Natural Phenolic Compounds with Antithrombotic and Antiplatelet Effects: A Drug-likeness Approach
- Authors: Fernandes D.1, Gomes A.1, da Silva C.1, de Medeiros Henriques I.1, de Menezes R.2, Scotti M.2, Teles Y.3, Edrada-Ebel R.4, de Fatima Vanderlei de Souza M.2
-
Affiliations:
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba
- Post Graduation Program in Bioactive Natural and Synthetic Products,, Federal University of Paraíba
- Department of Chemistry and Physics, Agrarian Sciences Center,, Federal University of Paraíba
- Strathclyde Institute of Pharmacy & Biomedical Sciences,, University of Strathclyde
- Issue: Vol 31, No 26 (2024)
- Pages: 4138-4159
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644942
- DOI: https://doi.org/10.2174/0109298673268452231108061008
- ID: 644942
Cite item
Full Text
Abstract
Background:Thrombosis is one of the major causes of morbidity and mortality in a wide range of vessel diseases. Several studies have been conducted to identify antithrombotic agents from medicinal plants, and phenolic compounds (PCs) have been shown to effectively inhibit plasma coagulation and platelet aggregation.
Objectives:This study aimed to conduct a survey of the natural PCs with proven antithrombotic and antiplatelet activities, as well as to evaluate by computational modeling the physicochemical and toxicological properties of these compounds using drug-likeness approaches.
Methods:The data were collected from the scientific database: Web of Science, Scifinder, Pubmed, ScienceDirect and Google Scholar, the different classes of PCs with antithrombotic or antiplatelet effects were used as keywords. These molecules were also evaluated for their Drug-Likeness properties and toxicity to verify their profile for being candidates for new antithrombotic drugs.
Results:In this review, it was possible to register 85 lignans, 73 flavonoids, 28 coumarins, 21 quinones, 23 phenolic acids, 8 xanthones and 8 simple phenols. Activity records for tannins were not found in the researched databases. Of these 246 compounds, 213 did not violate any of Lipinski's rules of five, of which 125 (59%) showed non-toxicity, being promising candidates for new potential antithrombotic drugs.
Conclusion:This review arouses interest in the isolation of phenolic compounds that may allow a new approach for the prevention of both arterial and venous thrombosis, with the potential to become alternatives in the prevention and treatment of cardiovascular diseases.
About the authors
Diégina Fernandes
Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba
Email: info@benthamscience.net
Ayala Gomes
Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba
Email: info@benthamscience.net
Camila da Silva
Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba
Email: info@benthamscience.net
Isabelly de Medeiros Henriques
Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba
Email: info@benthamscience.net
Renata de Menezes
Post Graduation Program in Bioactive Natural and Synthetic Products,, Federal University of Paraíba
Email: info@benthamscience.net
Marcus Scotti
Post Graduation Program in Bioactive Natural and Synthetic Products,, Federal University of Paraíba
Email: info@benthamscience.net
Yanna Teles
Department of Chemistry and Physics, Agrarian Sciences Center,, Federal University of Paraíba
Email: info@benthamscience.net
RuAngelie Edrada-Ebel
Strathclyde Institute of Pharmacy & Biomedical Sciences,, University of Strathclyde
Email: info@benthamscience.net
Maria de Fatima Vanderlei de Souza
Post Graduation Program in Bioactive Natural and Synthetic Products,, Federal University of Paraíba
Author for correspondence.
Email: info@benthamscience.net
References
- Kumar, S.; Joseph, L.; George, M.; Sharma, A. A review on anticoagulant/antithrombotic activity of natural plants used in traditional medicine. Int. J. Pharm. Sci. Rev. Res., 2011, 8(1), 70-74.
- Lee, W.; Ku, S.K.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch. Pharm. Res., 2015, 38(5), 893-903. doi: 10.1007/s12272-014-0410-9 PMID: 24849036
- Choi, J.H.; Park, S.E.; Kim, S.J.; Kim, S. Kaempferol inhibits thrombosis and platelet activation. Biochimie, 2015, 115, 177-186. doi: 10.1016/j.biochi.2015.06.001 PMID: 26073152
- Lv, J.L.; Li, Z.Z.; Zhang, L.B. Two new flavonoids from Artemisia argyi with their anticoagulation activities. Nat. Prod. Res., 2018, 32(6), 632-639. doi: 10.1080/14786419.2017.1332603 PMID: 28539062
- Mega, J.L.; Simon, T. Pharmacology of antithrombotic drugs: An assessment of oral antiplatelet and anticoagulant treatments. Lancet, 2015, 386(9990), 281-291. doi: 10.1016/S0140-6736(15)60243-4 PMID: 25777662
- Kim, K.; Do, H.J.; Oh, T.W.; Kim, K.Y.; Kim, T.H.; Ma, J.Y.; Park, K.I. Antiplatelet and atithrombotic activity of a traditional medicine, Hwangryunhaedok-Tang. Front. Pharmacol., 2019, 9, 1502. doi: 10.3389/fphar.2018.01502 PMID: 30687085
- Kubatka, P.; Mazurakova, A.; Koklesova, L.; Samec, M.; Sokol, J.; Samuel, S.M.; Kudela, E.; Biringer, K.; Bugos, O.; Pec, M.; Link, B.; Adamkov, M.; Smejkal, K.; Büsselberg, D.; Golubnitschaja, O. Antithrombotic and antiplatelet effects of plant-derived compounds: A great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine. EPMA J., 2022, 13(3), 407-431. doi: 10.1007/s13167-022-00293-2 PMID: 35990779
- Correia-da-Silva, M.; Sousa, E.; Pinto, M.M.M. Flavonoides glicosilados sulfatados: Agentes antitrombóticos com atividade dual. Rev. Saúde, 2012, 3, 31-39.
- Akram, M.; Rashid, A. Anti-coagulant activity of plants: Mini review. J. Thromb. Thrombolysis, 2017, 44(3), 406-411. doi: 10.1007/s11239-017-1546-5 PMID: 28866770
- Beretz, A.; Cazenave, J.P. Old and new natural products as the source of modern antithrombotic drugs. Planta Med., 1991, 57(S 1), S68-S72. doi: 10.1055/s-2006-960232
- Chaves, D.S.A.; Costa, S.S.; Almeida, A.P.; Frattani, F.; Assafim, M.; Zingali, R.B. Metabólitos secundários de origem vegetal: Uma fonte potencial de fármacos antitrombóticos. Quim. Nova, 2010, 33(1), 172-180. doi: 10.1590/S0100-40422010000100030
- Bijak, M.; Saluk, J.; Nowak, P. Comparison of anticoagulant effect of selected polyphenols. Acta Pol. Pharm., 2018, 75(2), 533-544.
- Cui, L.; Xing, M.; Xu, L.; Wang, J.; Zhang, X.; Ma, C.; Kang, W. Antithrombotic components of Malus halliana Koehne flowers. Food Chem. Toxicol., 2018, 119, 326-333. doi: 10.1016/j.fct.2018.02.049 PMID: 29496530
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
- Chua, T.; Koh, H. Medicinal plants as potential sources of lead compounds with anti-platelet and anti-coagulant activities. Mini Rev. Med. Chem., 2006, 6(6), 611-624. doi: 10.2174/138955706777435751 PMID: 16787371
- Dos Santos, D.S.; Farias Rodrigues, M.M. Atividades farmacológicas dos flavonoides: Um estudo de revisão. Estação Científic, 2017, 7(3), 29-35. doi: 10.18468/estcien.2017v7n3.p29-35
- Março, P.H.; Poppi, R.J.; Scarminio, I.S. Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais. Quim. Nova, 2008, 31(5), 1218-1223. doi: 10.1590/S0100-40422008000500051
- Shi, Z.H.; Li, N.G.; Tang, Y.P.; Wei-Li; Lian-Yin; Yang, J.P.; Hao-Tang; Duan, J.A. Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. Eur. J. Med. Chem., 2012, 54, 210-222. doi: 10.1016/j.ejmech.2012.04.044 PMID: 22647223
- Zverev, Y.F.; Kudinov, A.V.; Momot, A.P.; Fedoreev, S.A.; Zamyatina, S.V.; Kulesh, N.I.; Lycheva, N.A.; Fedorov, D.V. Antiplatelet and anticoagulant activity of 7-O-gentiobioside formononetin in vitro and in vivo. Bull. Sib. Med., 2016, 15, 30-39. doi: 10.20538/1682-0363-2016-4-30-39
- Guglielmone, H.A.; Agnese, A.M.; Núñez Montoya, S.C.; Cabrera, J.L. Anticoagulant effect and action mechanism of sulphated flavonoids from Flaveria bidentis. Thromb. Res., 2002, 105(2), 183-188. doi: 10.1016/S0049-3848(01)00419-4 PMID: 11958811
- Teles, Y.; Souza, M.; Souza, M. Sulphated flavonoids: Biosynthesis, structures, and biological activities. Molecules, 2018, 23(2), 480. doi: 10.3390/molecules23020480 PMID: 29473839
- Correia-da-Silva, M.; Sousa, E.; Duarte, B.; Marques, F.; Carvalho, F.; Cunha-Ribeiro, L.M.; Pinto, M.M.M. Flavonoids with an oligopolysulfated moiety: A new class of anticoagulant agents. J. Med. Chem., 2011, 54(1), 95-106. doi: 10.1021/jm1013117 PMID: 21138266
- Ku, S.K.; Kim, T.H.; Bae, J.S. Anticoagulant activities of persicarin and isorhamnetin. Vascul. Pharmacol., 2013, 58(4), 272-279. doi: 10.1016/j.vph.2013.01.005 PMID: 23391847
- Poór, M.; Li, Y.; Kunsági-Máté, S.; Petrik, J.; Vladimir-Kneević, S.; Kőszegi, T. Molecular displacement of warfarin from human serum albumin by flavonoid aglycones. J. Lumin., 2013, 142, 122-127. doi: 10.1016/j.jlumin.2013.03.056
- Carotenuto, A.; De Feo, V.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Cicala, C. The flavonoids of Allium ursinum. Phytochemistry, 1996, 41(2), 531-536. doi: 10.1016/0031-9422(95)00574-9 PMID: 8821433
- Scotti, M.T.; Speck-Planche, A.; Tavares, J.F.; da Silva, M.S.; Cordeiro, M.N.D.S.; Scotti, L. Virtual screening of alkaloids from apocynaceae with potential antitrypanosomal activity. Curr. Bioinform., 2015, 10(5), 509-519. doi: 10.2174/1574893610666151008011042
- Oprea, T.I. Property distribution of drug-related chemical databases. J. Comput. Aided Mol. Des., 2000, 14(3), 251-264. doi: 10.1023/A:1008130001697 PMID: 10756480
- Walters, W.P.; Murcko, M.A. Prediction of drug-likeness. Adv. Drug Deliv. Rev., 2002, 54(3), 255-271. doi: 10.1016/S0169-409X(02)00003-0 PMID: 11922947
- Zheng, S.; Luo, X.; Chen, G.; Zhu, W.; Shen, J.; Chen, K.; Jiang, H. A new rapid and effective chemistry space filter in recognizing a druglike database. J. Chem. Inf. Model., 2005, 45(4), 856-862. doi: 10.1021/ci050031j PMID: 16045278
- Rishton, G.M. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov. Today, 2003, 8(2), 86-96. doi: 10.1016/S1359644602025722 PMID: 12565011
- Data warrior V.5.5.0. Available form: http://www.open-molecules.org/datawarrior/download.html
- Maistro, E.L.; de Souza Marques, E.; Fedato, R.P.; Tolentino, F.; da Silva, C.A.C.; Tsuboy, M.S.F.; Resende, F.A.; Varanda, E.A. In vitro assessment of mutagenic and genotoxic effects of coumarin derivatives 6,7-dihydroxycoumarin and 4-methylesculetin. J. Toxicol. Environ. Health A, 2015, 78(2), 109-118. doi: 10.1080/15287394.2014.943865 PMID: 25424619
- Petruľová-Poracká, V.; Repčák, M.; Vilková, M.; Imrich, J. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem., 2013, 141(1), 54-59. doi: 10.1016/j.foodchem.2013.03.004 PMID: 23768326
- Venugopala, K. N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed. Res. Int., 2013, 2013, 963248. doi: 10.1155/2013/963248
- Lacy, A.; OKennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811. doi: 10.2174/1381612043382693 PMID: 15579072
- Murray, R.D.H. Coumarins. Nat. Prod. Rep., 1989, 6(6), 591-624. doi: 10.1039/np9890600591 PMID: 2699016
- Bruneton, J. Coumarins. In: In: Pharmacognosy, Phytochemistry, Medicinal Plants; Intercepted Ltd: Lavoisler: Paris, 1995; pp. 229-240.
- Najmanová, I.; Doseděl, M.; Hrdina, R.; Anzenbacher, P.; Filipský, T.; Říha, M.; Mladěnka, P. Cardiovascular effects of coumarins besides their antioxidant activity. Curr. Top. Med. Chem., 2015, 15(9), 830-849. doi: 10.2174/1568026615666150220112437 PMID: 25697565
- Durić, K.; Kovac Besovic, E.E.; Niksic, H.; Muratovic, S.; Sofic, E. Anticoagulant activity of some Artemisia dracunculus leaf extracts. Bosn. J. Basic Med. Sci., 2015, 15(2), 9-14. PMID: 26042507
- Greaves, M. Pharmacogenetics in the management of coumarin anticoagulant therapy: The way forward or an expensive diversion? PLoS Med., 2005, 2(10), e342. doi: 10.1371/journal.pmed.0020342 PMID: 16231978
- Suarez-Kurtz, G.; Botton, M.R. Pharmacogenetics of coumarin anticoagulants in Brazilians. Expert Opin. Drug Metab. Toxicol., 2015, 11(1), 67-79. doi: 10.1517/17425255.2015.976201 PMID: 25345887
- Jain, P.K.; Joshi, H. Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci., 2012, 2(6), 236-240.
- Chia, Y.C.; Chang, F.R.; Wang, J.C.; Wu, C.C.; Chiang, M.; Lan, Y.H.; Chen, K.S.; Wu, Y.C. Antiplatelet aggregation coumarins from the leaves of Murraya omphalocarpa. Molecules, 2008, 13(1), 122-128. doi: 10.3390/molecules13010122 PMID: 18259135
- Chen, H.; Walsh, C.T. Synthesis of novel N-substituted-2-oxo-2H-1-coumarin-3-carboxamide & evaluated for selective anti helicobacter pylori activity & cytotoxicity. Chem. Biol., 2001, 8, 288-301.
- Ikawa, M.; Stahmann, M.A.; Link, K.P. Studies on 4-Hydroxycoumarins. V. The Condensation of α,β-Unsaturated Ketones with 4-Hydroxycoumarin. J. Am. Chem. Soc., 1944, 66(6), 902-906. doi: 10.1021/ja01234a019
- Arora, R.B.; Mathur, C.N. Relationship between structure and anticoagulant activity of coumarin derivatives. Br. J. Pharmacol. Chemother., 1963, 20(1), 29-35. doi: 10.1111/j.1476-5381.1963.tb01294.x PMID: 19108174
- Chen, I.; Lin, Y.C.; Tsai, I.L.; Teng, C.M.; Ko, F.N.; Ishikawa, T.; Ishii, H. Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry, 1995, 39(5), 1091-1097. doi: 10.1016/0031-9422(95)00054-B PMID: 7662272
- Tsai, I.L.; Lin, W.Y.; Teng, C.M.; Ishikawa, T.; Doong, S.L.; Huang, M.W.; Chen, Y.C.; Chen, I.S. Coumarins and antiplatelet constituents from the root bark of Zanthoxylum schinifolium. Planta Med., 2000, 66(7), 618-623. doi: 10.1055/s-2000-8648 PMID: 11105565
- Lei, L.; Xue, Y.; Liu, Z.; Peng, S.; He, Y.; Zhang, Y.; Fang, R.; Wang, J.; Luo, Z.; Yao, G.; Zhang, J.; Zhang, G.; Song, H.; Zhang, Y. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci. Rep., 2015, 5(1), 13544. doi: 10.1038/srep13544 PMID: 26315062
- Tsai, I.L.; Wun, M.F.; Teng, C.M.; Ishikawa, T.; Chen, I.S. Anti-platelet aggregation constituents from Formosan toddalia asiatica. Phytochemistry, 1998, 48(8), 1377-1382. doi: 10.1016/S0031-9422(97)00678-X PMID: 9720317
- Chen, I.S.; Chang, C.T.; Sheen, W.S.; Teng, C.M.; Tsai, I.L.; Duh, C.Y.; Ko, F.N. Coumarins and antiplatelet aggregation constituents from formosan Peucedanum japonicum. Phytochemistry, 1996, 41(2), 525-530. doi: 10.1016/0031-9422(95)00625-7 PMID: 8821432
- Kontogiorgis, C.; Nicolotti, O.; Mangiatordi, G.F.; Tognolini, M.; Karalaki, F.; Giorgio, C.; Patsilinakos, A.; Carotti, A.; Hadjipavlou-Litina, D.; Barocelli, E. Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 925-933. doi: 10.3109/14756366.2014.995180 PMID: 25807297
- Pilkington, L. Lignans: A chemometric analysis. Molecules, 2018, 23(7), 1666. doi: 10.3390/molecules23071666 PMID: 29987225
- Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev., 2003, 2(3), 371-390. doi: 10.1023/B:PHYT.0000045487.02836.32
- Zhang, P.Y. Cardioprotection by phytochemicals via antiplatelet effects and metabolism modulations. Cell Biochem. Biophys., 2015, 73(2), 369-379. doi: 10.1007/s12013-015-0612-x PMID: 27352325
- Simões, C.M.O.; Schenkel, E.P.; de Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: Do produto natural ao medicamento, 1st ed.; Artmed: Porto Alegre, 2017.
- Pan, J.Y.; Chen, S.L.; Yang, M.H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products and synthesis. Nat. Prod. Rep., 2009, 26(10), 1251-1292. doi: 10.1039/b910940d PMID: 19779640
- Ríos, J.L.; Giner, R.M.; Prieto, J.M. New findings on the bioactivity of lignans. Stud. Nat. Prod. Chem., 2002, 26, 183-292. doi: 10.1016/S1572-5995(02)80008-4
- Pan, W.; Liu, K.; Guan, Y.; Tan, G.T.; Hung, N.V.; Cuong, N.M.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S.; Zhang, H. Bioactive compounds from vitex leptobotrys. J. Nat. Prod., 2014, 77(3), 663-667. doi: 10.1021/np400779v PMID: 24404757
- Shi, Y.N.; Shi, Y.M.; Yang, L.; Li, X.C.; Zhao, J.H.; Qu, Y.; Zhu, H.T.; Wang, D.; Cheng, R.R.; Yang, C.R.; Xu, M.; Zhang, Y.J. Lignans and aromatic glycosides from Piper wallichii and their antithrombotic activities. J. Ethnopharmacol., 2015, 162, 87-96. doi: 10.1016/j.jep.2014.12.038 PMID: 25555357
- Jung, K.Y.; Lee, I.S.; Oh, S.R.; Kim, D.S.; Lee, H.K. Lignans with platelet activating factor antagonist activity from Schisandra chinensis (Turcz.) Baill. Phytomedicine, 1997, 4(3), 229-231. doi: 10.1016/S0944-7113(97)80072-4 PMID: 23195480
- Ghisalberti, E.L. Cardiovascular activity of naturally occurring lignans. Phytomedicine, 1997, 4(2), 151-166. doi: 10.1016/S0944-7113(97)80063-3 PMID: 23195404
- Tsai, W.J.; Shen, C.C.; Tsai, T.H.; Lin, L.C. Lignans from the aerial parts of Saururus chinensis: Isolation, structural characterization, and their effects on platelet aggregation. J. Nat. Prod., 2014, 77(1), 125-131. doi: 10.1021/np400772h PMID: 24387347
- Kim, M.G.; Lee, C.H.; Lee, H.S. Anti-platelet aggregation activity of lignans isolated from Schisandra chinensis fruits. J. Korean Soc. Appl. Biol. Chem., 2010, 53(6), 740-745. doi: 10.3839/jksabc.2010.112
- Pyo, M.K.; Lee, Y.; Yun-Choi, H.S. Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch. Pharm. Res., 2002, 25(3), 325-328. doi: 10.1007/BF02976634 PMID: 12135105
- Wu, C.M.; Wu, S.C.; Chung, W.J.; Lin, H.C.; Chen, K.T.; Chen, Y.C.; Hsu, M.F.; Yang, J.M.; Wang, J.P.; Lin, C.N. Antiplatelet effect and selective binding to cyclooxygenase (COX) by molecular docking analysis of flavonoids and lignans. Int. J. Mol. Sci., 2007, 8(8), 830-841. doi: 10.3390/i8080830
- Lee, I.S.; Jung, K.Y.; Oh, S.R.; Kim, D.S.; Kim, J.H.; Lee, J.J.; Lee, H.K.; Lee, S.H.; Kim, E.H.; Cheong, C. Platelet-activating factor antagonistic activity and13C NMR assignment of pregomisin and chamigrenal fromSchisandra chinensis. Arch. Pharm. Res., 1997, 20(6), 633-636. doi: 10.1007/BF02975223 PMID: 18982271
- Chen, J.J.; Chang, Y.L.; Teng, C.M.; Chen, I.S. Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia. Planta Med., 2000, 66(3), 251-256. doi: 10.1055/s-2000-8562 PMID: 10821052
- Chen, C.C.; Hsin, W.C.; Ko, F.N.; Huang, Y.L.; Ou, J.C.; Teng, C.M. Antiplatelet arylnaphthalide lignans from justicia procumbens. J. Nat. Prod., 1996, 59(12), 1149-1150. doi: 10.1021/np960443+ PMID: 8988600
- Ku, S.K.; Kim, J.A.; Han, C.K.; Bae, J.S. Antithrombotic activities of epi-sesamin in vitro and in vivo. Am. J. Chin. Med., 2013, 41(6), 1313-1327. doi: 10.1142/S0192415X13500882 PMID: 24228603
- Coy-Barrera, E.D.; Cuca-Suarez, L.E. In vitro anti-inflammatory effects of naturally-occurring compounds from two Lauraceae plants. An. Acad. Bras. Cienc., 2011, 83(4), 1397-1402. doi: 10.1590/S0001-37652011005000044 PMID: 22011769
- Yang, Y.P.; Cheng, M.J.; Teng, C.M.; Chang, Y.L.; Tsai, I.L.; Chen, I.S. Chemical and anti-platelet constituents from Formosan Zanthoxylum simulans. Phytochemistry, 2002, 61(5), 567-572. doi: 10.1016/S0031-9422(02)00268-6 PMID: 12409024
- Wu, Y.C.; Chang, G.Y.; Ko, F.N.; Teng, C.M. Bioactive constitutents from the stems of Annona montana. Planta Med., 1995, 61(2), 146-149. doi: 10.1055/s-2006-958035 PMID: 7753921
- Cheng, M.J.; Wu, C.C.; Tsai, I.L.; Chen, I.S. Chemical and antiplatelet constituents from the stem of Zanthoxylum beecheyanum. J. Chin. Chem. Soc., 2004, 51(5A), 1065-1072. doi: 10.1002/jccs.200400159
- Chen, Y.C.; Liao, C.H.; Chen, I.S. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochemistry, 2007, 68(15), 2101-2111. doi: 10.1016/j.phytochem.2007.05.003 PMID: 17585974
- Soares, S.E. Ácidos fenólicos como antioxidantes. Rev. Nutr., 2002, 15(1), 71-81. doi: 10.1590/S1415-52732002000100008
- Luceri, C.; Giannini, L.; Lodovici, M.; Antonucci, E.; Abbate, R.; Masini, E.; Dolara, P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr., 2007, 97(3), 458-463. doi: 10.1017/S0007114507657882 PMID: 17313706
- Satake, T.; Kamiya, K.; An, Y.; Oishi Nee Taka, T.; Yamamoto, J. The anti-thrombotic active constituents from Centella asiatica. Biol. Pharm. Bull., 2007, 30(5), 935-940. doi: 10.1248/bpb.30.935 PMID: 17473438
- Luo, X.; Du, C.; Cheng, H.; Chen, J.; Lin, C. Study on the anticoagulant or procoagulant activities of type II phenolic acid derivatives. Molecules, 2017, 22(12), 2047. doi: 10.3390/molecules22122047 PMID: 29182552
- Pawlaczyk, I.; Capek, P.; Czerchawski, L.; Bijak, J.; Lewik-Tsirigotis, M.; Pliszczak-Król, A.; Gancarz, R. An anticoagulant effect and chemical characterization of Lythrum salicaria L. glycoconjugates. Carbohydr. Polym., 2011, 86(1), 277-284. doi: 10.1016/j.carbpol.2011.04.048
- Khoo, L. T.; Abas, F.; Abdullah, J. O.; Mohd Tohit, E. R.; Hamid, M. Anticoagulant activity of polyphenolic-polysaccharides isolated from Melastoma malabathricum L. Evid. Based. Complement. Altern. Med, 2014.
- Fuentes, E.; Forero-Doria, O.; Carrasco, G.; Maricán, A.; Santos, L.; Alarcón, M.; Palomo, I. Effect of tomato industrial processing on phenolic profile and antiplatelet activity. Molecules, 2013, 18(9), 11526-11536. doi: 10.3390/molecules180911526 PMID: 24048285
- Lee, D.H.; Kim, H.H.; Cho, H.J.; Bae, J.S.; Yu, Y.B.; Park, H.J. Antiplatelet effects of caffeic acid due to Ca(2+) mobilizationinhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. J. Atheroscler. Thromb., 2014, 21(1), 23-37. doi: 10.5551/jat.18994 PMID: 24088646
- El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: Overview and implications in analytical detection. Phytochem. Rev., 2011, 10(3), 353-370. doi: 10.1007/s11101-011-9209-1
- Sousa, E.T.; Lopes, W.A.; Andrade, J.B. Fontes, formação, reatividade e determinação de quinonas na atmosfera. Quim. Nova, 2016, 39(4), 486-495.
- Asche, C. Antitumour quinones. Mini Rev. Med. Chem., 2005, 5(5), 449-467. doi: 10.2174/1389557053765556 PMID: 15892687
- Ko, F.N.; Sheu, S.J.; Liu, Y.M.; Huang, T.F.; Teng, C.M. Inhibition of rabbit platelet aggregation by 1,4-naphthoquinones. Thromb. Res., 1990, 57(3), 453-463. doi: 10.1016/0049-3848(90)90261-A PMID: 2156351
- Blackwell, G.J.; Radomski, M.; Moncada, S. Inhibition of human platelet aggregation by vitamin K. Thromb. Res., 1985, 37(1), 103-114. doi: 10.1016/0049-3848(85)90037-4 PMID: 2984800
- Chang, T.S.; Kim, H.M.; Lee, K.S.; Khil, L.Y.; Mar, W.C.; Ryu, C.K.; Moon, C.K. Thromboxane A2 synthase inhibition and thromboxane A2 receptor blockade by 2-(4- cyanophenyl)amino-3-chloro-1,4-naphthalenedione (NQ-Y15) in rat platelets. Biochem. Pharmacol., 1997, 54(2), 259-268. doi: 10.1016/S0006-2952(97)00179-2 PMID: 9271330
- Kim, S.R.; Lee, J.Y.; Lee, M.Y.; Chung, S.M.; Bae, O.N.; Chung, J.H. Association of quinone-induced platelet anti-aggregation with cytotoxicity. Toxicol. Sci., 2001, 62(1), 176-182. doi: 10.1093/toxsci/62.1.176 PMID: 11399805
- Wubuli, P.; Xin-ling, W.; Kasimu, R.; Abilimiti, A.; Xiao-mei, W.; Jun-ping, H. Inhibition of platelet aggregation investigation and optimization of extracting technology of 6, 7-dehydroroyleanone in roots of Salvia deserta schang. Zhongguo Shiyan Fangjixue Zazhi, 2013, 2013, 22.
- Wang, X.L.; Wang, X.Q.; Hu, J.P.; Wang, X.M.; Kasimu, R.; Cui, Z.H. Determination of diterpenoid quinone in Salvia deserta roots and its inhibition for platelet aggregation. Zhongguo Shiyan Fangjixue Zazhi, 2016, 2016, 19.
- Ferreira, M A D.; Do Nascimento, N.R.F.; De Sousa, C.M.; Pessoa, O.D.L.; De Lemos, T.L.G.; Ventura, J.S.; Schattner, M.; Chudzinski-Tavassi, A.M. Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Ibα glycoprotein. Br. J. Pharmacol., 2008, 154(6), 1216-1224. doi: 10.1038/bjp.2008.199 PMID: 18516074
- Liou, M.J.; Teng, C.M.; Wu, T.S. Constituents from Rubia ustulate Diels and R. yunnanensis Diels and their antiplatelet aggregation activity. J. Chin. Chem. Soc., 2002, 49(6), 1025-1030. doi: 10.1002/jccs.200200146
- Teng, C.M.; Lin, C.H.; Lin, C.N.; Chung, M.; Huang, T.F. Frangulin B, an antagonist of collagen-induced platelet aggregation and adhesion, isolated from Rhamnus formosana. Thromb. Haemost., 1993, 70(6), 1014-1018. doi: 10.1055/s-0038-1649717 PMID: 8165593
- Liao, C.H.; Ko, F.N.; Wu, C.L.; Teng, C.M. Antiplatelet effect of marchantinquinone, isolated from Reboulia hemisphaerica, in rabbit washed platelets. J. Pharm. Pharmacol., 2010, 52(3), 353-359. doi: 10.1211/0022357001773913 PMID: 10757426
- Ko, F.N.; Lee, Y.S.; Kuo, S.C.; Chang, Y.S.; Teng, C.M. Inhibition on platelet activation by shikonin derivatives isolated from Arnebia euchroma. Biochim. Biophys. Acta Mol. Cell Res., 1995, 1268(3), 329-334. doi: 10.1016/0167-4889(95)00078-7 PMID: 7548232
- Lee, C. L.; Yen, M. H.; Chang, F. R.; Wu, C. C.; Wu, Y. C. Antiplatelet aggregation effects of phenanthrenes from Calanthe arisanensis. Nat. Prod. Commun, 2014, 9(1), 1934578X1400900124.
- Roberts, J.C. Naturally occurring xanthones. Chem. Rev., 1961, 61(6), 591-605. doi: 10.1021/cr60214a003
- Vieira, L.M.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 2005, 12(21), 2413-2446. doi: 10.2174/092986705774370682 PMID: 16250871
- Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally occurring xanthones: Chemistry and biology. J. Appl. Chem, 2013, 2013(9)
- Jiang, D.J.; Dai, Z.; Li, Y.J. Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc. Drug Rev., 2004, 22(2), 91-102. doi: 10.1111/j.1527-3466.2004.tb00133.x PMID: 15179447
- Jantan, I.; Mohd Yasin, Y.H.; Jalil, J.; Murad, S.; Idris, M.S. Antiplatelet aggregation activity of compounds isolated from Guttiferae species in human whole blood. Pharm. Biol., 2009, 47(11), 1090-1095. doi: 10.3109/13880200903008641
- Liou, S.S.; Lin, C-N.; Teng, C-M.; Ko, F-N. γ-Pyrone compounds. 5. Synthesis and antiplatelet effects of xanthonoxypropanolamines and related compounds. J. Pharm. Sci., 1994, 83(3), 391-395. doi: 10.1002/jps.2600830325 PMID: 8207688
- Teng, C.M.; Chun-Nan, L.; Feng-Nien, K.; Kam-Lin, C.; Tur-Fu, H. Novel inhibitory actions on platelet thromboxane and inositolphosphate formation by xanthones and their glycosides. Biochem. Pharmacol., 1989, 38(21), 3791-3795. doi: 10.1016/0006-2952(89)90587-X PMID: 2512926
- Lamponi, S. Bioactive natural compounds with antiplatelet and anticoagulant activity and their potential role in the treatment of thrombotic disorders. Life, 2021, 11(10), 1095. doi: 10.3390/life11101095 PMID: 34685464
- Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10. doi: 10.1016/j.addr.2015.01.009 PMID: 25666163
- Hossain, S.; Sarkar, B.; Prottoy, M.N.I.; Araf, Y.; Taniya, M.A.; Ullah, M.A. Thrombolytic activity, drug likeness property and adme/t analysis of isolated phytochemicals from ginger (Zingiber officinale) using in silico approaches. Mod. Res. Inflamm., 2019, 8(3), 29-43. doi: 10.4236/mri.2019.83003
- Periwal, V.; Bassler, S.; Andrejev, S.; Gabrielli, N.; Patil, K.R.; Typas, A.; Patil, K.R. Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs. PLOS Comput. Biol., 2022, 18(4), e1010029. doi: 10.1371/journal.pcbi.1010029 PMID: 35468126
- Wu, T.S.; Hsu, H.C.; Wu, P.L.; Teng, C.M.; Wu, Y.C. Rhinacanthin-Q, a naphthoquinone from Rhinacanthus nasutus and its biological activity. Phytochemistry, 1998, 49(7), 2001-2003. doi: 10.1016/S0031-9422(98)00425-7 PMID: 9883591
- Furusawa, M.; Tsuchiya, H.; Nagayama, M.; Tanaka, T.; Nakaya, K.; Iinuma, M. Anti-platelet and membrane-rigidifying flavonoids in brownish scale of onion. J. Health Sci., 2003, 49(6), 475-480. doi: 10.1248/jhs.49.475
- Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; De Feo, V.; Cicala, C. The flavonoids of Allium neapolitanum. Phytochemistry, 1997, 44(5), 949-957. doi: 10.1016/S0031-9422(96)00663-2 PMID: 9115694
- Mira, A.; Alkhiary, W.; Shimizu, K. Antiplatelet and anticoagulant activities of Angelica shikokiana extract and its isolated compounds. Clin. Appl. Thromb. Hemost., 2017, 23(1), 91-99. doi: 10.1177/1076029615595879 PMID: 26177661
- Ku, S.K.; Kim, T.H.; Lee, S.; Kim, S.M.; Bae, J.S. Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem. Toxicol., 2013, 53, 197-204. doi: 10.1016/j.fct.2012.11.040 PMID: 23220618
- Wu, T.S.; Tsang, Z.J.; Wu, P.L.; Lin, F.W.; Li, C.Y.; Teng, C.M.; Lee, K.H. New constituents and antiplatelet aggregation and anti-HIV principles of Artemisia capillaris. Bioorg. Med. Chem., 2001, 9(1), 77-83. doi: 10.1016/S0968-0896(00)00225-X PMID: 11197349
- Ryu, R.; Jung, U.J.; Kim, H.J.; Lee, W.; Bae, J.S.; Park, Y.B.; Choi, M.S. Anticoagulant and antiplatelet activities of Artemisia princeps Pampanini and its bioactive components. Prev. Nutr. Food Sci., 2013, 18(3), 181-187. doi: 10.3746/pnf.2013.18.3.181 PMID: 24471130
- Afifi, F.U.; Aburjai, T. Antiplatelet activity of Varthemia iphionoides. Fitoterapia, 2004, 75(7-8), 629-633. doi: 10.1016/j.fitote.2004.04.014 PMID: 15567236
- Ryu, R.; Jung, U.J.; Seo, Y.R.; Kim, H.J.; Moon, B.S.; Bae, J.S.; Lee, D.G.; Choi, M.S. Beneficial effect of persimmon leaves and bioactive compounds on thrombosis. Food Sci. Biotechnol., 2015, 24(1), 233-240. doi: 10.1007/s10068-015-0031-1
- Stochmal, A.; Rolnik, A.; Skalski, B.; Zuchowski, J.; Olas, B. Antiplatelet and anticoagulant activity of isorhamnetin and its derivatives isolated from sea buckthorn berries, measured in whole blood. Molecules, 2022, 27(14), 4429. doi: 10.3390/molecules27144429 PMID: 35889302
- Lee, W.; Bae, J.S. Antithrombotic and antiplatelet activities of orientin in vitro and in vivo. J. Funct. Foods, 2015, 17, 388-398. doi: 10.1016/j.jff.2015.05.037
- Kowalska, I.; Adach, W.; Stochmal, A.; Olas, B. A comparison of the effects of apigenin and seven of its derivatives on selected biomarkers of oxidative stress and coagulation in vitro. Food Chem. Toxicol., 2020, 136, 111016. doi: 10.1016/j.fct.2019.111016 PMID: 31805303
- Cao, P.; Xie, P.; Wang, X.; Wang, J.; Wei, J.; Kang, W. Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement. Altern. Med., 2017, 17(1), 93. doi: 10.1186/s12906-017-1592-8 PMID: 28166786
- Ku, S.K.; Bae, J.S. Antithrombotic activities of wogonin and wogonoside via inhibiting platelet aggregation. Fitoterapia, 2014, 98, 27-35. doi: 10.1016/j.fitote.2014.07.006 PMID: 25020199
- Kwon, H.W.; Irfan, M.; Lee, Y.Y.; Rhee, M.H.; Shin, J.H. Artocarpesin acts on human platelet aggregation through inhibition of cyclic nucleotides and MAPKs. Appl. Biol. Chem., 2022, 65(1), 25. doi: 10.1186/s13765-022-00694-x
- Kuntić, V.; Filipović, I.; Vujić, Z. Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays. Molecules, 2011, 16(2), 1378-1388. doi: 10.3390/molecules16021378 PMID: 21301410
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol., 2017, 67, 220-235. doi: 10.1016/j.tifs.2017.07.008
- Yin, Z.; Zhang, Y.; Zhang, J.; Wang, J.; Kang, W. Coagulatory active constituents of Malus pumila Mill. flowers. Chem. Cent. J., 2018, 12(1), 126. doi: 10.1186/s13065-018-0490-6 PMID: 30506434
- Han, N.; Gu, Y.; Ye, C.; Cao, Y.; Liu, Z.; Yin, J. Antithrombotic activity of fractions and components obtained from raspberry leaves (Rubus chingii). Food Chem., 2012, 132(1), 181-185. doi: 10.1016/j.foodchem.2011.10.051 PMID: 26434278
- Le, H.L.; Nguyen, V.H.; Nguyen, T.D.; Nguyen, T.V.A.; Le, D.H. Potential antiaggregatory and anticoagulant activity of Kaempferia parviflora extract and its methoxyflavones. Ind. Crops Prod., 2023, 192, 116030. doi: 10.1016/j.indcrop.2022.116030
- Gómez-Betancur, I.; Pereañez, J.A.; Patiño, A.C.; Benjumea, D. Inhibitory effect of pinostrobin from Renealmia alpinia, on the enzymatic and biological activities of a PLA2. Int. J. Biol. Macromol., 2016, 89, 35-42. doi: 10.1016/j.ijbiomac.2016.04.042 PMID: 27109758
- Liu, Y.; Xiong, B.; Qiu, X.; Hao, H.; Sha, A. Study on the antithrombotic effect and physiological mechanism of okanin. Biomed. Pharmacother., 2022, 153, 113358. doi: 10.1016/j.biopha.2022.113358 PMID: 35785699
- Ku, S.K.; Lee, W.; Kang, M.; Bae, J.S. Antithrombotic activities of aspalathin and nothofagin via inhibiting platelet aggregation and FIIa/FXa. Arch. Pharm. Res., 2015, 38(6), 1080-1089. doi: 10.1007/s12272-014-0501-7 PMID: 25325928
- Ibrahim, R.S.; Mahrous, R.S.R.; Abu EL-Khair, R.M.; Ross, S.A.; Omar, A.A.; Fathy, H.M. Biologically guided isolation and ADMET profile of new factor Xa inhibitors from Glycyrrhiza glabra roots using in vitro and in silico approaches. RSC Advances, 2021, 11(17), 9995-10001. doi: 10.1039/D1RA00359C PMID: 35423517
- Kim, J.M.; Yun-Choi, H.S. Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch. Pharm. Res., 2008, 31(7), 886-890. doi: 10.1007/s12272-001-1242-1 PMID: 18704331
- Zaragozá, C.; Álvarez-Mon, M.Á.; Zaragozá, F.; Villaescusa, L. Flavonoids: Antiplatelet effect as inhibitors of COX-1. Molecules, 2022, 27(3), 1146. doi: 10.3390/molecules27031146 PMID: 35164411
- Chen, S.; Lv, K.; Sharda, A.; Deng, J.; Zeng, W.; Zhang, C.; Hu, Q.; Jin, P.; Yao, G.; Xu, X.; Ming, Z.; Fang, C. Anti-thrombotic effects mediated by dihydromyricetin involve both platelet inhibition and endothelial protection. Pharmacol. Res., 2021, 167, 105540. doi: 10.1016/j.phrs.2021.105540 PMID: 33711433
- Chun-Nan, L.; Wen-Liang, S.; Feng-Nien, K.; Che-Ming, T. Antiplatelet activity of some prenylflavonoids. Biochem. Pharmacol., 1993, 45(2), 509-512. doi: 10.1016/0006-2952(93)90089-F PMID: 8435100
- Golfakhrabadi, F.; Abdollahi, M.; Ardakani, M.R.S.; Saeidnia, S.; Akbarzadeh, T.; Ahmadabadi, A.N.; Ebrahimi, A.; Yousefbeyk, F.; Hassanzadeh, A.; Khanavi, M. Anticoagulant activity of isolated coumarins (suberosin and suberenol) and toxicity evaluation of Ferulago carduchorum in rats. Pharm. Biol., 2014, 52(10), 1335-1340. doi: 10.3109/13880209.2014.892140 PMID: 25017518
- Ko, F.N.; Wu, T.S.; Liou, M.J.; Huang, T.F.; Teng, C.M. Inhibition of platelet thromboxane formation and phosphoinositides breakdown by osthole from Angelica pubescens. Thromb. Haemost., 1989, 62(3), 996-999. doi: 10.1055/s-0038-1651041 PMID: 2556815
- Rosselli, S.; Maggio, A.; Bellone, G.; Formisano, C.; Basile, A.; Cicala, C.; Alfieri, A.; Mascolo, N.; Bruno, M. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med., 2007, 73(2), 116-120. doi: 10.1055/s-2006-951772 PMID: 17128388
- Chen, K.S.; Wu, C.C.; Chang, F.R.; Chia, Y.C.; Chiang, M.Y.; Wang, W.Y.; Wu, Y.C. Bioactive coumarins from the leaves of Murraya omphalocarpa. Planta Med., 2003, 69(7), 654-657. doi: 10.1055/s-2003-41112 PMID: 12898423
- Teng, C.M.; Li, H.L.; Wu, T.S.; Huang, S.C.; Huang, T.F. Antiplatelet actions of some coumarin compounds isolated from plant sources. Thromb. Res., 1992, 66(5), 549-557. doi: 10.1016/0049-3848(92)90309-X PMID: 1523611
- Tawata, M.; Yoda, Y.; Aida, K.; Shindo, H.; Sasaki, H.; Chin, M.; Onaya, T. Anti-platelet action of GU-7, a 3-arylcoumarin derivative, purified from glycyrrhizae radix. Planta Med., 1990, 56(3), 259-263. doi: 10.1055/s-2006-960951 PMID: 2392489
- Weng, J.R.; Ko, H.H.; Yeh, T.L.; Lin, H.C.; Lin, C.N. Two new arylnaphthalide lignans and antiplatelet constituents from Justicia procumbens. Arch. Pharm., 2004, 337(4), 207-212. doi: 10.1002/ardp.200300841 PMID: 15065080
- Pan, J.X.; Hensens, O.D.; Zink, D.L.; Chang, M.N.; Hwang, S. Lignans with platelet activating factor antagonist activity from Magnolia biondii. Phytochemistry, 1987, 26(5), 1377-1379. doi: 10.1016/S0031-9422(00)81816-6
- Khan, A.N.; Fatima, I.; Khaliq, U.A.; Malik, A.; Miana, G.A.; Qureshi, Z.R.; Rasheed, H. Potent anti-platelet constituents from Centaurea iberica. Molecules, 2011, 16(3), 2053-2064. doi: 10.3390/molecules16032053 PMID: 21358593
- Matsunaga, K.; Shibuya, M.; Ohizumi, Y. Imperanene, a novel phenolic compound with platelet aggregation inhibitory activity from Imperata cylindrica. J. Nat. Prod., 1995, 58(1), 138-139. doi: 10.1021/np50115a022 PMID: 7760071
- Wu, T.S.; Leu, Y.L.; Chan, Y.Y.; Yu, S.M.; Teng, C.M.; Su, J.D. Lignans and an aromatic acid from Cinnamomum philippinense. Phytochemistry, 1994, 36(3), 785-788. doi: 10.1016/S0031-9422(00)89818-0
- Braquet, P.; Godfroid, J.J. PAF-acether specific binding sites: 2. Design of specific antagonists. Trends Pharmacol. Sci., 1986, 7, 397-403. doi: 10.1016/0165-6147(86)90401-3
- Coy-Barrera, E.D.; Cuca-Suárez, L.E.; Sefkow, M. PAF-antagonistic bicyclo3.2.1octanoid neolignans from leaves of Ocotea macrophylla Kunth. (Lauraceae). Phytochemistry, 2009, 70(10), 1309-1314. doi: 10.1016/j.phytochem.2009.07.010 PMID: 19674762
- Kuroyanagi, M.; Yoshida, K.; Yamamoto, A.; MiWA, M. Bicyclo3.2.1octane and 6-Oxabicyclo3.2.2nonane Type Neolignans from Magnolia denudata. Chem. Pharm. Bull., 2000, 48(6), 832-837. doi: 10.1248/cpb.48.832 PMID: 10866144
- Jung, K.Y.; Kim, D.S.; Oh, S.R.; Park, S.H.; Lee, I.S.; Lee, J.J.; Shin, D.H.; Lee, H.K. Magnone A and B, novel anti-PAF tetrahydrofuran lignans from the flower buds of Magnolia fargesii. J. Nat. Prod., 1998, 61(6), 808-811. doi: 10.1021/np970445+ PMID: 9644071
- Seo, M.J.; Kang, B.W.; Jeong, Y.K. Identification of a neolignan glycoside from the pine tree, Pinus densiflora showed antithrombotic activity. J. Life Sci., 2014, 24(8), 873-879. doi: 10.5352/JLS.2014.24.8.873
- Shen, T.Y.; Hussaini, I.M. Kadsurenone and other related lignans as antagonists of platelet-activating factor receptor. Methods Enzymol., 1990, 187, 446-454. doi: 10.1016/0076-6879(90)87051-4 PMID: 2172742
- Qu, W.; Xue, J.; Wu, F.H.; Liang, J.Y. Lignans from saururus chinensis with antiplatelet aggregation and neuroprotective activities. Chem. Nat. Compd., 2014, 50(5), 814-818. doi: 10.1007/s10600-014-1090-x
- Zhang, S.X.; Chen, K.; Liu, X.J.; Zhang, D.C.; Tao-Wiedmann, T.W.; Leu, S.; McPhail, A.T.; Lee, K.H. The isolation and structural elucidation of three new neolignans, piperulins corrected A, B, and C, as platelet activating factor receptor antagonists from Piper puberulum. J. Nat. Prod., 1995, 58(4), 540-547. doi: 10.1021/np50118a009 PMID: 7623032
- Ma, Y.; Han, G.Q.; Li, C.L.; Cheng, J.R.; Arison, B.H.; Hwang, S.B. Neolignans from Piper polysyphorum C. DC. Yao xue xue bao=. Yao Xue Xue Bao, 1991, 26(5), 345-350. PMID: 1957684
- Liu, J.S.; Zhang, J.; Qi, Y.D.; Jia, X.G.; Zhang, B.G.; Liu, H.T. Four new lignans from Kadsura interior and their bioactivity. Molecules, 2018, 23(6), 1279. doi: 10.3390/molecules23061279 PMID: 29861462
- Zhang, J.; Chen, J.; Liang, Z.; Zhao, C. New lignans and their biological activities. Chem. Biodivers., 2014, 11(1), 1-54. doi: 10.1002/cbdv.201100433 PMID: 24443425
- Shen, Y.C.; Lin, Y.C.; Ahmed, A.F.; Cheng, Y.B.; Liaw, C.C.; Kuo, Y.H. Four new nonaoxygenated C18 dibenzocylcooctadiene lignans from Kadsura philippinensis. Chem. Pharm. Bull., 2007, 55(2), 280-283. doi: 10.1248/cpb.55.280 PMID: 17268102
- Zhuo, J.X.; Wang, Y.H.; Su, X.L.; Mei, R.Q.; Yang, J.; Kong, Y.; Long, C.L. Neolignans from Selaginella moellendorffii. Nat. Prod. Bioprospect., 2016, 6(3), 161-166. doi: 10.1007/s13659-016-0095-5 PMID: 27052962
- Le, H.L.; Nguyen, T.M.H.; Vu, T.T.; Nguyen, T.T.O.; Ly, H.D.T.; Le, N.T.; Nguyen, V.H.; Nguyen, T.V.A. Potent antiplatelet aggregation, anticoagulant and antioxidant activity of aerial Canna x generalis L.H Bailey & E.Z Bailey and its phytoconstituents. S. Afr. J. Bot., 2022, 147, 882-893. doi: 10.1016/j.sajb.2022.03.035
- Wang, S.; Gao, Z.; Chen, X.; Lian, X.; Zhu, H.; Zheng, J.; Sun, L. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin. Biomed. Mater., 2008, 3(4), 044106. doi: 10.1088/1748-6041/3/4/044106 PMID: 19029605
- Choi, J.H.; Park, J.K.; Kim, K.M.; Lee, H.J.; Kim, S. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J. Biochem. Mol. Toxicol., 2018, 32(1), e22004. doi: 10.1002/jbt.22004 PMID: 29077251
- Wee, J.J.; Kim, Y.S.; Kyung, J.S.; Song, Y.B.; Do, J.H.; Kim, D.C.; Lee, S.D. Identification of anticoagulant components in Korean red ginseng. J. Ginseng Res., 2010, 34(4), 355-362. doi: 10.5142/jgr.2010.34.4.355
- Choi, J.H.; Kim, S. Mechanisms of attenuation of clot formation and acute thromboembolism by syringic acid in mice. J. Funct. Foods, 2018, 43, 112-122. doi: 10.1016/j.jff.2018.02.004
- Lim, M.Y.; Park, Y.H.; Filho, D.J.; Kim, M.K.; Lee, H.S. Antiplatelet activity of gallic acid and methyl gallate. Food Sci. Biotechnol., 2004, 13(6), 806-809.
- Chang, S.S.; Lee, V.S.Y.; Tseng, Y.L.; Chang, K.C.; Chen, K.B.; Chen, Y.L.; Li, C.Y. Gallic acid attenuates platelet activation and platelet-leukocyte aggregation: Involving pathways of Akt and GSK3β. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-8. doi: 10.1155/2012/683872
- Fan, H.Y.; Fu, F.H.; Yang, M.Y.; Xu, H.; Zhang, A.H.; Liu, K. Antiplatelet and antithrombotic activities of salvianolic acid A. Thromb. Res., 2010, 126(1), e17-e22. doi: 10.1016/j.thromres.2010.04.006 PMID: 20451955
- Wang, J.; Xiong, X.; Feng, B. Cardiovascular effects of salvianolic acid B. Evid. Based Complement Altern. Med., 2013, 2013, 247948. doi: 10.1155/2013/247948
- Zheng, X.; Liu, H.; Ma, M.; Ji, J.; Zhu, F.; Sun, L. Anti-thrombotic activity of phenolic acids obtained from Salvia miltiorrhiza f. alba in TNF-α-stimulated endothelial cells via the NF-κB/JNK/p38 MAPK signaling pathway. Arch. Pharm. Res., 2021, 44(4), 427-438. doi: 10.1007/s12272-021-01325-7 PMID: 33847919
- Veach, D.; Hosking, H.; Thompson, K.; Santhakumar, A.B. Anti-platelet and anti-thrombogenic effects of shikimic acid in sedentary population. Food Funct., 2016, 7(8), 3609-3616. doi: 10.1039/C6FO00927A PMID: 27480079
- Lis, B.; Jedrejek, D.; Moldoch, J.; Stochmal, A.; Olas, B. The anti-oxidative and hemostasis-related multifunctionality of L-chicoric acid, the main component of dandelion: An in vitro study of its cellular safety, antioxidant and anti-platelet properties, and effect on coagulation. J. Funct. Foods, 2019, 62, 103524. doi: 10.1016/j.jff.2019.103524
- Pyo, M.K.; Jin, J.L.; Koo, Y.K.; Yun-Choi, H.S. Phenolic and furan type compounds isolated from Gastrodia elata and their anti-platelet effects. Arch. Pharm. Res., 2004, 27(4), 381-385. doi: 10.1007/BF02980077 PMID: 15180301
- Fuentes, E.; Caballero, J.; Alarcón, M.; Rojas, A.; Palomo, I. Chlorogenic acid inhibits human platelet activation and thrombus formation. PLoS One, 2014, 9(3), e90699. doi: 10.1371/journal.pone.0090699 PMID: 24598787
- Choi, J.H.; Kim, S. Investigation of the anticoagulant and antithrombotic effects of chlorogenic acid. J. Biochem. Mol. Toxicol., 2017, 31(3), e21865. doi: 10.1002/jbt.21865 PMID: 27704645
- Chang, M.C.; Chang, H.H.; Wang, T.M.; Chan, C.P.; Lin, B.R.; Yeung, S.Y.; Yeh, C.Y.; Cheng, R.H.; Jeng, J.H. Antiplatelet effect of catechol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. PLoS One, 2014, 9(8), e104310. doi: 10.1371/journal.pone.0104310 PMID: 25122505
- Zou, Q.Y.; Pang, D.R.; Pei, Y.J.; Luo, Y.G.; Wang, Y.X.; Huang, H.; Zhu, Z.X.; Huo, H.X.; Zhao, Y.F.; Tu, P.F.; Li, J. Platelet-inhibitory phenolic constituents from the fruits of Daemonorops draco. Fitoterapia, 2023, 167, 105507. doi: 10.1016/j.fitote.2023.105507 PMID: 37054821
- Li, J.Y.; Chen, R.J.; Huang, L.T.; Lee, T.Y.; Lu, W.J.; Lin, K.H. Embelin as a novel inhibitor of PKC in the prevention of platelet activation and thrombus formation. J. Clin. Med., 2019, 8(10), 1724. doi: 10.3390/jcm8101724 PMID: 31635287
- Wang, A.K.; Geng, T.; Jiang, W.; Zhang, Q.; Zhang, Y.; Chen, P.; Shan, M.; Zhang, M.; Tang, Y.; Ding, A.; Zhang, L. Simultaneous determination of twelve quinones from Rubiae radix et Rhizoma before and after carbonization processing by UPLC-MS/MS and their antithrombotic effect on zebrafish. J. Pharm. Biomed. Anal., 2020, 191, 113638. doi: 10.1016/j.jpba.2020.113638 PMID: 32980794
- Goh, S.H.; Jantan, I. A xanthone from Calophyllum inophyllum. Phytochemistry, 1991, 30(1), 366-367. doi: 10.1016/0031-9422(91)84160-T
- Jantan, I.; Pisar, M.M.; Idris, M.S.; Taher, M.; Ali, R.M. In vitro inhibitory effect of rubraxanthone isolated from Garcinia parvifolia on platelet-activating factor receptor binding. Planta Med., 2002, 68(12), 1133-1134. doi: 10.1055/s-2002-36343 PMID: 12494345
- Yoo, H.; Ku, S.K.; Lee, W.; Kwak, S.; Baek, Y.D.; Min, B.W.; Jeong, G.S.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A. Arch. Pharm. Res., 2014, 37(8), 1069-1078. doi: 10.1007/s12272-013-0290-4 PMID: 24234914
- Goh, S.H.; Jantan, I.; Gray, A.I.; Waterman, P.G. Prenylated xanthones from Garcinia opaca. Phytochemistry, 1992, 31(4), 1383-1386. doi: 10.1016/0031-9422(92)80296-Q
Supplementary files
