Iron-related Biomarkers in the Diagnosis and Management of Iron Disorders
- Authors: Semenova Y.1, Bjørklund G.2, Butnariu M.3, Peana M.4
-
Affiliations:
- Department of Research, Nazarbayev University School of Medicine
- Department of Research,, Council for Nutritional and Environmental Medicine
- Department of Research,, University of Life Sciences "King Mihai I" from Timisoara
- Department of Chemical, Physical, Mathematical and Natural Sciences,, University of Sassari
- Issue: Vol 31, No 27 (2024)
- Pages: 4233-4248
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644961
- DOI: https://doi.org/10.2174/0109298673263003231228060800
- ID: 644961
Cite item
Full Text
Abstract
Background:Iron deficiency and iron-related disorders are common health issues worldwide, affecting a significant proportion of the population. Diagnosis and management of these disorders rely heavily on using various iron-related biomarkers that can provide valuable clinical information.
Objective:This review article provides an overview of the most commonly used iron-related biomarkers, including serum ferritin, transferrin saturation, soluble transferrin receptor, zinc protoporphyrin, and free erythrocyte protoporphyrin. Other emerging biomarkers, such as hepcidin and retinol-binding protein 4, are also discussed.
Results:Iron plays a vital role in various physiological processes, including oxygen transport, energy metabolism, and DNA synthesis. The article highlights the advantages and limitations of iron biomarkers and their clinical applications in diagnosing and managing iron deficiency and iron-related anemia.
Conclusion:Using iron-related biomarkers in screening and monitoring programs can improve patient outcomes and reduce healthcare costs.
Keywords
About the authors
Yuliya Semenova
Department of Research, Nazarbayev University School of Medicine
Email: info@benthamscience.net
Geir Bjørklund
Department of Research,, Council for Nutritional and Environmental Medicine
Author for correspondence.
Email: info@benthamscience.net
Monica Butnariu
Department of Research,, University of Life Sciences "King Mihai I" from Timisoara
Email: info@benthamscience.net
Massimiliano Peana
Department of Chemical, Physical, Mathematical and Natural Sciences,, University of Sassari
Email: info@benthamscience.net
References
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact., 2022, 367, 110173. doi: 10.1016/j.cbi.2022.110173 PMID: 36152810
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 PMID: 30939379
- Bjørklund, G.; Peana, M.; Pivina, L.; Dosa, A.; Aaseth, J.; Semenova, Y.; Chirumbolo, S.; Medici, S.; Dadar, M.; Costea, D.O. Iron deficiency in obesity and after bariatric surgery. Biomolecules, 2021, 11(5), 613. doi: 10.3390/biom11050613 PMID: 33918997
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 19932005. Public Health Nutr., 2009, 12(4), 444-454. doi: 10.1017/S1368980008002401 PMID: 18498676
- Latunde-Dada, G.O. Iron metabolism: Microbes, mouse, and man. BioEssays, 2009, 31(12), 1309-1317. doi: 10.1002/bies.200900101 PMID: 19877004
- Levi, M.; Rosselli, M.; Simonetti, M.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Cataldo, N.; Heiman, F.; Chelo, M.; Cricelli, I.; Cricelli, C.; Lapi, F. Epidemiology of iron deficiency anaemia in four European countries: a population-based study in primary care. Eur. J. Haematol., 2016, 97(6), 583-593. doi: 10.1111/ejh.12776 PMID: 27155295
- Bjørklund, G.; Hangan, T.; Semenova, Y.; Pen, J.J.; Aaseth, J.; Peana, M. Perspectives on iron deficiency as a cause of human disease in global public health. Curr. Med. Chem., 2023, 30, 1-13. doi: 10.2174/0929867330666230324154606
- McKie, A.T.; Barrow, D.; Latunde-Dada, G.O.; Rolfs, A.; Sager, G.; Mudaly, E.; Mudaly, M.; Richardson, C.; Barlow, D.; Bomford, A.; Peters, T.J.; Raja, K.B.; Shirali, S.; Hediger, M.A.; Farzaneh, F.; Simpson, R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science, 2001, 291(5509), 1755-1759. doi: 10.1126/science.1057206 PMID: 11230685
- Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin, Y.; Romero, M.F.; Boron, W.F.; Nussberger, S.; Gollan, J.L.; Hediger, M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997, 388(6641), 482-488. doi: 10.1038/41343 PMID: 9242408
- Mackenzie, B.; Garrick, M.D. Iron Imports. II. Iron uptake at the apical membrane in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(6), G981-G986. doi: 10.1152/ajpgi.00363.2005 PMID: 16286504
- Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A red carpet for iron metabolism. Cell, 2017, 168(3), 344-361. doi: 10.1016/j.cell.2016.12.034 PMID: 28129536
- Daru, J.; Colman, K.; Stanworth, S.J.; De La Salle, B.; Wood, E.M.; Pasricha, S.R. Serum ferritin as an indicator of iron status: what do we need to know? Am. J. Clin. Nutr., 2017, 106(Suppl. 6), 1634S-1639S. doi: 10.3945/ajcn.117.155960 PMID: 29070560
- Kautz, L.; Jung, G.; Nemeth, E.; Ganz, T. Erythroferrone contributes to recovery from anemia of inflammation. Blood, 2014, 124(16), 2569-2574. doi: 10.1182/blood-2014-06-584607 PMID: 25193872
- Girelli, D.; Ugolini, S.; Busti, F.; Marchi, G.; Castagna, A. Modern iron replacement therapy: Clinical and pathophysiological insights. Int. J. Hematol., 2018, 107(1), 16-30. doi: 10.1007/s12185-017-2373-3 PMID: 29196967
- Bai, S.; Cao, S.; Ma, X.; Li, X.; Liao, X.; Zhang, L.; Zhang, M.; Zhang, R.; Hou, S.; Luo, X.; Lu, L. Organic iron absorption and expression of related transporters in the small intestine of broilers. Poult. Sci., 2021, 100(8), 101182. doi: 10.1016/j.psj.2021.101182 PMID: 34198093
- Hooda, J.; Shah, A.; Zhang, L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients, 2014, 6(3), 1080-1102. doi: 10.3390/nu6031080 PMID: 24633395
- Xu, X.; Liu, Y.; Tang, M.; Yan, Y.; Gu, W.; Wang, W.; Meng, Q. The function of Eriocheir sinensis transferrin and iron in Spiroplasma eriocheiris infection. Fish Shellfish Immunol., 2018, 79, 79-85. doi: 10.1016/j.fsi.2018.05.019 PMID: 29753143
- Keleş Altun, İ.; Atagün, M.İ.; Erdoğan, A.; Oymak Yenilmez, D.; Yusifova, A.; Şenat, A.; Erel, Ö. Serum hepcidin / ferroportin levels in bipolar disorder and schizophrenia. J. Trace Elem. Med. Biol., 2021, 68, 126843. doi: 10.1016/j.jtemb.2021.126843 PMID: 34416474
- Nemeth, E.; Ganz, T. Hepcidin and iron in health and disease. Annu. Rev. Med., 2023, 74(1), 261-277. doi: 10.1146/annurev-med-043021-032816 PMID: 35905974
- Varga, E.; Pap, R.; Jánosa, G.; Sipos, K.; Pandur, E. IL-6 regulates hepcidin expression via the BMP/SMAD pathway by altering BMP6, TMPRSS6 and TfR2 expressions at normal and inflammatory conditions in BV2 microglia. Neurochem. Res., 2021, 46(5), 1224-1238. doi: 10.1007/s11064-021-03322-0 PMID: 33835366
- Barrows, I.R.; Devalaraja, M.; Kakkar, R.; Chen, J.; Gupta, J.; Rosas, S.E.; Saraf, S.; He, J.; Go, A.; Raj, D.S.; Amdur, R.L.; Unruh, M.L.; Shah, V.O.; Rao, P.S.; Rahman, M.; Nelson, R.G.; Lash, J.P.; Feldman, H.I.; Cohen, D.; Appel, L.J. Race, interleukin-6, TMPRSS6 genotype, and cardiovascular disease in patients with chronic kidney disease. J. Am. Heart Assoc., 2022, 11(18), e025627. doi: 10.1161/JAHA.122.025627 PMID: 36102277
- Rivera, S.; Liu, L.; Nemeth, E.; Gabayan, V.; Sorensen, O.E.; Ganz, T. Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia. Blood, 2005, 105(4), 1797-1802. doi: 10.1182/blood-2004-08-3375 PMID: 15479721
- Menon, A.V.; Liu, J.; Tsai, H.P.; Zeng, L.; Yang, S.; Asnani, A.; Kim, J. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood, 2022, 139(6), 936-941. doi: 10.1182/blood.2020008455 PMID: 34388243
- Lisova, A.E.; Baranovskiy, A.G.; Morstadt, L.M.; Babayeva, N.D.; Stepchenkova, E.I.; Tahirov, T.H. The iron-sulfur cluster is essential for DNA binding by human DNA polymerase ε. Sci. Rep., 2022, 12(1), 17436. doi: 10.1038/s41598-022-21550-4 PMID: 36261579
- Burn, M.S.; Lundsberg, L.S.; Culhane, J.F.; Partridge, C.; Son, M. Intravenous iron for treatment of iron deficiency anemia during pregnancy and associated maternal outcomes. J. Matern. Fetal Neonatal Med., 2023, 36(1), 2192855. doi: 10.1080/14767058.2023.2192855 PMID: 36958808
- Pivina, L.; Semenova, Y.; Doşa, M.D.; Dauletyarova, M.; Bjørklund, G. Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J. Mol. Neurosci., 2019, 68(1), 1-10. doi: 10.1007/s12031-019-01276-1 PMID: 30778834
- Vinkenoog, M.; de Groot, R.; Lakerveld, J.; Janssen, M.; van den Hurk, K. Individual and environmental determinants of serum ferritin levels: A structural equation model. Transfus. Med., 2023, 33(2), 113-122. doi: 10.1111/tme.12902 PMID: 37009681
- Parida, A.; Mohanty, A.; Kansara, B.T.; Behera, R.K. Impact of phosphate on iron mineralization and mobilization in nonheme bacterioferritin b from Mycobacterium tuberculosis. Inorg. Chem., 2020, 59(1), 629-641. doi: 10.1021/acs.inorgchem.9b02894 PMID: 31820939
- Bjørklund, G.; Aaseth, J.; Skalny, A.V.; Suliburska, J.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J. Trace Elem. Med. Biol., 2017, 41, 41-53. doi: 10.1016/j.jtemb.2017.02.005 PMID: 28347462
- Young, B.; Zaritsky, J. Hepcidin for clinicians. Clin. J. Am. Soc. Nephrol., 2009, 4(8), 1384-1387. doi: 10.2215/CJN.02190309 PMID: 19556376
- Kuruppu, A.I.; Turyanska, L.; Bradshaw, T.D.; Manickam, S.; Galhena, B.P.; Paranagama, P.; De Silva, R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(2), 130067. doi: 10.1016/j.bbagen.2021.130067 PMID: 34896255
- Guo, M.; Gao, M.; Liu, J.; Xu, N.; Wang, H. Bacterioferritin nanocage: Structure, biological function, catalytic mechanism, self-assembly and potential applications. Biotechnol. Adv., 2022, 61, 108057. doi: 10.1016/j.biotechadv.2022.108057 PMID: 36328189
- Theil, E.C. Ferritin protein nanocagesthe story. Nanotechnol. Percept., 2012, 8(1), 7-16. doi: 10.4024/N03TH12A.ntp.08.01 PMID: 24198751
- Reyes-Becerril, M.; Angulo-Valadez, C.; Macias, M.E.; Angulo, M.; Ascencio-Valle, F. Iron bioavailability in larvae yellow snapper (Lutjanus argentiventris): Cloning and expression analysis of ferritin-H. Fish Shellfish Immunol., 2014, 37(2), 248-255. doi: 10.1016/j.fsi.2014.02.011 PMID: 24561126
- Meyron-Holtz, E.G.; Fibach, E.; Gelvan, D.; Konijn, A.M. Binding and uptake of exogenous isoferritins by cultured human erythroid precursor cells. Br. J. Haematol., 1994, 86(3), 635-641. doi: 10.1111/j.1365-2141.1994.tb04797.x PMID: 8043447
- World Health Organization. WHO guideline on use of ferritin concentrations to assess iron status in populations. World Health Organization, 2020, 82. https://www.who.int/publications/i/item/9789240000124
- Finch, C.A.; Bellotti, V.; Stray, S.; Lipschitz, D.A.; Cook, J.D.; Pippard, M.J.; Huebers, H.A. Plasma ferritin determination as a diagnostic tool. West. J. Med., 1986, 145(5), 657-663. PMID: 3541387
- Weiss, G. Modification of iron regulation by the inflammatory response. Best Pract. Res. Clin. Haematol., 2005, 18(2), 183-201. doi: 10.1016/j.beha.2004.09.001 PMID: 15737884
- Kalantar-Zadeh, K.; Kalantar-Zadeh, K.; Lee, G.H. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin. J. Am. Soc. Nephrol., 2006, 1(Suppl. 1), S9-S18. doi: 10.2215/CJN.01390406 PMID: 17699375
- Alves, M.T.; Vilaça, S.S.; Carvalho, M.G.; Fernandes, A.P.; Dusse, L.M.S.A.; Gomes, K.B. Resistance of dialyzed patients to erythropoietin. Rev. Bras. Hematol. Hemoter., 2015, 37(3), 190-197. doi: 10.1016/j.bjhh.2015.02.001 PMID: 26041422
- Wish, J.B. Assessing iron status: Beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol., 2006, 1(Suppl. 1), S4-S8. doi: 10.2215/CJN.01490506 PMID: 17699374
- Guyatt, G.H.; Oxman, A.D.; Ali, M.; Willan, A.; McIlroy, W.; Patterson, C. Laboratory diagnosis of iron-deficiency anemia. J. Gen. Intern. Med., 1992, 7(2), 145-153. doi: 10.1007/BF02598003 PMID: 1487761
- Peirano, P.D.; Algarin, C.R.; Chamorro, R.; Reyes, S.; Garrido, M.I.; Duran, S.; Lozoff, B. Sleep and neurofunctions throughout child development: lasting effects of early iron deficiency. J. Pediatr. Gastroenterol. Nutr, 2009, 48(1), 8-15. doi: 10.1097/MPG.0b013e31819773b
- Zaritsky, J.; Young, B.; Wang, H.J.; Westerman, M.; Olbina, G.; Nemeth, E.; Ganz, T.; Rivera, S.; Nissenson, A.R.; Salusky, I.B. Hepcidin--a potential novel biomarker for iron status in chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2009, 4(6), 1051-1056. doi: 10.2215/CJN.05931108 PMID: 19406957
- Baumgartner, J.; Barth-Jaeggi, T. Iron interventions in children from low-income and middle-income populations. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(3), 289-294. doi: 10.1097/MCO.0000000000000168 PMID: 25807351
- Blanchette, N.L.; Manz, D.H.; Torti, F.M.; Torti, S.V. Modulation of hepcidin to treat iron deregulation: Potential clinical applications. Expert Rev. Hematol., 2016, 9(2), 169-186. doi: 10.1586/17474086.2016.1124757 PMID: 26669208
- Cherayil, B.J. Iron and immunity: Immunological consequences of iron deficiency and overload. Arch. Immunol. Ther. Exp., 2010, 58(6), 407-415. doi: 10.1007/s00005-010-0095-9 PMID: 20878249
- Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev., 2015, 16(12), 1081-1093. doi: 10.1111/obr.12323 PMID: 26395622
- De Falco, L.; Sanchez, M.; Silvestri, L.; Kannengiesser, C.; Muckenthaler, M.U.; Iolascon, A.; Gouya, L.; Camaschella, C.; Beaumont, C. Iron refractory iron deficiency anemia. Haematologica, 2013, 98(6), 845-853. doi: 10.3324/haematol.2012.075515 PMID: 23729726
- Ding, H.; Yu, X.; Feng, J. Iron homeostasis disorder in piglet intestine. Metallomics, 2020, 12(10), 1494-1507. doi: 10.1039/d0mt00149j PMID: 32852491
- Beguin, Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin. Chim. Acta, 2003, 329(1-2), 9-22. doi: 10.1016/S0009-8981(03)00005-6 PMID: 12589962
- Rieu, J.B.; Largeaud, L.; Da Costa, L.; Cougoul, P. Unexplained iron overload with haemolytic anaemia should prompt looking for morphological changes in erythroid precursors. Br. J. Haematol., 2022, 197(2), 132-132. doi: 10.1111/bjh.18030 PMID: 35178704
- Abdel Noor, R.A.; Abu-Zaid, M.H.; Elshweikh, S.A.; Rabee, E.S.; Khedr, G.E. FRI0081 The importance of transferrin saturation, serum ferritin, log ferritin and transferrin/log ferritin in differentiating iron deficiency anaemia from anaemia of chronic disease in rheumatoid arthritispatients. Ann. Rheum. Dis., 2018, 77(Suppl. 2), 586.2-587. doi: 10.1136/annrheumdis-2018-eular.3969
- Rathnayake, G.; Badrick, T. Is total iron binding capacity (TIBC) calculation correct? Pathology, 2019, 51(4), 451-452. doi: 10.1016/j.pathol.2018.12.419 PMID: 31000172
- Barton, J.C.; Acton, R.T. Hepcidin, iron, and bacterial infection. Vitam. Horm., 2019, 110, 223-242. doi: 10.1016/bs.vh.2019.01.011 PMID: 30798814
- Faruqi, A.; Mukkamalla, S.K.R. Iron binding capacity. 2023 Jan 2. In: StatPearls Internet.: Treasure Island (FL): StatPearls Publishing;, 2024. https://pubmed.ncbi.nlm.nih.gov/32644545/ PMID: 32644545
- Lu, H.Y.; Orkin, S.H.; Sankaran, V.G. Fetal hemoglobin regulation in beta-thalassemia. Hematol. Oncol. Clin. North Am., 2023, 37(2), 301-312. doi: 10.1016/j.hoc.2022.12.002 PMID: 36907604
- Ikeda-Taniguchi, M.; Takahashi, K.; Shishido, K.; Honda, H. Total iron binding capacity is a predictor for muscle loss in maintenance hemodialysis patients. Clin. Exp. Nephrol., 2022, 26(6), 583-592. doi: 10.1007/s10157-022-02193-1 PMID: 35179679
- Porter, J.L.; Rawla, P. Hemochromatosis; StatPearls Publishing: Treasure Island, FL, 2022, 68, pp. (4)179-182. doi: 10.2478/amma-2022-0031
- Rozema, J.; van Asten, I.; Kwant, B.; Kibbelaar, R.E.; Veeger, N.J.G.M.; de Wit, H.; van Roon, E.N.; Hoogendoorn, M. Clinical view versus guideline adherence in ferritin monitoring and initiating iron chelation therapy in patients with myelodysplastic syndromes. Eur. J. Haematol., 2022, 109(6), 772-778. doi: 10.1111/ejh.13865 PMID: 36130872
- Kernan, K.F.; Carcillo, J.A. Hyperferritinemia and inflammation. Int. Immunol., 2017, 29(9), 401-409. doi: 10.1093/intimm/dxx031 PMID: 28541437
- Leitch, H.A.; Fibach, E.; Rachmilewitz, E. Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell transplantation for hematologic malignancies. Crit. Rev. Oncol. Hematol., 2017, 113, 156-170. doi: 10.1016/j.critrevonc.2017.03.002 PMID: 28427505
- Choy, M.; Zhen, Z.; Dong, B.; Chen, C.; Dong, Y.; Liu, C.; Liang, W.; Xue, R. Mean corpuscular haemoglobin concentration and outcomes in heart failure with preserved ejection fraction. ESC Heart Fail., 2023, 10(2), 1214-1221. doi: 10.1002/ehf2.14225 PMID: 36695165
- Ning, S.; Luo, Y.; Liang, Y.; Xie, Y.; Lu, Y.; Meng, B.; Pan, J.; Xu, R.; Liu, Y.; Qin, Y. A novel rearrangement of the α-globin gene cluster containing both the −α3.7 and ααααanti4.2 crossover junctions in a Chinese family. Clin. Chim. Acta, 2022, 535, 7-12. doi: 10.1016/j.cca.2022.07.020 PMID: 35944700
- WHO. In: Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity World Health Organization, Geneva; , 2011; p. 7. https://www.who.int/publications/i/item/WHO-NMH-NHD-MNM-11.1
- Benediktsson, S.B.; Karason, S.; Sigurdsson, M.I. Haemoglobin levels and outcomes of subgroups of patients with pre-operative anaemia based on red cell size: A retrospective cohort study. Acta Anaesthesiol. Scand., 2023, 67(4), 422-431. doi: 10.1111/aas.14198 PMID: 36635957
- Sedik, A.S.; Kawana, K.Y.; Koura, A.S.; Mehanna, R.A. Biological effect of bone marrow mesenchymal stem cell- derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. BMC Musculoskelet. Disord., 2023, 24(1), 205. doi: 10.1186/s12891-023-06276-2 PMID: 36932362
- Wu, Y.H.; Lee, Y.P.; Yu-Fong Chang, J.; Wang, Y.P.; Chiang, C.P.; Sun, A. Higher frequencies of anemia, vitamin B12 deficiency, and gastric parietal cell antibody positivity in folic acid-deficient Taiwanese male oral submucous fibrosis patients. J. Dent. Sci., 2023, 18(2), 801-807. doi: 10.1016/j.jds.2023.01.014 PMID: 37021251
- Naami, N.; Borkhardt, A.; Yoshimi, A.; Grinstein, L.; Escherich, G. Thirteen-month-old girl with hyporegenerative macrocytic anemia due toBROWNVIALETTOVAN Laere syndrome 2. Am. J. Hematol., 2022, 97(11), 1495-1496. doi: 10.1002/ajh.26573 PMID: 35441393
- Zhao, L.; Yang, X.; Zhang, S.; Zhou, X. Iron metabolism-related indicators as predictors of the incidence of acute kidney injury after cardiac surgery: A meta-analysis. Ren. Fail., 2023, 45(1), 2201362. doi: 10.1080/0886022X.2023.2201362 PMID: 37073631
- Arshad, S.; Arif, A.; Wattoo, J.I. Response of iron deficiency markers to blood lead levels and synergistic outcomes at prenatal stage. Dose Response, 2022, 20(2) doi: 10.1177/15593258221101744 PMID: 35602584
- Charlebois, E.; Fillebeen, C.; Katsarou, A.; Rabinovich, A.; Wisniewski, K.; Venkataramani, V.; Michalke, B.; Velentza, A.; Pantopoulos, K. A crosstalk between hepcidin and IRE/IRP pathways controls ferroportin expression and determines serum iron levels in mice. eLife, 2022, 11, e81332. doi: 10.7554/eLife.81332 PMID: 36066082
- Helman, S.L.; Wilkins, S.J.; McKeating, D.R.; Perkins, A.V.; Cuffe, J.S.M.; Hartel, G.; Faria, N.; Powell, J.J.; Anderson, G.J.; Frazer, D.M. A novel ferritin-core analog is a safe and effective alternative to oral ferrous iron for treating iron deficiency during pregnancy in mice. J. Nutr., 2022, 152(3), 714-722. doi: 10.1093/jn/nxab363 PMID: 34625812
- Ham, S.Y.; Jun, J.H.; Kim, H.B.; Shim, J.K.; Lee, G.; Kwak, Y.L. Regulators impeding erythropoiesis following iron supplementation in a clinically relevant rat model of iron deficiency anemia with inflammation. Life Sci., 2022, 310, 121124. doi: 10.1016/j.lfs.2022.121124 PMID: 36306536
- Lachowicz, J.I.; Nurchi, V.M.; Fanni, D.; Gerosa, C.; Peana, M.; Zoroddu, M.A. Nutritional iron deficiency: The role of oral iron supplementation. Curr. Med. Chem., 2014, 21(33), 3775-3784. doi: 10.2174/0929867321666140706143925 PMID: 25005180
- Hale, A.T.; Brown, R.E.; Luka, Z.; Hudson, B.H.; Matta, P.; Williams, C.S.; York, J.D. Modulation of sulfur assimilation metabolic toxicity overcomes anemia and hemochromatosis in mice. Adv. Biol. Regul., 2020, 76, 100694. doi: 10.1016/j.jbior.2020.100694 PMID: 32019729
- Czempik, P.F.; Wiórek, A. Comparison of standard and new iron status biomarkers: A prospective cohort study in sepsis patients. Healthcare, 2023, 11(7), 995. doi: 10.3390/healthcare11070995 PMID: 37046922
- Aimone-Gastin, I. Les outils biochimiques de levaluation du bilan martial. Nephrol. Ther., 2006, 2(Suppl. 5), S321-S326. PMID: 17373277
- Kanwar, P.; Kowdley, K.V. Diagnosis and treatment of hereditary hemochromatosis: An update. Expert Rev. Gastroenterol. Hepatol., 2013, 7(6), 517-530. doi: 10.1586/17474124.2013.816114 PMID: 23985001
- Thomas, C.; Thomas, L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin. Chem., 2002, 48(7), 1066-1076. doi: 10.1093/clinchem/48.7.1066 PMID: 12089176
- Sies, C.; Florkowski, C.; George, P.; Potter, H. Clinical indications for the investigation of porphyria: Case examples and evolving laboratory approaches to its diagnosis in New Zealand. N. Z. Med. J., 2005, 118(1222), U1658. PMID: 16222352
- Vlachou, M.; Kamperidis, V.; Giannakoulas, G.; Karamitsos, T.; Vlachaki, E.; Karvounis, H. Biochemical and imaging markers in patients with thalassaemia. Hellenic J. Cardiol., 2021, 62(1), 4-12. doi: 10.1016/j.hjc.2020.04.012 PMID: 32387594
- Thurnham, D.; Northrop-Clewes, C. Biomarkers for the differentiation of anemia and their clinical usefulness. J. Blood Med., 2013, 4, 11-22. doi: 10.2147/JBM.S29212 PMID: 23687454
- Barcellini, W.; Fattizzo, B. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis. Markers, 2015, 2015, 1-7. doi: 10.1155/2015/635670 PMID: 26819490
- Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr., 2017, 106(Suppl. 6), 1567S-1574S. doi: 10.3945/ajcn.117.155812 PMID: 29070542
- Schümann, K.; Solomons, N.W. Perspective: What makes it so difficult to mitigate worldwide anemia prevalence? Adv. Nutr., 2017, 8(3), 401-408. doi: 10.3945/an.116.013847 PMID: 28507005
- Yang, K.; Pan, Y.; Jin, L.; Yu, F.; Zhang, F. Low serum soluble transferrin receptor levels are associated with poor prognosis in patients with hepatitis b virusrelated acute-on-chronic liver failure. Biol. Trace Elem. Res., 2023, 201(6), 2757-2764. doi: 10.1007/s12011-022-03385-2 PMID: 35969310
- Ricchi, P.; Ammirabile, M.; Costantini, S.; Di Matola, T.; Verna, R.; Diano, A.; Foglia, M.C.; Spasiano, A.; Cinque, P.; Prossomariti, L. A useful relationship between the presence of extramedullary erythropoeisis and the level of the soluble form of the transferrin receptor in a large cohort of adult patients with thalassemia intermedia: a prospective study. Ann. Hematol., 2012, 91(6), 905-909. doi: 10.1007/s00277-011-1385-y PMID: 22167341
- Lismawati; Yusra; Effendy, D.; Kurniawan, L.; Lydia, A. Role of soluble transferrin receptor An Iron marker in hemodialysis patients. Indian J. Nephrol., 2022, 32(6), 555-559. doi: 10.4103/ijn.IJN_486_20 PMID: 36704598
- Næss-Andresen, M.L.; Jenum, A.K.; Berg, J.P.; Falk, R.S.; Sletner, L. Prevalence of postpartum anaemia and iron deficiency by serum ferritin, soluble transferrin receptor and total body iron, and associations with ethnicity and clinical factors: A Norwegian population-based cohort study. J. Nutr. Sci., 2022, 11, e46. doi: 10.1017/jns.2022.45 PMID: 35754987
- Crielaard, B.J.; Lammers, T.; Rivella, S. Targeting iron metabolism in drug discovery and delivery. Nat. Rev. Drug Discov., 2017, 16(6), 400-423. doi: 10.1038/nrd.2016.248 PMID: 28154410
- Wang, H.; Qi, Q.; Song, S.; Zhang, D.; Feng, L. Association between soluble transferrin receptor and systolic hypertension in adults: National health and nutrition examination survey (20072010 and 20152018). Front. Cardiovasc. Med., 2022, 9, 1029714. doi: 10.3389/fcvm.2022.1029714 PMID: 36407469
- Lyle, A.N.; Budd, J.R.; Kennerley, V.M.; Smith, B.N.; Danilenko, U.; Pfeiffer, C.M.; Vesper, H.W. Assessment of WHO 07/202 reference material and human serum pools for commutability and for the potential to reduce variability among soluble transferrin receptor assays. Clin. Chem. Lab. Med., 2023, 61(10), 1719-1729. doi: 10.1515/cclm-2022-1198 PMID: 37071928
- Leventi, E.; Aksan, A.; Nebe, C.T.; Stein, J.; Farrag, K. Zinc protoporphyrin is a reliable marker of functional iron deficiency in patients with inflammatory bowel disease. Diagnostics, 2021, 11(2), 366. doi: 10.3390/diagnostics11020366 PMID: 33670067
- Allen, A.; Perera, S.; Perera, L.; Rodrigo, R.; Mettananda, S.; Matope, A.; Silva, I.; Hameed, N.; Fisher, C.A.; Olivieri, N.; Weatherall, D.J.; Allen, S.; Premawardhena, A. A "one-stop" screening protocol for haemoglobinopathy traits and iron deficiency in Sri lanka. Front. Mol. Biosci., 2019, 6, 66. doi: 10.3389/fmolb.2019.00066 PMID: 31448286
- Teshome, E.M.; Prentice, A.M.; Demir, A.Y.; Andango, P.E.A.; Verhoef, H. Diagnostic utility of zinc protoporphyrin to detect iron deficiency in Kenyan preschool children: A community-based survey. BMC Hematol., 2017, 17(1), 11. doi: 10.1186/s12878-017-0082-z PMID: 28770094
- Bjørklund, G.; Tippairote, T.; Hangan, T.; Chirumbolo, S.; Peana, M. Early-life lead exposure: risks and neurotoxic consequences. Curr. Med. Chem., 2023, 30 doi: 10.2174/0929867330666230409135310 PMID: 37031386
- Ji, R.; Jia, F.; Chen, X.; Gao, Y.; Yang, J. Carnosol inhibits KGN cells oxidative stress and apoptosis and attenuates polycystic ovary syndrome phenotypes in mice through Keap1-mediated Nrf2/ HO-1 activation. Phytother. Res., 2023, 37(4), 1405-1421. doi: 10.1002/ptr.7749 PMID: 36786429
- Genovese, G.; Maronese, C.A.; Moltrasio, C.; Piccinno, R.; Marletta, D.A.; De Luca, G.; Graziadei, G.; Granata, F.; Di Pierro, E.; Cappellini, M.D.; Marzano, A.V. Ultraviolet a phototest positivity is associated with higher free erythrocyte protoporphyrin ix concentration and lower transferrin saturation values in erythropoietic protoporphyria. Photodermatol. Photoimmunol. Photomed., 2022, 38(2), 141-149. doi: 10.1111/phpp.12727 PMID: 34420239
- Juncà, J.; Flores, A.; Roy, C.; Alberti, R.; Millá, F. Red cell distribution width, free erythrocyte protoporphyrin, and England-fraser index in the differential diagnosis of microcytosis due to iron deficiency or beta-thalassemia trait. A study of 200 cases of microcytic anemia. Hematol. Pathol., 1991, 5(1), 33-36. PMID: 2050603
- Jackson, R.T.; Al-Mousa, Z. Iron deficiency is a more important cause of anemia than hemoglobinopathies in Kuwaiti adolescent girls. J. Nutr., 2000, 130(5), 1212-1216. doi: 10.1093/jn/130.5.1212 PMID: 10801921
- Tristão, V.R.; de Carvalho, F.F.; Gomes, C.Z.; Miranda, A.R.; Vequi-Suplicy, C.C.; Lamy, M.T.; Schor, N.; Bellini, M.H. Study of blood porphyrin spectral profile for diagnosis of chronic renal failure. J. Fluoresc., 2010, 20(3), 665-669. doi: 10.1007/s10895-010-0600-x PMID: 20177750
- Sigh, S.; Roos, N.; Chhoun, C.; Laillou, A.; Wieringa, F.T. Ready-to-use therapeutic foods fail to improve vitamin a and iron status meaningfully during treatment for severe acute malnutrition in 659-month-old cambodian children. Nutrients, 2023, 15(4), 905. doi: 10.3390/nu15040905 PMID: 36839263
- Chitekwe, S.; Parajuli, K.R.; Paudyal, N.; Haag, K.C.; Renzaho, A.; Issaka, A.; Agho, K. Individual, household and national factors associated with iron, vitamin A and zinc deficiencies among children aged 6-59 months in Nepal. Matern Child Nutr., 2022, 18(1), 13305. doi: 10.1111/mcn.13305
- Lundeen, E.A.; Lind, J.N.; Clarke, K.E.N.; Aburto, N.J.; Imanalieva, C.; Mamyrbaeva, T.; Ismailova, A.; Timmer, A.; Whitehead, R.D., Jr; Praslova, L.; Samohleb, G.; Minbaev, M.; Addo, O.Y.; Serdula, M.K. Four years after implementation of a national micronutrient powder program in Kyrgyzstan, prevalence of iron deficiency and iron deficiency anemia is lower, but prevalence of vitamin A deficiency is higher. Eur. J. Clin. Nutr., 2019, 73(3), 416-423. doi: 10.1038/s41430-018-0368-7 PMID: 30523305
- Abizari, A.R.; Azupogo, F.; Brouwer, I.D. Subclinical inflammation influences the association between vitamin A- and iron status among school children in Ghana. PLoS One, 2017, 12(2), e0170747. doi: 10.1371/journal.pone.0170747 PMID: 28152069
- Brindle, E.; Lillis, L.; Barney, R.; Hess, S.Y.; Wessells, K.R.; Ouédraogo, C.T.; Stinca, S.; Kalnoky, M.; Peck, R.; Tyler, A.; Lyman, C.; Boyle, D.S. Simultaneous assessment of iodine, iron, vitamin A, malarial antigenemia, and inflammation status biomarkers via a multiplex immunoassay method on a population of pregnant women from Niger. PLoS One, 2017, 12(10), e0185868. doi: 10.1371/journal.pone.0185868 PMID: 28982133
- Szczepanek-Parulska, E.; Hernik, A.; Ruchała, M. Anemia in thyroid diseases. Polish Arch. Intern. Med., 2017, 127(5), 352-360. doi: 10.20452/pamw.3985 PMID: 28400547
Supplementary files
