A Structure-based Data Set of Protein-peptide Affinities and its Nonredundant Benchmark: Potential Applications in Computational Peptidology


如何引用文章

全文:

详细

Background::Peptides play crucial roles in diverse cellular functions and participate in many biological processes by interacting with a variety of proteins, which have also been exploited as a promising class of therapeutic agents to target druggable proteins over the past decades. Understanding the intrinsic association between the structure and affinity of protein-peptide interactions (PpIs) should be considerably valuable for the computational peptidology area, such as guiding protein-peptide docking calculations, developing protein-peptide affinity scoring functions, and designing peptide ligands for specific protein receptors.

Objective::We attempted to create a data source for relating PpI structure to affinity.

Methods::By exhaustively surveying the whole protein data bank (PDB) database as well as the ontologically enriched literature information, we manually curated a structure- based data set of protein-peptide affinities, PpI[S/A]DS, which assembled over 350 PpI complex samples with both the experimentally measured structure and affinity data. The data set was further reduced to a nonredundant benchmark consisting of 102 culled samples, PpI[S/A]BM, which only selected those of structurally reliable, functionally diverse and evolutionarily nonhomologous.

Results::The collected structures were resolved at a high-resolution level with either Xray crystallography or solution NMR, while the deposited affinities were characterized by dissociation constant, i.e. Kd value, which is a direct biophysical measure of the intermolecular interaction strength between protein and peptide, ranging from subnanomolar to millimolar levels. The PpI samples in the set/benchmark were arbitrarily classified into α-helix, partial α-helix, β-sheet formed through binding, β-strand formed through selffolding, mixed, and other irregular ones, totally resulting in six classes according to the secondary structure of their peptide ligands. In addition, we also categorized these PpIs in terms of their biological function and binding behavior.

Conclusion::The PpI[S/A]DS set and PpI[S/A]BM benchmark can be considered a valuable data source in the computational peptidology community, aiming to relate the affinity to structure for PpIs.

作者简介

Shaozhou Wang

Center for Informational Biology, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Haiyang Ye

Center for Informational Biology, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Shuyong Shang

Institute of Ecological Environment Protection, Chengdu Normal University

Email: info@benthamscience.net

Zilong Li

Center for Informational Biology, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Yue Peng

Center for Informational Biology, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Peng Zhou

Center for Informational Biology, University of Electronic Science and Technology of China

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Lucchese, G.; Stufano, A.; Trost, B.; Kusalik, A.; Kanduc, D. Peptidology: Short amino acid modules in cell biology and immunology. Amino Acids, 2007, 33(4), 703-707. doi: 10.1007/s00726-006-0458-z PMID: 17077961
  2. Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of Action. Int. J. Mol. Sci., 2022, 23(3), 1445. doi: 10.3390/ijms23031445 PMID: 35163367
  3. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128. doi: 10.1016/j.drudis.2014.10.003 PMID: 25450771
  4. Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48. doi: 10.1038/s41392-022-00904-4 PMID: 35165272
  5. Neduva, V.; Russell, R.B. Linear motifs: Evolutionary interaction switches. FEBS Lett., 2005, 579(15), 3342-3345. doi: 10.1016/j.febslet.2005.04.005 PMID: 15943979
  6. London, N.; Raveh, B.; Schueler-Furman, O. Druggable protein–protein interactions-from hot spots to hot segments. Curr. Opin. Chem. Biol., 2013, 17(6), 952-959. doi: 10.1016/j.cbpa.2013.10.011 PMID: 24183815
  7. Neduva, V.; Russell, R.B. Peptides mediating interaction networks: New leads at last. Curr. Opin. Biotechnol., 2006, 17(5), 465-471. doi: 10.1016/j.copbio.2006.08.002 PMID: 16962311
  8. Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: New discoveries and applications. Curr. Opin. Biotechnol., 2008, 19(4), 344-350. doi: 10.1016/j.copbio.2008.06.004 PMID: 18602004
  9. Lin, J.; Wang, S.; Wen, L.; Ye, H.; Shang, S.; Li, J.; Shu, J.; Zhou, P. Targeting peptide-mediated interactions in omics. Proteomics, 2023, 23(6), 2200175. doi: 10.1002/pmic.202200175 PMID: 36461811
  10. London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149. doi: 10.1002/prot.22785 PMID: 20607702
  11. Yang, C.; Zhang, S.; He, P.; Wang, C.; Huang, J.; Zhou, P. Self-binding peptides: Folding or binding? J. Chem. Inf. Model., 2015, 55(2), 329-342. doi: 10.1021/ci500522v PMID: 25643174
  12. Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem., 2013, 20(15), 1985-1996. doi: 10.2174/0929867311320150005 PMID: 23317161
  13. London, N.; Raveh, B.; Schueler-Furman, O. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr. Opin. Struct. Biol., 2013, 23(6), 894-902. doi: 10.1016/j.sbi.2013.07.006 PMID: 24138780
  14. Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–peptide docking: Opportunities and challenges. Drug Discov. Today, 2018, 23(8), 1530-1537. doi: 10.1016/j.drudis.2018.05.006 PMID: 29733895
  15. Romero-Molina, S.; Ruiz-Blanco, Y.B.; Mieres-Perez, J.; Harms, M.; Münch, J.; Ehrmann, M.; Sanchez-Garcia, E. PPI-Affinity: A web tool for the prediction and optimization of protein–peptide and protein–protein binding affinity. J. Proteome Res., 2022, 21(8), 1829-1841. doi: 10.1021/acs.jproteome.2c00020 PMID: 35654412
  16. Zhou, P.; Wen, L.; Lin, J.; Mei, L.; Liu, Q.; Shang, S.; Li, J.; Shu, J. Integrated unsupervised–supervised modeling and prediction of protein–peptide affinities at structural level. Brief. Bioinform., 2022, 23(3), bbac097. doi: 10.1093/bib/bbac097 PMID: 35352094
  17. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
  18. Vanhee, P.; Reumers, J.; Stricher, F.; Baeten, L.; Serrano, L.; Schymkowitz, J.; Rousseau, F. PepX: A structural database of non-redundant protein–peptide complexes. Nucleic Acids Res., 2010, 38(S1), D545-D551. doi: 10.1093/nar/gkp893 PMID: 19880386
  19. London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199. doi: 10.1016/j.str.2009.11.012 PMID: 20159464
  20. Frappier, V.; Duran, M.; Keating, A.E.; Pixel, D.B. PixelDB: Protein-peptide complexes annotated with structural conservation of the peptide binding mode. Protein Sci., 2018, 27(1), 276-285. doi: 10.1002/pro.3320 PMID: 29024246
  21. Wen, Z; He, J; Tao, H; Huang, SY PepBDB: A comprehensive structural database of biological peptide-protein interactions. Bioinformatics., 2019, 35(1), 175-177.
  22. Wang, R.; Fang, X.; Lu, Y.; Yang, C.Y.; Wang, S. The PDBbind database: Methodologies and updates. J. Med. Chem., 2005, 48(12), 4111-4119. doi: 10.1021/jm048957q PMID: 15943484
  23. Benson, M.L.; Smith, R.D.; Khazanov, N.A.; Dimcheff, B.; Beaver, J.; Dresslar, P.; Nerothin, J.; Carlson, H.A. Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Res., 2008, 36(Database issue), D674-D678. PMID: 18055497
  24. Han, K.; Wu, G.; Lv, F. Development of QSAR-improved statistical potential for the structure-based analysis of protein–peptide binding affinities. Mol. Inform., 2013, 32(9-10), 783-792. doi: 10.1002/minf.201300064 PMID: 27480231
  25. Zhou, Y.; Ni, Z.; Chen, K.; Liu, H.; Chen, L.; Lian, C.; Yan, L. Modeling protein-peptide recognition based on classical quantitative structure-affinity relationship approach: Implication for proteome-wide inference of peptide-mediated interactions. Protein J., 2013, 32(7), 568-578. doi: 10.1007/s10930-013-9519-9 PMID: 24150505
  26. Block, P.; Sotriffer, C.A.; Dramburg, I.; Klebe, G. AffinDB: A freely accessible database of affinities for protein-ligand complexes from the PDB. Nucleic Acids Res., 2006, 34(90001), D522-D526. doi: 10.1093/nar/gkj039 PMID: 16381925
  27. Kastritis, P.L.; Moal, I.H.; Hwang, H.; Weng, Z.; Bates, P.A.; Bonvin, A.M.J.J.; Janin, J. A structure-based benchmark for protein-protein binding affinity. Protein Sci., 2011, 20(3), 482-491. doi: 10.1002/pro.580 PMID: 21213247
  28. Zhou, P.; Miao, Q.; Yan, F.; Li, Z.; Jiang, Q.; Wen, L.; Meng, Y. Is protein context responsible for peptide-mediated interactions? Mol. Omics, 2019, 15(4), 280-295. doi: 10.1039/C9MO00041K PMID: 31112188
  29. Kastritis, P.L.; Bonvin, A.M.J.J. Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. J. Proteome Res., 2010, 9(5), 2216-2225. doi: 10.1021/pr9009854 PMID: 20329755
  30. Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 2011, 7(1), 539. doi: 10.1038/msb.2011.75 PMID: 21988835
  31. Xu, X.; Zou, X. PepPro: A nonredundant structure data set for benchmarking peptide–protein computational docking. J. Comput. Chem., 2020, 41(4), 362-369. doi: 10.1002/jcc.26114 PMID: 31793016
  32. Jenssen, TK; Laegreid, A; Komorowski, J; Hovig, E A literature network of human genes for high-throughput analysis of gene expression. Nat Genet, 2001, 28, 21-28.
  33. Blaszczyk, M.; Ciemny, M.P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. Protein–peptide docking using CABS-dock and contact information. Brief. Bioinform., 2019, 20(6), 2299-2305. doi: 10.1093/bib/bby080 PMID: 30247502

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024