrevonc.2017.03.002 PMID: 28427505
  63. Choy, M.; Zhen, Z.; Dong, B.; Chen, C.; Dong, Y.; Liu, C.; Liang, W.; Xue, R. Mean corpuscular haemoglobin concentration and outcomes in heart failure with preserved ejection fraction. ESC Heart Fail., 2023, 10(2), 1214-1221. doi: 10.1002/ehf2.14225 PMID: 36695165
  64. Ning, S.; Luo, Y.; Liang, Y.; Xie, Y.; Lu, Y.; Meng, B.; Pan, J.; Xu, R.; Liu, Y.; Qin, Y. A novel rearrangement of the α-globin gene cluster containing both the −α3.7 and ααααanti4.2 crossover junctions in a Chinese family. Clin. Chim. Acta, 2022, 535, 7-12. doi: 10.1016/j.cca.2022.07.020 PMID: 35944700
  65. WHO. In: Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity World Health Organization, Geneva; , 2011; p. 7. https://www.who.int/publications/i/item/WHO-NMH-NHD-MNM-11.1
  66. Benediktsson, S.B.; Karason, S.; Sigurdsson, M.I. Haemoglobin levels and outcomes of subgroups of patients with pre-operative anaemia based on red cell size: A retrospective cohort study. Acta Anaesthesiol. Scand., 2023, 67(4), 422-431. doi: 10.1111/aas.14198 PMID: 36635957
  67. Sedik, A.S.; Kawana, K.Y.; Koura, A.S.; Mehanna, R.A. Biological effect of bone marrow mesenchymal stem cell- derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. BMC Musculoskelet. Disord., 2023, 24(1), 205. doi: 10.1186/s12891-023-06276-2 PMID: 36932362
  68. Wu, Y.H.; Lee, Y.P.; Yu-Fong Chang, J.; Wang, Y.P.; Chiang, C.P.; Sun, A. Higher frequencies of anemia, vitamin B12 deficiency, and gastric parietal cell antibody positivity in folic acid-deficient Taiwanese male oral submucous fibrosis patients. J. Dent. Sci., 2023, 18(2), 801-807. doi: 10.1016/j.jds.2023.01.014 PMID: 37021251
  69. Naami, N.; Borkhardt, A.; Yoshimi, A.; Grinstein, L.; Escherich, G. Thirteen-month-old girl with hyporegenerative macrocytic anemia due toBROWN–VIALETTO–VAN Laere syndrome 2. Am. J. Hematol., 2022, 97(11), 1495-1496. doi: 10.1002/ajh.26573 PMID: 35441393
  70. Zhao, L.; Yang, X.; Zhang, S.; Zhou, X. Iron metabolism-related indicators as predictors of the incidence of acute kidney injury after cardiac surgery: A meta-analysis. Ren. Fail., 2023, 45(1), 2201362. doi: 10.1080/0886022X.2023.2201362 PMID: 37073631
  71. Arshad, S.; Arif, A.; Wattoo, J.I. Response of iron deficiency markers to blood lead levels and synergistic outcomes at prenatal stage. Dose Response, 2022, 20(2) doi: 10.1177/15593258221101744 PMID: 35602584
  72. Charlebois, E.; Fillebeen, C.; Katsarou, A.; Rabinovich, A.; Wisniewski, K.; Venkataramani, V.; Michalke, B.; Velentza, A.; Pantopoulos, K. A crosstalk between hepcidin and IRE/IRP pathways controls ferroportin expression and determines serum iron levels in mice. eLife, 2022, 11, e81332. doi: 10.7554/eLife.81332 PMID: 36066082
  73. Helman, S.L.; Wilkins, S.J.; McKeating, D.R.; Perkins, A.V.; Cuffe, J.S.M.; Hartel, G.; Faria, N.; Powell, J.J.; Anderson, G.J.; Frazer, D.M. A novel ferritin-core analog is a safe and effective alternative to oral ferrous iron for treating iron deficiency during pregnancy in mice. J. Nutr., 2022, 152(3), 714-722. doi: 10.1093/jn/nxab363 PMID: 34625812
  74. Ham, S.Y.; Jun, J.H.; Kim, H.B.; Shim, J.K.; Lee, G.; Kwak, Y.L. Regulators impeding erythropoiesis following iron supplementation in a clinically relevant rat model of iron deficiency anemia with inflammation. Life Sci., 2022, 310, 121124. doi: 10.1016/j.lfs.2022.121124 PMID: 36306536
  75. Lachowicz, J.I.; Nurchi, V.M.; Fanni, D.; Gerosa, C.; Peana, M.; Zoroddu, M.A. Nutritional iron deficiency: The role of oral iron supplementation. Curr. Med. Chem., 2014, 21(33), 3775-3784. doi: 10.2174/0929867321666140706143925 PMID: 25005180
  76. Hale, A.T.; Brown, R.E.; Luka, Z.; Hudson, B.H.; Matta, P.; Williams, C.S.; York, J.D. Modulation of sulfur assimilation metabolic toxicity overcomes anemia and hemochromatosis in mice. Adv. Biol. Regul., 2020, 76, 100694. doi: 10.1016/j.jbior.2020.100694 PMID: 32019729
  77. Czempik, P.F.; Wiórek, A. Comparison of standard and new iron status biomarkers: A prospective cohort study in sepsis patients. Healthcare, 2023, 11(7), 995. doi: 10.3390/healthcare11070995 PMID: 37046922
  78. Aimone-Gastin, I. Les outils biochimiques de l’evaluation du bilan martial. Nephrol. Ther., 2006, 2(Suppl. 5), S321-S326. PMID: 17373277
  79. Kanwar, P.; Kowdley, K.V. Diagnosis and treatment of hereditary hemochromatosis: An update. Expert Rev. Gastroenterol. Hepatol., 2013, 7(6), 517-530. doi: 10.1586/17474124.2013.816114 PMID: 23985001
  80. Thomas, C.; Thomas, L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin. Chem., 2002, 48(7), 1066-1076. doi: 10.1093/clinchem/48.7.1066 PMID: 12089176
  81. Sies, C.; Florkowski, C.; George, P.; Potter, H. Clinical indications for the investigation of porphyria: Case examples and evolving laboratory approaches to its diagnosis in New Zealand. N. Z. Med. J., 2005, 118(1222), U1658. PMID: 16222352
  82. Vlachou, M.; Kamperidis, V.; Giannakoulas, G.; Karamitsos, T.; Vlachaki, E.; Karvounis, H. Biochemical and imaging markers in patients with thalassaemia. Hellenic J. Cardiol., 2021, 62(1), 4-12. doi: 10.1016/j.hjc.2020.04.012 PMID: 32387594
  83. Thurnham, D.; Northrop-Clewes, C. Biomarkers for the differentiation of anemia and their clinical usefulness. J. Blood Med., 2013, 4, 11-22. doi: 10.2147/JBM.S29212 PMID: 23687454
  84. Barcellini, W.; Fattizzo, B. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis. Markers, 2015, 2015, 1-7. doi: 10.1155/2015/635670 PMID: 26819490
  85. Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr., 2017, 106(Suppl. 6), 1567S-1574S. doi: 10.3945/ajcn.117.155812 PMID: 29070542
  86. Schümann, K.; Solomons, N.W. Perspective: What makes it so difficult to mitigate worldwide anemia prevalence? Adv. Nutr., 2017, 8(3), 401-408. doi: 10.3945/an.116.013847 PMID: 28507005
  87. Yang, K.; Pan, Y.; Jin, L.; Yu, F.; Zhang, F. Low serum soluble transferrin receptor levels are associated with poor prognosis in patients with hepatitis b virus–related acute-on-chronic liver failure. Biol. Trace Elem. Res., 2023, 201(6), 2757-2764. doi: 10.1007/s12011-022-03385-2 PMID: 35969310
  88. Ricchi, P.; Ammirabile, M.; Costantini, S.; Di Matola, T.; Verna, R.; Diano, A.; Foglia, M.C.; Spasiano, A.; Cinque, P.; Prossomariti, L. A useful relationship between the presence of extramedullary erythropoeisis and the level of the soluble form of the transferrin receptor in a large cohort of adult patients with thalassemia intermedia: a prospective study. Ann. Hematol., 2012, 91(6), 905-909. doi: 10.1007/s00277-011-1385-y PMID: 22167341
  89. Lismawati; Yusra; Effendy, D.; Kurniawan, L.; Lydia, A. Role of soluble transferrin receptor – An Iron marker in hemodialysis patients. Indian J. Nephrol., 2022, 32(6), 555-559. doi: 10.4103/ijn.IJN_486_20 PMID: 36704598
  90. Næss-Andresen, M.L.; Jenum, A.K.; Berg, J.P.; Falk, R.S.; Sletner, L. Prevalence of postpartum anaemia and iron deficiency by serum ferritin, soluble transferrin receptor and total body iron, and associations with ethnicity and clinical factors: A Norwegian population-based cohort study. J. Nutr. Sci., 2022, 11, e46. doi: 10.1017/jns.2022.45 PMID: 35754987
  91. Crielaard, B.J.; Lammers, T.; Rivella, S. Targeting iron metabolism in drug discovery and delivery. Nat. Rev. Drug Discov., 2017, 16(6), 400-423. doi: 10.1038/nrd.2016.248 PMID: 28154410
  92. Wang, H.; Qi, Q.; Song, S.; Zhang, D.; Feng, L. Association between soluble transferrin receptor and systolic hypertension in adults: National health and nutrition examination survey (2007–2010 and 2015–2018). Front. Cardiovasc. Med., 2022, 9, 1029714. doi: 10.3389/fcvm.2022.1029714 PMID: 36407469
  93. Lyle, A.N.; Budd, J.R.; Kennerley, V.M.; Smith, B.N.; Danilenko, U.; Pfeiffer, C.M.; Vesper, H.W. Assessment of WHO 07/202 reference material and human serum pools for commutability and for the potential to reduce variability among soluble transferrin receptor assays. Clin. Chem. Lab. Med., 2023, 61(10), 1719-1729. doi: 10.1515/cclm-2022-1198 PMID: 37071928
  94. Leventi, E.; Aksan, A.; Nebe, C.T.; Stein, J.; Farrag, K. Zinc protoporphyrin is a reliable marker of functional iron deficiency in patients with inflammatory bowel disease. Diagnostics, 2021, 11(2), 366. doi: 10.3390/diagnostics11020366 PMID: 33670067
  95. Allen, A.; Perera, S.; Perera, L.; Rodrigo, R.; Mettananda, S.; Matope, A.; Silva, I.; Hameed, N.; Fisher, C.A.; Olivieri, N.; Weatherall, D.J.; Allen, S.; Premawardhena, A. A "one-stop" screening protocol for haemoglobinopathy traits and iron deficiency in Sri lanka. Front. Mol. Biosci., 2019, 6, 66. doi: 10.3389/fmolb.2019.00066 PMID: 31448286
  96. Teshome, E.M.; Prentice, A.M.; Demir, A.Y.; Andang’o, P.E.A.; Verhoef, H. Diagnostic utility of zinc protoporphyrin to detect iron deficiency in Kenyan preschool children: A community-based survey. BMC Hematol., 2017, 17(1), 11. doi: 10.1186/s12878-017-0082-z PMID: 28770094
  97. Bjørklund, G.; Tippairote, T.; Hangan, T.; Chirumbolo, S.; Peana, M. Early-life lead exposure: risks and neurotoxic consequences. Curr. Med. Chem., 2023, 30 doi: 10.2174/0929867330666230409135310 PMID: 37031386
  98. Ji, R.; Jia, F.; Chen, X.; Gao, Y.; Yang, J. Carnosol inhibits KGN cells oxidative stress and apoptosis and attenuates polycystic ovary syndrome phenotypes in mice through Keap1-mediated Nrf2/ HO-1 activation. Phytother. Res., 2023, 37(4), 1405-1421. doi: 10.1002/ptr.7749 PMID: 36786429
  99. Genovese, G.; Maronese, C.A.; Moltrasio, C.; Piccinno, R.; Marletta, D.A.; De Luca, G.; Graziadei, G.; Granata, F.; Di Pierro, E.; Cappellini, M.D.; Marzano, A.V. Ultraviolet a phototest positivity is associated with higher free erythrocyte protoporphyrin ix concentration and lower transferrin saturation values in erythropoietic protoporphyria. Photodermatol. Photoimmunol. Photomed., 2022, 38(2), 141-149. doi: 10.1111/phpp.12727 PMID: 34420239
  100. Juncà, J.; Flores, A.; Roy, C.; Alberti, R.; Millá, F. Red cell distribution width, free erythrocyte protoporphyrin, and England-fraser index in the differential diagnosis of microcytosis due to iron deficiency or beta-thalassemia trait. A study of 200 cases of microcytic anemia. Hematol. Pathol., 1991, 5(1), 33-36. PMID: 2050603
  101. Jackson, R.T.; Al-Mousa, Z. Iron deficiency is a more important cause of anemia than hemoglobinopathies in Kuwaiti adolescent girls. J. Nutr., 2000, 130(5), 1212-1216. doi: 10.1093/jn/130.5.1212 PMID: 10801921
  102. Tristão, V.R.; de Carvalho, F.F.; Gomes, C.Z.; Miranda, A.R.; Vequi-Suplicy, C.C.; Lamy, M.T.; Schor, N.; Bellini, M.H. Study of blood porphyrin spectral profile for diagnosis of chronic renal failure. J. Fluoresc., 2010, 20(3), 665-669. doi: 10.1007/s10895-010-0600-x PMID: 20177750
  103. Sigh, S.; Roos, N.; Chhoun, C.; Laillou, A.; Wieringa, F.T. Ready-to-use therapeutic foods fail to improve vitamin a and iron status meaningfully during treatment for severe acute malnutrition in 6–59-month-old cambodian children. Nutrients, 2023, 15(4), 905. doi: 10.3390/nu15040905 PMID: 36839263
  104. Chitekwe, S.; Parajuli, K.R.; Paudyal, N.; Haag, K.C.; Renzaho, A.; Issaka, A.; Agho, K. Individual, household and national factors associated with iron, vitamin A and zinc deficiencies among children aged 6-59 months in Nepal. Matern Child Nutr., 2022, 18(1), 13305. doi: 10.1111/mcn.13305
  105. Lundeen, E.A.; Lind, J.N.; Clarke, K.E.N.; Aburto, N.J.; Imanalieva, C.; Mamyrbaeva, T.; Ismailova, A.; Timmer, A.; Whitehead, R.D., Jr; Praslova, L.; Samohleb, G.; Minbaev, M.; Addo, O.Y.; Serdula, M.K. Four years after implementation of a national micronutrient powder program in Kyrgyzstan, prevalence of iron deficiency and iron deficiency anemia is lower, but prevalence of vitamin A deficiency is higher. Eur. J. Clin. Nutr., 2019, 73(3), 416-423. doi: 10.1038/s41430-018-0368-7 PMID: 30523305
  106. Abizari, A.R.; Azupogo, F.; Brouwer, I.D. Subclinical inflammation influences the association between vitamin A- and iron status among school children in Ghana. PLoS One, 2017, 12(2), e0170747. doi: 10.1371/journal.pone.0170747 PMID: 28152069
  107. Brindle, E.; Lillis, L.; Barney, R.; Hess, S.Y.; Wessells, K.R.; Ouédraogo, C.T.; Stinca, S.; Kalnoky, M.; Peck, R.; Tyler, A.; Lyman, C.; Boyle, D.S. Simultaneous assessment of iodine, iron, vitamin A, malarial antigenemia, and inflammation status biomarkers via a multiplex immunoassay method on a population of pregnant women from Niger. PLoS One, 2017, 12(10), e0185868. doi: 10.1371/journal.pone.0185868 PMID: 28982133
  108. Szczepanek-Parulska, E.; Hernik, A.; Ruchała, M. Anemia in thyroid diseases. Polish Arch. Intern. Med., 2017, 127(5), 352-360. doi: 10.20452/pamw.3985 PMID: 28400547

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers