Natural Phenolic Compounds with Antithrombotic and Antiplatelet Effects: A Drug-likeness Approach


Cite item

Full Text

Abstract

Background:Thrombosis is one of the major causes of morbidity and mortality in a wide range of vessel diseases. Several studies have been conducted to identify antithrombotic agents from medicinal plants, and phenolic compounds (PCs) have been shown to effectively inhibit plasma coagulation and platelet aggregation.

Objectives:This study aimed to conduct a survey of the natural PCs with proven antithrombotic and antiplatelet activities, as well as to evaluate by computational modeling the physicochemical and toxicological properties of these compounds using drug-likeness approaches.

Methods:The data were collected from the scientific database: ‘Web of Science’, ‘Scifinder’, ‘Pubmed’, ‘ScienceDirect’ and ‘Google Scholar’, the different classes of PCs with antithrombotic or antiplatelet effects were used as keywords. These molecules were also evaluated for their Drug-Likeness properties and toxicity to verify their profile for being candidates for new antithrombotic drugs.

Results:In this review, it was possible to register 85 lignans, 73 flavonoids, 28 coumarins, 21 quinones, 23 phenolic acids, 8 xanthones and 8 simple phenols. Activity records for tannins were not found in the researched databases. Of these 246 compounds, 213 did not violate any of Lipinski's rules of five, of which 125 (59%) showed non-toxicity, being promising candidates for new potential antithrombotic drugs.

Conclusion:This review arouses interest in the isolation of phenolic compounds that may allow a new approach for the prevention of both arterial and venous thrombosis, with the potential to become alternatives in the prevention and treatment of cardiovascular diseases.

About the authors

Diégina Fernandes

Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba

Email: info@benthamscience.net

Ayala Gomes

Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba

Email: info@benthamscience.net

Camila da Silva

Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba

Email: info@benthamscience.net

Isabelly de Medeiros Henriques

Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba

Email: info@benthamscience.net

Renata de Menezes

Post Graduation Program in Bioactive Natural and Synthetic Products,, Federal University of Paraíba

Email: info@benthamscience.net

Marcus Scotti

Post Graduation Program in Bioactive Natural and Synthetic Products,, Federal University of Paraíba

Email: info@benthamscience.net

Yanna Teles

Department of Chemistry and Physics, Agrarian Sciences Center,, Federal University of Paraíba

Email: info@benthamscience.net

RuAngelie Edrada-Ebel

Strathclyde Institute of Pharmacy & Biomedical Sciences,, University of Strathclyde

Email: info@benthamscience.net

Maria de Fatima Vanderlei de Souza

Post Graduation Program in Bioactive Natural and Synthetic Products,, Federal University of Paraíba

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kumar, S.; Joseph, L.; George, M.; Sharma, A. A review on anticoagulant/antithrombotic activity of natural plants used in traditional medicine. Int. J. Pharm. Sci. Rev. Res., 2011, 8(1), 70-74.
  2. Lee, W.; Ku, S.K.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch. Pharm. Res., 2015, 38(5), 893-903. doi: 10.1007/s12272-014-0410-9 PMID: 24849036
  3. Choi, J.H.; Park, S.E.; Kim, S.J.; Kim, S. Kaempferol inhibits thrombosis and platelet activation. Biochimie, 2015, 115, 177-186. doi: 10.1016/j.biochi.2015.06.001 PMID: 26073152
  4. Lv, J.L.; Li, Z.Z.; Zhang, L.B. Two new flavonoids from Artemisia argyi with their anticoagulation activities. Nat. Prod. Res., 2018, 32(6), 632-639. doi: 10.1080/14786419.2017.1332603 PMID: 28539062
  5. Mega, J.L.; Simon, T. Pharmacology of antithrombotic drugs: An assessment of oral antiplatelet and anticoagulant treatments. Lancet, 2015, 386(9990), 281-291. doi: 10.1016/S0140-6736(15)60243-4 PMID: 25777662
  6. Kim, K.; Do, H.J.; Oh, T.W.; Kim, K.Y.; Kim, T.H.; Ma, J.Y.; Park, K.I. Antiplatelet and atithrombotic activity of a traditional medicine, Hwangryunhaedok-Tang. Front. Pharmacol., 2019, 9, 1502. doi: 10.3389/fphar.2018.01502 PMID: 30687085
  7. Kubatka, P.; Mazurakova, A.; Koklesova, L.; Samec, M.; Sokol, J.; Samuel, S.M.; Kudela, E.; Biringer, K.; Bugos, O.; Pec, M.; Link, B.; Adamkov, M.; Smejkal, K.; Büsselberg, D.; Golubnitschaja, O. Antithrombotic and antiplatelet effects of plant-derived compounds: A great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine. EPMA J., 2022, 13(3), 407-431. doi: 10.1007/s13167-022-00293-2 PMID: 35990779
  8. Correia-da-Silva, M.; Sousa, E.; Pinto, M.M.M. Flavonoides glicosilados sulfatados: Agentes antitrombóticos com atividade dual. Rev. Saúde, 2012, 3, 31-39.
  9. Akram, M.; Rashid, A. Anti-coagulant activity of plants: Mini review. J. Thromb. Thrombolysis, 2017, 44(3), 406-411. doi: 10.1007/s11239-017-1546-5 PMID: 28866770
  10. Beretz, A.; Cazenave, J.P. Old and new natural products as the source of modern antithrombotic drugs. Planta Med., 1991, 57(S 1), S68-S72. doi: 10.1055/s-2006-960232
  11. Chaves, D.S.A.; Costa, S.S.; Almeida, A.P.; Frattani, F.; Assafim, M.; Zingali, R.B. Metabólitos secundários de origem vegetal: Uma fonte potencial de fármacos antitrombóticos. Quim. Nova, 2010, 33(1), 172-180. doi: 10.1590/S0100-40422010000100030
  12. Bijak, M.; Saluk, J.; Nowak, P. Comparison of anticoagulant effect of selected polyphenols. Acta Pol. Pharm., 2018, 75(2), 533-544.
  13. Cui, L.; Xing, M.; Xu, L.; Wang, J.; Zhang, X.; Ma, C.; Kang, W. Antithrombotic components of Malus halliana Koehne flowers. Food Chem. Toxicol., 2018, 119, 326-333. doi: 10.1016/j.fct.2018.02.049 PMID: 29496530
  14. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
  15. Chua, T.; Koh, H. Medicinal plants as potential sources of lead compounds with anti-platelet and anti-coagulant activities. Mini Rev. Med. Chem., 2006, 6(6), 611-624. doi: 10.2174/138955706777435751 PMID: 16787371
  16. Dos Santos, D.S.; Farias Rodrigues, M.M. Atividades farmacológicas dos flavonoides: Um estudo de revisão. Estação Científic, 2017, 7(3), 29-35. doi: 10.18468/estcien.2017v7n3.p29-35
  17. Março, P.H.; Poppi, R.J.; Scarminio, I.S. Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais. Quim. Nova, 2008, 31(5), 1218-1223. doi: 10.1590/S0100-40422008000500051
  18. Shi, Z.H.; Li, N.G.; Tang, Y.P.; Wei-Li; Lian-Yin; Yang, J.P.; Hao-Tang; Duan, J.A. Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. Eur. J. Med. Chem., 2012, 54, 210-222. doi: 10.1016/j.ejmech.2012.04.044 PMID: 22647223
  19. Zverev, Y.F.; Kudinov, A.V.; Momot, A.P.; Fedoreev, S.A.; Zamyatina, S.V.; Kulesh, N.I.; Lycheva, N.A.; Fedorov, D.V. Antiplatelet and anticoagulant activity of 7-O-gentiobioside formononetin in vitro and in vivo. Bull. Sib. Med., 2016, 15, 30-39. doi: 10.20538/1682-0363-2016-4-30-39
  20. Guglielmone, H.A.; Agnese, A.M.; Núñez Montoya, S.C.; Cabrera, J.L. Anticoagulant effect and action mechanism of sulphated flavonoids from Flaveria bidentis. Thromb. Res., 2002, 105(2), 183-188. doi: 10.1016/S0049-3848(01)00419-4 PMID: 11958811
  21. Teles, Y.; Souza, M.; Souza, M. Sulphated flavonoids: Biosynthesis, structures, and biological activities. Molecules, 2018, 23(2), 480. doi: 10.3390/molecules23020480 PMID: 29473839
  22. Correia-da-Silva, M.; Sousa, E.; Duarte, B.; Marques, F.; Carvalho, F.; Cunha-Ribeiro, L.M.; Pinto, M.M.M. Flavonoids with an oligopolysulfated moiety: A new class of anticoagulant agents. J. Med. Chem., 2011, 54(1), 95-106. doi: 10.1021/jm1013117 PMID: 21138266
  23. Ku, S.K.; Kim, T.H.; Bae, J.S. Anticoagulant activities of persicarin and isorhamnetin. Vascul. Pharmacol., 2013, 58(4), 272-279. doi: 10.1016/j.vph.2013.01.005 PMID: 23391847
  24. Poór, M.; Li, Y.; Kunsági-Máté, S.; Petrik, J.; Vladimir-Knežević, S.; Kőszegi, T. Molecular displacement of warfarin from human serum albumin by flavonoid aglycones. J. Lumin., 2013, 142, 122-127. doi: 10.1016/j.jlumin.2013.03.056
  25. Carotenuto, A.; De Feo, V.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Cicala, C. The flavonoids of Allium ursinum. Phytochemistry, 1996, 41(2), 531-536. doi: 10.1016/0031-9422(95)00574-9 PMID: 8821433
  26. Scotti, M.T.; Speck-Planche, A.; Tavares, J.F.; da Silva, M.S.; Cordeiro, M.N.D.S.; Scotti, L. Virtual screening of alkaloids from apocynaceae with potential antitrypanosomal activity. Curr. Bioinform., 2015, 10(5), 509-519. doi: 10.2174/1574893610666151008011042
  27. Oprea, T.I. Property distribution of drug-related chemical databases. J. Comput. Aided Mol. Des., 2000, 14(3), 251-264. doi: 10.1023/A:1008130001697 PMID: 10756480
  28. Walters, W.P.; Murcko, M.A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev., 2002, 54(3), 255-271. doi: 10.1016/S0169-409X(02)00003-0 PMID: 11922947
  29. Zheng, S.; Luo, X.; Chen, G.; Zhu, W.; Shen, J.; Chen, K.; Jiang, H. A new rapid and effective chemistry space filter in recognizing a druglike database. J. Chem. Inf. Model., 2005, 45(4), 856-862. doi: 10.1021/ci050031j PMID: 16045278
  30. Rishton, G.M. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov. Today, 2003, 8(2), 86-96. doi: 10.1016/S1359644602025722 PMID: 12565011
  31. Data warrior V.5.5.0. Available form: http://www.open-molecules.org/datawarrior/download.html
  32. Maistro, E.L.; de Souza Marques, E.; Fedato, R.P.; Tolentino, F.; da Silva, C.A.C.; Tsuboy, M.S.F.; Resende, F.A.; Varanda, E.A. In vitro assessment of mutagenic and genotoxic effects of coumarin derivatives 6,7-dihydroxycoumarin and 4-methylesculetin. J. Toxicol. Environ. Health A, 2015, 78(2), 109-118. doi: 10.1080/15287394.2014.943865 PMID: 25424619
  33. Petruľová-Poracká, V.; Repčák, M.; Vilková, M.; Imrich, J. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem., 2013, 141(1), 54-59. doi: 10.1016/j.foodchem.2013.03.004 PMID: 23768326
  34. Venugopala, K. N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed. Res. Int., 2013, 2013, 963248. doi: 10.1155/2013/963248
  35. Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811. doi: 10.2174/1381612043382693 PMID: 15579072
  36. Murray, R.D.H. Coumarins. Nat. Prod. Rep., 1989, 6(6), 591-624. doi: 10.1039/np9890600591 PMID: 2699016
  37. Bruneton, J. Coumarins. In: In: Pharmacognosy, Phytochemistry, Medicinal Plants; Intercepted Ltd: Lavoisler: Paris, 1995; pp. 229-240.
  38. Najmanová, I.; Doseděl, M.; Hrdina, R.; Anzenbacher, P.; Filipský, T.; Říha, M.; Mladěnka, P. Cardiovascular effects of coumarins besides their antioxidant activity. Curr. Top. Med. Chem., 2015, 15(9), 830-849. doi: 10.2174/1568026615666150220112437 PMID: 25697565
  39. Durić, K.; Kovac Besovic, E.E.; Niksic, H.; Muratovic, S.; Sofic, E. Anticoagulant activity of some Artemisia dracunculus leaf extracts. Bosn. J. Basic Med. Sci., 2015, 15(2), 9-14. PMID: 26042507
  40. Greaves, M. Pharmacogenetics in the management of coumarin anticoagulant therapy: The way forward or an expensive diversion? PLoS Med., 2005, 2(10), e342. doi: 10.1371/journal.pmed.0020342 PMID: 16231978
  41. Suarez-Kurtz, G.; Botton, M.R. Pharmacogenetics of coumarin anticoagulants in Brazilians. Expert Opin. Drug Metab. Toxicol., 2015, 11(1), 67-79. doi: 10.1517/17425255.2015.976201 PMID: 25345887
  42. Jain, P.K.; Joshi, H. Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci., 2012, 2(6), 236-240.
  43. Chia, Y.C.; Chang, F.R.; Wang, J.C.; Wu, C.C.; Chiang, M.; Lan, Y.H.; Chen, K.S.; Wu, Y.C. Antiplatelet aggregation coumarins from the leaves of Murraya omphalocarpa. Molecules, 2008, 13(1), 122-128. doi: 10.3390/molecules13010122 PMID: 18259135
  44. Chen, H.; Walsh, C.T. Synthesis of novel N-substituted-2-oxo-2H-1-coumarin-3-carboxamide & evaluated for selective anti helicobacter pylori activity & cytotoxicity. Chem. Biol., 2001, 8, 288-301.
  45. Ikawa, M.; Stahmann, M.A.; Link, K.P. Studies on 4-Hydroxycoumarins. V. The Condensation of α,β-Unsaturated Ketones with 4-Hydroxycoumarin. J. Am. Chem. Soc., 1944, 66(6), 902-906. doi: 10.1021/ja01234a019
  46. Arora, R.B.; Mathur, C.N. Relationship between structure and anticoagulant activity of coumarin derivatives. Br. J. Pharmacol. Chemother., 1963, 20(1), 29-35. doi: 10.1111/j.1476-5381.1963.tb01294.x PMID: 19108174
  47. Chen, I.; Lin, Y.C.; Tsai, I.L.; Teng, C.M.; Ko, F.N.; Ishikawa, T.; Ishii, H. Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry, 1995, 39(5), 1091-1097. doi: 10.1016/0031-9422(95)00054-B PMID: 7662272
  48. Tsai, I.L.; Lin, W.Y.; Teng, C.M.; Ishikawa, T.; Doong, S.L.; Huang, M.W.; Chen, Y.C.; Chen, I.S. Coumarins and antiplatelet constituents from the root bark of Zanthoxylum schinifolium. Planta Med., 2000, 66(7), 618-623. doi: 10.1055/s-2000-8648 PMID: 11105565
  49. Lei, L.; Xue, Y.; Liu, Z.; Peng, S.; He, Y.; Zhang, Y.; Fang, R.; Wang, J.; Luo, Z.; Yao, G.; Zhang, J.; Zhang, G.; Song, H.; Zhang, Y. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci. Rep., 2015, 5(1), 13544. doi: 10.1038/srep13544 PMID: 26315062
  50. Tsai, I.L.; Wun, M.F.; Teng, C.M.; Ishikawa, T.; Chen, I.S. Anti-platelet aggregation constituents from Formosan toddalia asiatica. Phytochemistry, 1998, 48(8), 1377-1382. doi: 10.1016/S0031-9422(97)00678-X PMID: 9720317
  51. Chen, I.S.; Chang, C.T.; Sheen, W.S.; Teng, C.M.; Tsai, I.L.; Duh, C.Y.; Ko, F.N. Coumarins and antiplatelet aggregation constituents from formosan Peucedanum japonicum. Phytochemistry, 1996, 41(2), 525-530. doi: 10.1016/0031-9422(95)00625-7 PMID: 8821432
  52. Kontogiorgis, C.; Nicolotti, O.; Mangiatordi, G.F.; Tognolini, M.; Karalaki, F.; Giorgio, C.; Patsilinakos, A.; Carotti, A.; Hadjipavlou-Litina, D.; Barocelli, E. Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 925-933. doi: 10.3109/14756366.2014.995180 PMID: 25807297
  53. Pilkington, L. Lignans: A chemometric analysis. Molecules, 2018, 23(7), 1666. doi: 10.3390/molecules23071666 PMID: 29987225
  54. Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev., 2003, 2(3), 371-390. doi: 10.1023/B:PHYT.0000045487.02836.32
  55. Zhang, P.Y. Cardioprotection by phytochemicals via antiplatelet effects and metabolism modulations. Cell Biochem. Biophys., 2015, 73(2), 369-379. doi: 10.1007/s12013-015-0612-x PMID: 27352325
  56. Simões, C.M.O.; Schenkel, E.P.; de Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: Do produto natural ao medicamento, 1st ed.; Artmed: Porto Alegre, 2017.
  57. Pan, J.Y.; Chen, S.L.; Yang, M.H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products and synthesis. Nat. Prod. Rep., 2009, 26(10), 1251-1292. doi: 10.1039/b910940d PMID: 19779640
  58. Ríos, J.L.; Giner, R.M.; Prieto, J.M. New findings on the bioactivity of lignans. Stud. Nat. Prod. Chem., 2002, 26, 183-292. doi: 10.1016/S1572-5995(02)80008-4
  59. Pan, W.; Liu, K.; Guan, Y.; Tan, G.T.; Hung, N.V.; Cuong, N.M.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S.; Zhang, H. Bioactive compounds from vitex leptobotrys. J. Nat. Prod., 2014, 77(3), 663-667. doi: 10.1021/np400779v PMID: 24404757
  60. Shi, Y.N.; Shi, Y.M.; Yang, L.; Li, X.C.; Zhao, J.H.; Qu, Y.; Zhu, H.T.; Wang, D.; Cheng, R.R.; Yang, C.R.; Xu, M.; Zhang, Y.J. Lignans and aromatic glycosides from Piper wallichii and their antithrombotic activities. J. Ethnopharmacol., 2015, 162, 87-96. doi: 10.1016/j.jep.2014.12.038 PMID: 25555357
  61. Jung, K.Y.; Lee, I.S.; Oh, S.R.; Kim, D.S.; Lee, H.K. Lignans with platelet activating factor antagonist activity from Schisandra chinensis (Turcz.) Baill. Phytomedicine, 1997, 4(3), 229-231. doi: 10.1016/S0944-7113(97)80072-4 PMID: 23195480
  62. Ghisalberti, E.L. Cardiovascular activity of naturally occurring lignans. Phytomedicine, 1997, 4(2), 151-166. doi: 10.1016/S0944-7113(97)80063-3 PMID: 23195404
  63. Tsai, W.J.; Shen, C.C.; Tsai, T.H.; Lin, L.C. Lignans from the aerial parts of Saururus chinensis: Isolation, structural characterization, and their effects on platelet aggregation. J. Nat. Prod., 2014, 77(1), 125-131. doi: 10.1021/np400772h PMID: 24387347
  64. Kim, M.G.; Lee, C.H.; Lee, H.S. Anti-platelet aggregation activity of lignans isolated from Schisandra chinensis fruits. J. Korean Soc. Appl. Biol. Chem., 2010, 53(6), 740-745. doi: 10.3839/jksabc.2010.112
  65. Pyo, M.K.; Lee, Y.; Yun-Choi, H.S. Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch. Pharm. Res., 2002, 25(3), 325-328. doi: 10.1007/BF02976634 PMID: 12135105
  66. Wu, C.M.; Wu, S.C.; Chung, W.J.; Lin, H.C.; Chen, K.T.; Chen, Y.C.; Hsu, M.F.; Yang, J.M.; Wang, J.P.; Lin, C.N. Antiplatelet effect and selective binding to cyclooxygenase (COX) by molecular docking analysis of flavonoids and lignans. Int. J. Mol. Sci., 2007, 8(8), 830-841. doi: 10.3390/i8080830
  67. Lee, I.S.; Jung, K.Y.; Oh, S.R.; Kim, D.S.; Kim, J.H.; Lee, J.J.; Lee, H.K.; Lee, S.H.; Kim, E.H.; Cheong, C. Platelet-activating factor antagonistic activity and13C NMR assignment of pregomisin and chamigrenal fromSchisandra chinensis. Arch. Pharm. Res., 1997, 20(6), 633-636. doi: 10.1007/BF02975223 PMID: 18982271
  68. Chen, J.J.; Chang, Y.L.; Teng, C.M.; Chen, I.S. Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia. Planta Med., 2000, 66(3), 251-256. doi: 10.1055/s-2000-8562 PMID: 10821052
  69. Chen, C.C.; Hsin, W.C.; Ko, F.N.; Huang, Y.L.; Ou, J.C.; Teng, C.M. Antiplatelet arylnaphthalide lignans from justicia procumbens. J. Nat. Prod., 1996, 59(12), 1149-1150. doi: 10.1021/np960443+ PMID: 8988600
  70. Ku, S.K.; Kim, J.A.; Han, C.K.; Bae, J.S. Antithrombotic activities of epi-sesamin in vitro and in vivo. Am. J. Chin. Med., 2013, 41(6), 1313-1327. doi: 10.1142/S0192415X13500882 PMID: 24228603
  71. Coy-Barrera, E.D.; Cuca-Suarez, L.E. In vitro anti-inflammatory effects of naturally-occurring compounds from two Lauraceae plants. An. Acad. Bras. Cienc., 2011, 83(4), 1397-1402. doi: 10.1590/S0001-37652011005000044 PMID: 22011769
  72. Yang, Y.P.; Cheng, M.J.; Teng, C.M.; Chang, Y.L.; Tsai, I.L.; Chen, I.S. Chemical and anti-platelet constituents from Formosan Zanthoxylum simulans. Phytochemistry, 2002, 61(5), 567-572. doi: 10.1016/S0031-9422(02)00268-6 PMID: 12409024
  73. Wu, Y.C.; Chang, G.Y.; Ko, F.N.; Teng, C.M. Bioactive constitutents from the stems of Annona montana. Planta Med., 1995, 61(2), 146-149. doi: 10.1055/s-2006-958035 PMID: 7753921
  74. Cheng, M.J.; Wu, C.C.; Tsai, I.L.; Chen, I.S. Chemical and antiplatelet constituents from the stem of Zanthoxylum beecheyanum. J. Chin. Chem. Soc., 2004, 51(5A), 1065-1072. doi: 10.1002/jccs.200400159
  75. Chen, Y.C.; Liao, C.H.; Chen, I.S. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochemistry, 2007, 68(15), 2101-2111. doi: 10.1016/j.phytochem.2007.05.003 PMID: 17585974
  76. Soares, S.E. Ácidos fenólicos como antioxidantes. Rev. Nutr., 2002, 15(1), 71-81. doi: 10.1590/S1415-52732002000100008
  77. Luceri, C.; Giannini, L.; Lodovici, M.; Antonucci, E.; Abbate, R.; Masini, E.; Dolara, P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr., 2007, 97(3), 458-463. doi: 10.1017/S0007114507657882 PMID: 17313706
  78. Satake, T.; Kamiya, K.; An, Y.; Oishi Nee Taka, T.; Yamamoto, J. The anti-thrombotic active constituents from Centella asiatica. Biol. Pharm. Bull., 2007, 30(5), 935-940. doi: 10.1248/bpb.30.935 PMID: 17473438
  79. Luo, X.; Du, C.; Cheng, H.; Chen, J.; Lin, C. Study on the anticoagulant or procoagulant activities of type II phenolic acid derivatives. Molecules, 2017, 22(12), 2047. doi: 10.3390/molecules22122047 PMID: 29182552
  80. Pawlaczyk, I.; Capek, P.; Czerchawski, L.; Bijak, J.; Lewik-Tsirigotis, M.; Pliszczak-Król, A.; Gancarz, R. An anticoagulant effect and chemical characterization of Lythrum salicaria L. glycoconjugates. Carbohydr. Polym., 2011, 86(1), 277-284. doi: 10.1016/j.carbpol.2011.04.048
  81. Khoo, L. T.; Abas, F.; Abdullah, J. O.; Mohd Tohit, E. R.; Hamid, M. Anticoagulant activity of polyphenolic-polysaccharides isolated from Melastoma malabathricum L. Evid. Based. Complement. Altern. Med, 2014.
  82. Fuentes, E.; Forero-Doria, O.; Carrasco, G.; Maricán, A.; Santos, L.; Alarcón, M.; Palomo, I. Effect of tomato industrial processing on phenolic profile and antiplatelet activity. Molecules, 2013, 18(9), 11526-11536. doi: 10.3390/molecules180911526 PMID: 24048285
  83. Lee, D.H.; Kim, H.H.; Cho, H.J.; Bae, J.S.; Yu, Y.B.; Park, H.J. Antiplatelet effects of caffeic acid due to Ca(2+) mobilizationinhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. J. Atheroscler. Thromb., 2014, 21(1), 23-37. doi: 10.5551/jat.18994 PMID: 24088646
  84. El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: Overview and implications in analytical detection. Phytochem. Rev., 2011, 10(3), 353-370. doi: 10.1007/s11101-011-9209-1
  85. Sousa, E.T.; Lopes, W.A.; Andrade, J.B. Fontes, formação, reatividade e determinação de quinonas na atmosfera. Quim. Nova, 2016, 39(4), 486-495.
  86. Asche, C. Antitumour quinones. Mini Rev. Med. Chem., 2005, 5(5), 449-467. doi: 10.2174/1389557053765556 PMID: 15892687
  87. Ko, F.N.; Sheu, S.J.; Liu, Y.M.; Huang, T.F.; Teng, C.M. Inhibition of rabbit platelet aggregation by 1,4-naphthoquinones. Thromb. Res., 1990, 57(3), 453-463. doi: 10.1016/0049-3848(90)90261-A PMID: 2156351
  88. Blackwell, G.J.; Radomski, M.; Moncada, S. Inhibition of human platelet aggregation by vitamin K. Thromb. Res., 1985, 37(1), 103-114. doi: 10.1016/0049-3848(85)90037-4 PMID: 2984800
  89. Chang, T.S.; Kim, H.M.; Lee, K.S.; Khil, L.Y.; Mar, W.C.; Ryu, C.K.; Moon, C.K. Thromboxane A2 synthase inhibition and thromboxane A2 receptor blockade by 2-(4- cyanophenyl)amino-3-chloro-1,4-naphthalenedione (NQ-Y15) in rat platelets. Biochem. Pharmacol., 1997, 54(2), 259-268. doi: 10.1016/S0006-2952(97)00179-2 PMID: 9271330
  90. Kim, S.R.; Lee, J.Y.; Lee, M.Y.; Chung, S.M.; Bae, O.N.; Chung, J.H. Association of quinone-induced platelet anti-aggregation with cytotoxicity. Toxicol. Sci., 2001, 62(1), 176-182. doi: 10.1093/toxsci/62.1.176 PMID: 11399805
  91. Wubuli, P.; Xin-ling, W.; Kasimu, R.; Abilimiti, A.; Xiao-mei, W.; Jun-ping, H. Inhibition of platelet aggregation investigation and optimization of extracting technology of 6, 7-dehydroroyleanone in roots of Salvia deserta schang. Zhongguo Shiyan Fangjixue Zazhi, 2013, 2013, 22.
  92. Wang, X.L.; Wang, X.Q.; Hu, J.P.; Wang, X.M.; Kasimu, R.; Cui, Z.H. Determination of diterpenoid quinone in Salvia deserta roots and its inhibition for platelet aggregation. Zhongguo Shiyan Fangjixue Zazhi, 2016, 2016, 19.
  93. Ferreira, M A D.; Do Nascimento, N.R.F.; De Sousa, C.M.; Pessoa, O.D.L.; De Lemos, T.L.G.; Ventura, J.S.; Schattner, M.; Chudzinski-Tavassi, A.M. Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Ibα glycoprotein. Br. J. Pharmacol., 2008, 154(6), 1216-1224. doi: 10.1038/bjp.2008.199 PMID: 18516074
  94. Liou, M.J.; Teng, C.M.; Wu, T.S. Constituents from Rubia ustulate Diels and R. yunnanensis Diels and their antiplatelet aggregation activity. J. Chin. Chem. Soc., 2002, 49(6), 1025-1030. doi: 10.1002/jccs.200200146
  95. Teng, C.M.; Lin, C.H.; Lin, C.N.; Chung, M.; Huang, T.F. Frangulin B, an antagonist of collagen-induced platelet aggregation and adhesion, isolated from Rhamnus formosana. Thromb. Haemost., 1993, 70(6), 1014-1018. doi: 10.1055/s-0038-1649717 PMID: 8165593
  96. Liao, C.H.; Ko, F.N.; Wu, C.L.; Teng, C.M. Antiplatelet effect of marchantinquinone, isolated from Reboulia hemisphaerica, in rabbit washed platelets. J. Pharm. Pharmacol., 2010, 52(3), 353-359. doi: 10.1211/0022357001773913 PMID: 10757426
  97. Ko, F.N.; Lee, Y.S.; Kuo, S.C.; Chang, Y.S.; Teng, C.M. Inhibition on platelet activation by shikonin derivatives isolated from Arnebia euchroma. Biochim. Biophys. Acta Mol. Cell Res., 1995, 1268(3), 329-334. doi: 10.1016/0167-4889(95)00078-7 PMID: 7548232
  98. Lee, C. L.; Yen, M. H.; Chang, F. R.; Wu, C. C.; Wu, Y. C. Antiplatelet aggregation effects of phenanthrenes from Calanthe arisanensis. Nat. Prod. Commun, 2014, 9(1), 1934578X1400900124.
  99. Roberts, J.C. Naturally occurring xanthones. Chem. Rev., 1961, 61(6), 591-605. doi: 10.1021/cr60214a003
  100. Vieira, L.M.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 2005, 12(21), 2413-2446. doi: 10.2174/092986705774370682 PMID: 16250871
  101. Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally occurring xanthones: Chemistry and biology. J. Appl. Chem, 2013, 2013(9)
  102. Jiang, D.J.; Dai, Z.; Li, Y.J. Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc. Drug Rev., 2004, 22(2), 91-102. doi: 10.1111/j.1527-3466.2004.tb00133.x PMID: 15179447
  103. Jantan, I.; Mohd Yasin, Y.H.; Jalil, J.; Murad, S.; Idris, M.S. Antiplatelet aggregation activity of compounds isolated from Guttiferae species in human whole blood. Pharm. Biol., 2009, 47(11), 1090-1095. doi: 10.3109/13880200903008641
  104. Liou, S.S.; Lin, C-N.; Teng, C-M.; Ko, F-N. γ-Pyrone compounds. 5. Synthesis and antiplatelet effects of xanthonoxypropanolamines and related compounds. J. Pharm. Sci., 1994, 83(3), 391-395. doi: 10.1002/jps.2600830325 PMID: 8207688
  105. Teng, C.M.; Chun-Nan, L.; Feng-Nien, K.; Kam-Lin, C.; Tur-Fu, H. Novel inhibitory actions on platelet thromboxane and inositolphosphate formation by xanthones and their glycosides. Biochem. Pharmacol., 1989, 38(21), 3791-3795. doi: 10.1016/0006-2952(89)90587-X PMID: 2512926
  106. Lamponi, S. Bioactive natural compounds with antiplatelet and anticoagulant activity and their potential role in the treatment of thrombotic disorders. Life, 2021, 11(10), 1095. doi: 10.3390/life11101095 PMID: 34685464
  107. Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10. doi: 10.1016/j.addr.2015.01.009 PMID: 25666163
  108. Hossain, S.; Sarkar, B.; Prottoy, M.N.I.; Araf, Y.; Taniya, M.A.; Ullah, M.A. Thrombolytic activity, drug likeness property and adme/t analysis of isolated phytochemicals from ginger (Zingiber officinale) using in silico approaches. Mod. Res. Inflamm., 2019, 8(3), 29-43. doi: 10.4236/mri.2019.83003
  109. Periwal, V.; Bassler, S.; Andrejev, S.; Gabrielli, N.; Patil, K.R.; Typas, A.; Patil, K.R. Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs. PLOS Comput. Biol., 2022, 18(4), e1010029. doi: 10.1371/journal.pcbi.1010029 PMID: 35468126
  110. Wu, T.S.; Hsu, H.C.; Wu, P.L.; Teng, C.M.; Wu, Y.C. Rhinacanthin-Q, a naphthoquinone from Rhinacanthus nasutus and its biological activity. Phytochemistry, 1998, 49(7), 2001-2003. doi: 10.1016/S0031-9422(98)00425-7 PMID: 9883591
  111. Furusawa, M.; Tsuchiya, H.; Nagayama, M.; Tanaka, T.; Nakaya, K.; Iinuma, M. Anti-platelet and membrane-rigidifying flavonoids in brownish scale of onion. J. Health Sci., 2003, 49(6), 475-480. doi: 10.1248/jhs.49.475
  112. Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; De Feo, V.; Cicala, C. The flavonoids of Allium neapolitanum. Phytochemistry, 1997, 44(5), 949-957. doi: 10.1016/S0031-9422(96)00663-2 PMID: 9115694
  113. Mira, A.; Alkhiary, W.; Shimizu, K. Antiplatelet and anticoagulant activities of Angelica shikokiana extract and its isolated compounds. Clin. Appl. Thromb. Hemost., 2017, 23(1), 91-99. doi: 10.1177/1076029615595879 PMID: 26177661
  114. Ku, S.K.; Kim, T.H.; Lee, S.; Kim, S.M.; Bae, J.S. Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem. Toxicol., 2013, 53, 197-204. doi: 10.1016/j.fct.2012.11.040 PMID: 23220618
  115. Wu, T.S.; Tsang, Z.J.; Wu, P.L.; Lin, F.W.; Li, C.Y.; Teng, C.M.; Lee, K.H. New constituents and antiplatelet aggregation and anti-HIV principles of Artemisia capillaris. Bioorg. Med. Chem., 2001, 9(1), 77-83. doi: 10.1016/S0968-0896(00)00225-X PMID: 11197349
  116. Ryu, R.; Jung, U.J.; Kim, H.J.; Lee, W.; Bae, J.S.; Park, Y.B.; Choi, M.S. Anticoagulant and antiplatelet activities of Artemisia princeps Pampanini and its bioactive components. Prev. Nutr. Food Sci., 2013, 18(3), 181-187. doi: 10.3746/pnf.2013.18.3.181 PMID: 24471130
  117. Afifi, F.U.; Aburjai, T. Antiplatelet activity of Varthemia iphionoides. Fitoterapia, 2004, 75(7-8), 629-633. doi: 10.1016/j.fitote.2004.04.014 PMID: 15567236
  118. Ryu, R.; Jung, U.J.; Seo, Y.R.; Kim, H.J.; Moon, B.S.; Bae, J.S.; Lee, D.G.; Choi, M.S. Beneficial effect of persimmon leaves and bioactive compounds on thrombosis. Food Sci. Biotechnol., 2015, 24(1), 233-240. doi: 10.1007/s10068-015-0031-1
  119. Stochmal, A.; Rolnik, A.; Skalski, B.; Zuchowski, J.; Olas, B. Antiplatelet and anticoagulant activity of isorhamnetin and its derivatives isolated from sea buckthorn berries, measured in whole blood. Molecules, 2022, 27(14), 4429. doi: 10.3390/molecules27144429 PMID: 35889302
  120. Lee, W.; Bae, J.S. Antithrombotic and antiplatelet activities of orientin in vitro and in vivo. J. Funct. Foods, 2015, 17, 388-398. doi: 10.1016/j.jff.2015.05.037
  121. Kowalska, I.; Adach, W.; Stochmal, A.; Olas, B. A comparison of the effects of apigenin and seven of its derivatives on selected biomarkers of oxidative stress and coagulation in vitro. Food Chem. Toxicol., 2020, 136, 111016. doi: 10.1016/j.fct.2019.111016 PMID: 31805303
  122. Cao, P.; Xie, P.; Wang, X.; Wang, J.; Wei, J.; Kang, W. Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement. Altern. Med., 2017, 17(1), 93. doi: 10.1186/s12906-017-1592-8 PMID: 28166786
  123. Ku, S.K.; Bae, J.S. Antithrombotic activities of wogonin and wogonoside via inhibiting platelet aggregation. Fitoterapia, 2014, 98, 27-35. doi: 10.1016/j.fitote.2014.07.006 PMID: 25020199
  124. Kwon, H.W.; Irfan, M.; Lee, Y.Y.; Rhee, M.H.; Shin, J.H. Artocarpesin acts on human platelet aggregation through inhibition of cyclic nucleotides and MAPKs. Appl. Biol. Chem., 2022, 65(1), 25. doi: 10.1186/s13765-022-00694-x
  125. Kuntić, V.; Filipović, I.; Vujić, Z. Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays. Molecules, 2011, 16(2), 1378-1388. doi: 10.3390/molecules16021378 PMID: 21301410
  126. Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol., 2017, 67, 220-235. doi: 10.1016/j.tifs.2017.07.008
  127. Yin, Z.; Zhang, Y.; Zhang, J.; Wang, J.; Kang, W. Coagulatory active constituents of Malus pumila Mill. flowers. Chem. Cent. J., 2018, 12(1), 126. doi: 10.1186/s13065-018-0490-6 PMID: 30506434
  128. Han, N.; Gu, Y.; Ye, C.; Cao, Y.; Liu, Z.; Yin, J. Antithrombotic activity of fractions and components obtained from raspberry leaves (Rubus chingii). Food Chem., 2012, 132(1), 181-185. doi: 10.1016/j.foodchem.2011.10.051 PMID: 26434278
  129. Le, H.L.; Nguyen, V.H.; Nguyen, T.D.; Nguyen, T.V.A.; Le, D.H. Potential antiaggregatory and anticoagulant activity of Kaempferia parviflora extract and its methoxyflavones. Ind. Crops Prod., 2023, 192, 116030. doi: 10.1016/j.indcrop.2022.116030
  130. Gómez-Betancur, I.; Pereañez, J.A.; Patiño, A.C.; Benjumea, D. Inhibitory effect of pinostrobin from Renealmia alpinia, on the enzymatic and biological activities of a PLA2. Int. J. Biol. Macromol., 2016, 89, 35-42. doi: 10.1016/j.ijbiomac.2016.04.042 PMID: 27109758
  131. Liu, Y.; Xiong, B.; Qiu, X.; Hao, H.; Sha, A. Study on the antithrombotic effect and physiological mechanism of okanin. Biomed. Pharmacother., 2022, 153, 113358. doi: 10.1016/j.biopha.2022.113358 PMID: 35785699
  132. Ku, S.K.; Lee, W.; Kang, M.; Bae, J.S. Antithrombotic activities of aspalathin and nothofagin via inhibiting platelet aggregation and FIIa/FXa. Arch. Pharm. Res., 2015, 38(6), 1080-1089. doi: 10.1007/s12272-014-0501-7 PMID: 25325928
  133. Ibrahim, R.S.; Mahrous, R.S.R.; Abu EL-Khair, R.M.; Ross, S.A.; Omar, A.A.; Fathy, H.M. Biologically guided isolation and ADMET profile of new factor Xa inhibitors from Glycyrrhiza glabra roots using in vitro and in silico approaches. RSC Advances, 2021, 11(17), 9995-10001. doi: 10.1039/D1RA00359C PMID: 35423517
  134. Kim, J.M.; Yun-Choi, H.S. Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch. Pharm. Res., 2008, 31(7), 886-890. doi: 10.1007/s12272-001-1242-1 PMID: 18704331
  135. Zaragozá, C.; Álvarez-Mon, M.Á.; Zaragozá, F.; Villaescusa, L. Flavonoids: Antiplatelet effect as inhibitors of COX-1. Molecules, 2022, 27(3), 1146. doi: 10.3390/molecules27031146 PMID: 35164411
  136. Chen, S.; Lv, K.; Sharda, A.; Deng, J.; Zeng, W.; Zhang, C.; Hu, Q.; Jin, P.; Yao, G.; Xu, X.; Ming, Z.; Fang, C. Anti-thrombotic effects mediated by dihydromyricetin involve both platelet inhibition and endothelial protection. Pharmacol. Res., 2021, 167, 105540. doi: 10.1016/j.phrs.2021.105540 PMID: 33711433
  137. Chun-Nan, L.; Wen-Liang, S.; Feng-Nien, K.; Che-Ming, T. Antiplatelet activity of some prenylflavonoids. Biochem. Pharmacol., 1993, 45(2), 509-512. doi: 10.1016/0006-2952(93)90089-F PMID: 8435100
  138. Golfakhrabadi, F.; Abdollahi, M.; Ardakani, M.R.S.; Saeidnia, S.; Akbarzadeh, T.; Ahmadabadi, A.N.; Ebrahimi, A.; Yousefbeyk, F.; Hassanzadeh, A.; Khanavi, M. Anticoagulant activity of isolated coumarins (suberosin and suberenol) and toxicity evaluation of Ferulago carduchorum in rats. Pharm. Biol., 2014, 52(10), 1335-1340. doi: 10.3109/13880209.2014.892140 PMID: 25017518
  139. Ko, F.N.; Wu, T.S.; Liou, M.J.; Huang, T.F.; Teng, C.M. Inhibition of platelet thromboxane formation and phosphoinositides breakdown by osthole from Angelica pubescens. Thromb. Haemost., 1989, 62(3), 996-999. doi: 10.1055/s-0038-1651041 PMID: 2556815
  140. Rosselli, S.; Maggio, A.; Bellone, G.; Formisano, C.; Basile, A.; Cicala, C.; Alfieri, A.; Mascolo, N.; Bruno, M. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med., 2007, 73(2), 116-120. doi: 10.1055/s-2006-951772 PMID: 17128388
  141. Chen, K.S.; Wu, C.C.; Chang, F.R.; Chia, Y.C.; Chiang, M.Y.; Wang, W.Y.; Wu, Y.C. Bioactive coumarins from the leaves of Murraya omphalocarpa. Planta Med., 2003, 69(7), 654-657. doi: 10.1055/s-2003-41112 PMID: 12898423
  142. Teng, C.M.; Li, H.L.; Wu, T.S.; Huang, S.C.; Huang, T.F. Antiplatelet actions of some coumarin compounds isolated from plant sources. Thromb. Res., 1992, 66(5), 549-557. doi: 10.1016/0049-3848(92)90309-X PMID: 1523611
  143. Tawata, M.; Yoda, Y.; Aida, K.; Shindo, H.; Sasaki, H.; Chin, M.; Onaya, T. Anti-platelet action of GU-7, a 3-arylcoumarin derivative, purified from glycyrrhizae radix. Planta Med., 1990, 56(3), 259-263. doi: 10.1055/s-2006-960951 PMID: 2392489
  144. Weng, J.R.; Ko, H.H.; Yeh, T.L.; Lin, H.C.; Lin, C.N. Two new arylnaphthalide lignans and antiplatelet constituents from Justicia procumbens. Arch. Pharm., 2004, 337(4), 207-212. doi: 10.1002/ardp.200300841 PMID: 15065080
  145. Pan, J.X.; Hensens, O.D.; Zink, D.L.; Chang, M.N.; Hwang, S. Lignans with platelet activating factor antagonist activity from Magnolia biondii. Phytochemistry, 1987, 26(5), 1377-1379. doi: 10.1016/S0031-9422(00)81816-6
  146. Khan, A.N.; Fatima, I.; Khaliq, U.A.; Malik, A.; Miana, G.A.; Qureshi, Z.R.; Rasheed, H. Potent anti-platelet constituents from Centaurea iberica. Molecules, 2011, 16(3), 2053-2064. doi: 10.3390/molecules16032053 PMID: 21358593
  147. Matsunaga, K.; Shibuya, M.; Ohizumi, Y. Imperanene, a novel phenolic compound with platelet aggregation inhibitory activity from Imperata cylindrica. J. Nat. Prod., 1995, 58(1), 138-139. doi: 10.1021/np50115a022 PMID: 7760071
  148. Wu, T.S.; Leu, Y.L.; Chan, Y.Y.; Yu, S.M.; Teng, C.M.; Su, J.D. Lignans and an aromatic acid from Cinnamomum philippinense. Phytochemistry, 1994, 36(3), 785-788. doi: 10.1016/S0031-9422(00)89818-0
  149. Braquet, P.; Godfroid, J.J. PAF-acether specific binding sites: 2. Design of specific antagonists. Trends Pharmacol. Sci., 1986, 7, 397-403. doi: 10.1016/0165-6147(86)90401-3
  150. Coy-Barrera, E.D.; Cuca-Suárez, L.E.; Sefkow, M. PAF-antagonistic bicyclo3.2.1octanoid neolignans from leaves of Ocotea macrophylla Kunth. (Lauraceae). Phytochemistry, 2009, 70(10), 1309-1314. doi: 10.1016/j.phytochem.2009.07.010 PMID: 19674762
  151. Kuroyanagi, M.; Yoshida, K.; Yamamoto, A.; MiWA, M. Bicyclo3.2.1octane and 6-Oxabicyclo3.2.2nonane Type Neolignans from Magnolia denudata. Chem. Pharm. Bull., 2000, 48(6), 832-837. doi: 10.1248/cpb.48.832 PMID: 10866144
  152. Jung, K.Y.; Kim, D.S.; Oh, S.R.; Park, S.H.; Lee, I.S.; Lee, J.J.; Shin, D.H.; Lee, H.K. Magnone A and B, novel anti-PAF tetrahydrofuran lignans from the flower buds of Magnolia fargesii. J. Nat. Prod., 1998, 61(6), 808-811. doi: 10.1021/np970445+ PMID: 9644071
  153. Seo, M.J.; Kang, B.W.; Jeong, Y.K. Identification of a neolignan glycoside from the pine tree, Pinus densiflora showed antithrombotic activity. J. Life Sci., 2014, 24(8), 873-879. doi: 10.5352/JLS.2014.24.8.873
  154. Shen, T.Y.; Hussaini, I.M. Kadsurenone and other related lignans as antagonists of platelet-activating factor receptor. Methods Enzymol., 1990, 187, 446-454. doi: 10.1016/0076-6879(90)87051-4 PMID: 2172742
  155. Qu, W.; Xue, J.; Wu, F.H.; Liang, J.Y. Lignans from saururus chinensis with antiplatelet aggregation and neuroprotective activities. Chem. Nat. Compd., 2014, 50(5), 814-818. doi: 10.1007/s10600-014-1090-x
  156. Zhang, S.X.; Chen, K.; Liu, X.J.; Zhang, D.C.; Tao-Wiedmann, T.W.; Leu, S.; McPhail, A.T.; Lee, K.H. The isolation and structural elucidation of three new neolignans, piperulins corrected A, B, and C, as platelet activating factor receptor antagonists from Piper puberulum. J. Nat. Prod., 1995, 58(4), 540-547. doi: 10.1021/np50118a009 PMID: 7623032
  157. Ma, Y.; Han, G.Q.; Li, C.L.; Cheng, J.R.; Arison, B.H.; Hwang, S.B. Neolignans from Piper polysyphorum C. DC. Yao xue xue bao=. Yao Xue Xue Bao, 1991, 26(5), 345-350. PMID: 1957684
  158. Liu, J.S.; Zhang, J.; Qi, Y.D.; Jia, X.G.; Zhang, B.G.; Liu, H.T. Four new lignans from Kadsura interior and their bioactivity. Molecules, 2018, 23(6), 1279. doi: 10.3390/molecules23061279 PMID: 29861462
  159. Zhang, J.; Chen, J.; Liang, Z.; Zhao, C. New lignans and their biological activities. Chem. Biodivers., 2014, 11(1), 1-54. doi: 10.1002/cbdv.201100433 PMID: 24443425
  160. Shen, Y.C.; Lin, Y.C.; Ahmed, A.F.; Cheng, Y.B.; Liaw, C.C.; Kuo, Y.H. Four new nonaoxygenated C18 dibenzocylcooctadiene lignans from Kadsura philippinensis. Chem. Pharm. Bull., 2007, 55(2), 280-283. doi: 10.1248/cpb.55.280 PMID: 17268102
  161. Zhuo, J.X.; Wang, Y.H.; Su, X.L.; Mei, R.Q.; Yang, J.; Kong, Y.; Long, C.L. Neolignans from Selaginella moellendorffii. Nat. Prod. Bioprospect., 2016, 6(3), 161-166. doi: 10.1007/s13659-016-0095-5 PMID: 27052962
  162. Le, H.L.; Nguyen, T.M.H.; Vu, T.T.; Nguyen, T.T.O.; Ly, H.D.T.; Le, N.T.; Nguyen, V.H.; Nguyen, T.V.A. Potent antiplatelet aggregation, anticoagulant and antioxidant activity of aerial Canna x generalis L.H Bailey & E.Z Bailey and its phytoconstituents. S. Afr. J. Bot., 2022, 147, 882-893. doi: 10.1016/j.sajb.2022.03.035
  163. Wang, S.; Gao, Z.; Chen, X.; Lian, X.; Zhu, H.; Zheng, J.; Sun, L. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin. Biomed. Mater., 2008, 3(4), 044106. doi: 10.1088/1748-6041/3/4/044106 PMID: 19029605
  164. Choi, J.H.; Park, J.K.; Kim, K.M.; Lee, H.J.; Kim, S. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J. Biochem. Mol. Toxicol., 2018, 32(1), e22004. doi: 10.1002/jbt.22004 PMID: 29077251
  165. Wee, J.J.; Kim, Y.S.; Kyung, J.S.; Song, Y.B.; Do, J.H.; Kim, D.C.; Lee, S.D. Identification of anticoagulant components in Korean red ginseng. J. Ginseng Res., 2010, 34(4), 355-362. doi: 10.5142/jgr.2010.34.4.355
  166. Choi, J.H.; Kim, S. Mechanisms of attenuation of clot formation and acute thromboembolism by syringic acid in mice. J. Funct. Foods, 2018, 43, 112-122. doi: 10.1016/j.jff.2018.02.004
  167. Lim, M.Y.; Park, Y.H.; Filho, D.J.; Kim, M.K.; Lee, H.S. Antiplatelet activity of gallic acid and methyl gallate. Food Sci. Biotechnol., 2004, 13(6), 806-809.
  168. Chang, S.S.; Lee, V.S.Y.; Tseng, Y.L.; Chang, K.C.; Chen, K.B.; Chen, Y.L.; Li, C.Y. Gallic acid attenuates platelet activation and platelet-leukocyte aggregation: Involving pathways of Akt and GSK3β. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-8. doi: 10.1155/2012/683872
  169. Fan, H.Y.; Fu, F.H.; Yang, M.Y.; Xu, H.; Zhang, A.H.; Liu, K. Antiplatelet and antithrombotic activities of salvianolic acid A. Thromb. Res., 2010, 126(1), e17-e22. doi: 10.1016/j.thromres.2010.04.006 PMID: 20451955
  170. Wang, J.; Xiong, X.; Feng, B. Cardiovascular effects of salvianolic acid B. Evid. Based Complement Altern. Med., 2013, 2013, 247948. doi: 10.1155/2013/247948
  171. Zheng, X.; Liu, H.; Ma, M.; Ji, J.; Zhu, F.; Sun, L. Anti-thrombotic activity of phenolic acids obtained from Salvia miltiorrhiza f. alba in TNF-α-stimulated endothelial cells via the NF-κB/JNK/p38 MAPK signaling pathway. Arch. Pharm. Res., 2021, 44(4), 427-438. doi: 10.1007/s12272-021-01325-7 PMID: 33847919
  172. Veach, D.; Hosking, H.; Thompson, K.; Santhakumar, A.B. Anti-platelet and anti-thrombogenic effects of shikimic acid in sedentary population. Food Funct., 2016, 7(8), 3609-3616. doi: 10.1039/C6FO00927A PMID: 27480079
  173. Lis, B.; Jedrejek, D.; Moldoch, J.; Stochmal, A.; Olas, B. The anti-oxidative and hemostasis-related multifunctionality of L-chicoric acid, the main component of dandelion: An in vitro study of its cellular safety, antioxidant and anti-platelet properties, and effect on coagulation. J. Funct. Foods, 2019, 62, 103524. doi: 10.1016/j.jff.2019.103524
  174. Pyo, M.K.; Jin, J.L.; Koo, Y.K.; Yun-Choi, H.S. Phenolic and furan type compounds isolated from Gastrodia elata and their anti-platelet effects. Arch. Pharm. Res., 2004, 27(4), 381-385. doi: 10.1007/BF02980077 PMID: 15180301
  175. Fuentes, E.; Caballero, J.; Alarcón, M.; Rojas, A.; Palomo, I. Chlorogenic acid inhibits human platelet activation and thrombus formation. PLoS One, 2014, 9(3), e90699. doi: 10.1371/journal.pone.0090699 PMID: 24598787
  176. Choi, J.H.; Kim, S. Investigation of the anticoagulant and antithrombotic effects of chlorogenic acid. J. Biochem. Mol. Toxicol., 2017, 31(3), e21865. doi: 10.1002/jbt.21865 PMID: 27704645
  177. Chang, M.C.; Chang, H.H.; Wang, T.M.; Chan, C.P.; Lin, B.R.; Yeung, S.Y.; Yeh, C.Y.; Cheng, R.H.; Jeng, J.H. Antiplatelet effect of catechol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. PLoS One, 2014, 9(8), e104310. doi: 10.1371/journal.pone.0104310 PMID: 25122505
  178. Zou, Q.Y.; Pang, D.R.; Pei, Y.J.; Luo, Y.G.; Wang, Y.X.; Huang, H.; Zhu, Z.X.; Huo, H.X.; Zhao, Y.F.; Tu, P.F.; Li, J. Platelet-inhibitory phenolic constituents from the fruits of Daemonorops draco. Fitoterapia, 2023, 167, 105507. doi: 10.1016/j.fitote.2023.105507 PMID: 37054821
  179. Li, J.Y.; Chen, R.J.; Huang, L.T.; Lee, T.Y.; Lu, W.J.; Lin, K.H. Embelin as a novel inhibitor of PKC in the prevention of platelet activation and thrombus formation. J. Clin. Med., 2019, 8(10), 1724. doi: 10.3390/jcm8101724 PMID: 31635287
  180. Wang, A.K.; Geng, T.; Jiang, W.; Zhang, Q.; Zhang, Y.; Chen, P.; Shan, M.; Zhang, M.; Tang, Y.; Ding, A.; Zhang, L. Simultaneous determination of twelve quinones from Rubiae radix et Rhizoma before and after carbonization processing by UPLC-MS/MS and their antithrombotic effect on zebrafish. J. Pharm. Biomed. Anal., 2020, 191, 113638. doi: 10.1016/j.jpba.2020.113638 PMID: 32980794
  181. Goh, S.H.; Jantan, I. A xanthone from Calophyllum inophyllum. Phytochemistry, 1991, 30(1), 366-367. doi: 10.1016/0031-9422(91)84160-T
  182. Jantan, I.; Pisar, M.M.; Idris, M.S.; Taher, M.; Ali, R.M. In vitro inhibitory effect of rubraxanthone isolated from Garcinia parvifolia on platelet-activating factor receptor binding. Planta Med., 2002, 68(12), 1133-1134. doi: 10.1055/s-2002-36343 PMID: 12494345
  183. Yoo, H.; Ku, S.K.; Lee, W.; Kwak, S.; Baek, Y.D.; Min, B.W.; Jeong, G.S.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A. Arch. Pharm. Res., 2014, 37(8), 1069-1078. doi: 10.1007/s12272-013-0290-4 PMID: 24234914
  184. Goh, S.H.; Jantan, I.; Gray, A.I.; Waterman, P.G. Prenylated xanthones from Garcinia opaca. Phytochemistry, 1992, 31(4), 1383-1386. doi: 10.1016/0031-9422(92)80296-Q

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers