Mass Spectrometry-based Detection of Mycotoxins in Imported Meat and their Perspective Role on Myocardial Apoptosis


Cite item

Full Text

Abstract

Background:Fungal mycotoxins are the secondary metabolities and are harmful to plants, animals, and humans. Common aflatoxins are present and isolated from feeds and food comprises aflatoxins B1, B2, G1, and G2. Public health threats or risk of foodborne disease posed by mycotoxins, especially the export or import of such meat products are of primary concern. This study aims to determine the concentration of the level of aflatoxins B1, B2, G1, G2 M1, and M2 respectively in imported burger meat.

Methods:The present work is designed to select and collect the various samples of meat products from different sources and subjected to mycotoxin analysis by LCMS/MS. Random selection was made on sites of burger meat was found to be on sale.

Results:Simultaneous presence of several mycotoxins in the same sample of imported meat under the set conditions of LCMS/MS detected 26% (18 samples) was positive for various mycotoxins. The most frequent mycotoxins proportion in the analyzed samples was aflatoxin B1 (50%) followed by aflatoxin G1 (44%), aflatoxin G2 (38.8%), aflatoxin B2 (33%) respectively which were least among all with 16.66 and 11.11%.

Discussion:A positive correlation is deduced between CVD and mycotoxin present in burger meat. Isolated mycotoxins initiate death receptor-mediated apoptosis, death receptor-mediated necrosis, mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, and immunogenic cell deaths through various pathways that can damage the cardiac tissues.

Conclusion:The presence of these toxins in such samples is just the tip of the iceberg. Further investigation is necessary for complete clarifications of toxins on human health especially on CVD and other related metabolic complications.

About the authors

Maged Ansari

Department of Biochemistry, Faculty of Sciences, King Abdulaziz University

Email: info@benthamscience.net

Fahad Al Abbasi

Department of Biochemistry, Faculty of Sciences, King Abdulaziz University

Email: info@benthamscience.net

Salman Hosawi

Department of Biochemistry, Faculty of Sciences, King Abdulaziz University

Email: info@benthamscience.net

Mirza Baig

, Dubai Pharmacy College. for Girls Campus

Email: info@benthamscience.net

Sultan Alhayyani

Department of Chemistry, College of Sciences & Arts, King Abdulaziz University

Email: info@benthamscience.net

Vikas Kumar

Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS

Email: info@benthamscience.net

Turky Asar

Department of Biology, College of Science and Arts at Alkamil, University of Jeddah

Email: info@benthamscience.net

Firoz Anwar

Department of Biochemistry, Faculty of Sciences, King Abdulaziz University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Frisvad, J.C.; Thrane, U.; Filtenborg, O. Role and Use of Secondary Metabolites in Fungal Taxonomy. Chemical Fungal Taxonomy, 2020, 289-319. doi: 10.1201/9781003064626-12
  2. Chander, J. Textbook of medical mycology; JP Medical Ltd, 2017.
  3. Munkvold, G.P.; Proctor, R.H.; Moretti, A. Mycotoxin production in Fusarium according to contemporary species concepts. Annu. Rev. Phytopathol., 2021, 59(1), 373-402. doi: 10.1146/annurev-phyto-020620-102825 PMID: 34077240
  4. Barac, A. Mycotoxins and Human Disease. In: Clinically Relevant Mycoses; Springer, Cham, 2019. doi: 10.1007/978-3-319-92300-0_14
  5. Nouh, F.A.A.; Gezaf, S.A.; Abdel-Azeem, A.M. Aspergillus mycotoxins: Potential as biocontrol agents. In: Agriculturally Important Fungi for Sustainable Agriculture; Springer, 2020; pp. 217-237.
  6. Tahir, N.I.; Hussain, S.; Javed, M.; Rehman, H.; Shahzady, T.G.; Parveen, B.; Ali, K.G. Nature of aflatoxins: Their extraction, analysis, and control. J. Food Saf., 2018, 38(6), e12561. doi: 10.1111/jfs.12561
  7. Chandra, P. Aflatoxins: Food safety, human health hazards and their prevention. In: Aflatoxins; IntechOpen, 2021.
  8. Turna, N.S.; Wu, F. Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends Food Sci. Technol., 2021.
  9. Chhonker, S.; Rawat, D.; Naik, R.; Koiri, R. An overview of mycotoxins in human health with emphasis on development and progression of liver cancer. Clin. Oncol., 2018, 3, 1408.
  10. Wang, S.J.; Liu, B.R.; Zhang, F.; Li, Y.P.; Su, X.R.; Yang, C.T.; Cong, B.; Zhang, Z.H. Abnormal fatty acid metabolism and ceramide expression may discriminate myocardial infarction from strangulation death: A pilot study. Tissue Cell, 2023, 80, 101984. doi: 10.1016/j.tice.2022.101984 PMID: 36434828
  11. Tesfamariam, K.; De Boevre, M.; Kolsteren, P.; Belachew, T.; Mesfin, A.; De Saeger, S.; Lachat, C. Dietary mycotoxins exposure and child growth, immune system, morbidity, and mortality: a systematic literature review. Crit. Rev. Food Sci. Nutr., 2020, 60(19), 3321-3341. doi: 10.1080/10408398.2019.1685455 PMID: 31694387
  12. Viegas, S.; Assunção, R.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Martins, C.; Alvito, P.; Almeida, A.; Viegas, C. Exposure assessment to mycotoxins in a Portuguese fresh bread dough company by using a multi-biomarker approach. Toxins (Basel), 2018, 10(9), 342. doi: 10.3390/toxins10090342 PMID: 30142887
  13. Zhang, W.; Naveena, B.M.; Jo, C.; Sakata, R.; Zhou, G.; Banerjee, R.; Nishiumi, T. Technological demands of meat processing–An Asian perspective. Meat Sci., 2017, 132, 35-44. doi: 10.1016/j.meatsci.2017.05.008 PMID: 28648604
  14. Ritchie, H,; Roser, M, Meat and dairy production. Our World in Data. 2019. Available from: https://ourworldindata.org/meat-production
  15. OECD-FAO Agricultural Outlook 2019-2028 Special focus: Latin America. Available from: https://reliefweb.int/report/world/oecd-fao-agricultural-outlook-2019-2028-special-focus-latin-america?gclid=CjwKCAjwuqiiBhBtEiwATgvixL3VnmEDJCfU9DSrXdGNUReVOpyieruWJant-3_0buW4NT2WsPYD5BoCEGIQAvD_BwE
  16. Alrobaish, W.S.; Vlerick, P.; Luning, P.A.; Jacxsens, L. Food safety governance in Saudi Arabia: Challenges in control of imported food. J. Food Sci., 2021, 86(1), 16-30. doi: 10.1111/1750-3841.15552 PMID: 33314129
  17. Elzupir, A.O.; Abdulkhair, B.Y. Health risk from aflatoxins in processed meat products in Riyadh, KSA. Toxicon, 2020, 181, 1-5. doi: 10.1016/j.toxicon.2020.04.092 PMID: 32304673
  18. Das, A.K.; Nanda, P.; Das, A.; Biswas, S. Hazards and Safety Issues of Meat and Meat Products. In: Food Safety and Human Health; , 2019; pp. 145-168. doi: 10.1016/B978-0-12-816333-7.00006-0
  19. World Health Organization & Food and Agriculture Organization of the United Nations. INFOSAN members’ guide: Web annex: template for INFOSAN/IHR communication: National protocol for information sharing with National and International partners during food safety events and outbreaks of foodborne illness. 2020. Available from: https://apps.who.int/iris/handle/10665/337469
  20. Al-Thubaiti, E.; Shaikh Omar, A.; El-Omri, A.; Al-Matary, M.; Al-Mwallad, A.; Eldeeb, S. Safety of commercially available beef burger in Saudi Arabia. Coatings, 2021, 11(6), 686. doi: 10.3390/coatings11060686
  21. Blagojevic, B.; Nesbakken, T.; Alvseike, O.; Vågsholm, I.; Antic, D.; Johler, S.; Houf, K.; Meemken, D.; Nastasijevic, I.; Vieira Pinto, M.; Antunovic, B.; Georgiev, M.; Alban, L. Drivers, opportunities, and challenges of the European risk-based meat safety assurance system. Food Control, 2021, 124, 107870. doi: 10.1016/j.foodcont.2021.107870
  22. Islam, A.K.M.M.; Hong, S.M.; Lee, H.S.; Moon, B.C.; Kim, D.; Kwon, H. Identification and characterization of matrix components in spinach during QuEChERS sample preparation for pesticide residue analysis by LC–ESI–MS/MS, GC–MS and UPLC-DAD. J. Food Sci. Technol., 2018, 55(10), 3930-3938. doi: 10.1007/s13197-018-3318-4 PMID: 30228391
  23. Moreau, S.; Levi, M. Highly sensitive and rapid simultaneous method for 45 mycotoxins in baby food samples by HPLC-MS/MS using fast polarity switching (POCON1480E). Am. Soc. Mass Spectrom., 2014.
  24. Imran, M.; Cao, S.; Wan, S.; Chen, Z.; Saleemi, M.K.; Wang, N.; Naseem, M.; Munawar, J. Mycotoxins - a global one health concern: A review. Agrobiological Records, 2020, 2, 1-16. doi: 10.47278/journal.abr/2020.006
  25. Stoev, S.D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ. Toxicol. Pharmacol., 2015, 39(2), 794-809. doi: 10.1016/j.etap.2015.01.022 PMID: 25734690
  26. Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F. Potential economic losses to the US corn industry from aflatoxin contamination. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2016, 33(3), 540-550. doi: 10.1080/19440049.2016.1138545 PMID: 26807606
  27. Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci., 2019, 29, 99-108. doi: 10.1016/j.cofs.2019.08.009
  28. Kaynarca, H.D.; Hecer, C.; Ulusoy, B. Mycotoxin hazard in meat and meat products. Atatürk Üniv. Vet. Bilim. Derg., 2019, 14, 90-97.
  29. Ezekiel, C.N.; Sulyok, M.; Ogara, I.M.; Abia, W.A.; Warth, B.; Šarkanj, B.; Turner, P.C.; Krska, R. Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food Chem. Toxicol., 2019, 128, 171-179. doi: 10.1016/j.fct.2019.04.002 PMID: 30965105
  30. Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3489-3507. doi: 10.1080/10408398.2016.1140632 PMID: 26918653
  31. Di Paola, D.; Iaria, C.; Capparucci, F.; Arangia, A.; Crupi, R.; Cuzzocrea, S.; Spanò, N.; Gugliandolo, E.; Peritore, A.F. Impact of mycotoxin contaminations on aquatic organisms: Toxic effect of aflatoxin B1 and fumonisin B1 mixture. Toxins (Basel), 2022, 14(8), 518. doi: 10.3390/toxins14080518 PMID: 36006180
  32. Yusuf, S.; Wood, D.; Ralston, J.; Reddy, K.S. The World Heart Federation’s vision for worldwide cardiovascular disease prevention. Lancet, 2015, 386(9991), 399-402. doi: 10.1016/S0140-6736(15)60265-3 PMID: 25892680
  33. Zhe-Wei, S.; Li-Sha, G.; Yue-Chun, L. The role of necroptosis in cardiovascular disease. Front. Pharmacol., 2018, 9, 721. doi: 10.3389/fphar.2018.00721 PMID: 30034339
  34. Jia, X.F.; Liang, F.G.; Kitsis, R.N. Multiple cell death programs contribute to myocardial infarction. Circ Res, 2021, 129(3), 397-399. doi: 10.1161/CIRCRESAHA.121.319584
  35. Shi, G.Q.; Huang, W.L.; Zhang, J.; Zhao, H.; Shen, T.; Fontaine, R.E.; Yang, L.; Zhao, S.; Lu, B.L.; Wang, Y.B.; Ma, L.; Li, Z.X.; Gao, Y.; Yang, Z.L.; Zeng, G. Clusters of sudden unexplained death associated with the mushroom, Trogia venenata, in rural Yunnan Province, China. PLoS One, 2012, 7(5), e35894. doi: 10.1371/journal.pone.0035894 PMID: 22615743
  36. Pottenger, L.H.; Andrews, L.S.; Bachman, A.N.; Boogaard, P.J.; Cadet, J.; Embry, M.R.; Farmer, P.B.; Himmelstein, M.W.; Jarabek, A.M.; Martin, E.A.; Mauthe, R.J.; Persaud, R.; Preston, R.J.; Schoeny, R.; Skare, J.; Swenberg, J.A.; Williams, G.M.; Zeiger, E.; Zhang, F.; Kim, J.H. An organizational approach for the assessment of DNA adduct data in risk assessment: case studies for aflatoxin B 1, tamoxifen and vinyl chloride. Crit. Rev. Toxicol., 2014, 44(4), 348-391. doi: 10.3109/10408444.2013.873768 PMID: 24494825
  37. da Rocha, M.E.B.; Freire, F.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control, 2014, 36(1), 159-165. doi: 10.1016/j.foodcont.2013.08.021
  38. Mughal, M.J.; Peng, X.; Zhou, Y.; Fang, J. Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes. Oncotarget, 2017, 8(5), 8239-8249. doi: 10.18632/oncotarget.14158 PMID: 28030812
  39. Ge, J.; Yu, H.; Li, J.; Lian, Z.; Zhang, H.; Fang, H.; Qian, L. Assessment of aflatoxin B1 myocardial toxicity in rats: mitochondrial damage and cellular apoptosis in cardiomyocytes induced by aflatoxin B1. J. Int. Med. Res., 2017, 45(3), 1015-1023. doi: 10.1177/0300060517706579 PMID: 28553767
  40. Yilmaz, S.; Kaya, E.; Karaca, A.; Karatas, O. Aflatoxin B1 induced renal and cardiac damage in rats: Protective effect of lycopene. Res. Vet. Sci., 2018, 119, 268-275. doi: 10.1016/j.rvsc.2018.07.007 PMID: 30059796
  41. Wang, X.; Muhammad, I.; Sun, X.; Han, M.; Hamid, S.; Zhang, X. Protective role of curcumin in ameliorating AFB1-induced apoptosis via mitochondrial pathway in liver cells. Mol. Biol. Rep., 2018, 45(5), 881-891. doi: 10.1007/s11033-018-4234-4 PMID: 29974318
  42. Chen, X.; Li, C.; Chen, Y.; Ni, C.; Chen, X.; Zhang, L.; Xu, X.; Chen, M.; Ma, X.; Zhan, H.; Xu, A.; Ge, R.; Guo, X. Aflatoxin B1 impairs leydig cells through inhibiting AMPK/mTOR-mediated autophagy flux pathway. Chemosphere, 2019, 233, 261-272. doi: 10.1016/j.chemosphere.2019.05.273 PMID: 31176127
  43. Chang, X.; Tian, M.; Zhang, Q.; Liu, F.; Gao, J.; Li, S.; Liu, H.; Hou, X.; Li, L.; Li, C.; Sun, Y. Grape seed proanthocyanidin extract ameliorates cisplatin-induced testicular apoptosis via PI3K/Akt/mTOR and endoplasmic reticulum stress pathways in rats. J. Food Biochem., 2021, 45(8), e13825. doi: 10.1111/jfbc.13825 PMID: 34152018
  44. Chen, B.; Li, D.; Li, M.; Li, S.; Peng, K.; Shi, X.; Zhou, L.; Zhang, P.; Xu, Z.; Yin, H.; Wang, Y.; Zhao, X.; Zhu, Q. Induction of mitochondria-mediated apoptosis and PI3K/Akt/ mTOR-mediated autophagy by aflatoxin B2 in hepatocytes of broilers. Oncotarget, 2016, 7(51), 84989-84998. doi: 10.18632/oncotarget.13356 PMID: 27863407
  45. Shen, H.; Liu, J.; Wang, Y.; Lian, H.; Wang, J.; Xing, L.; Yan, X.; Wang, J.; Zhang, X. Aflatoxin G1-induced oxidative stress causes DNA damage and triggers apoptosis through MAPK signaling pathway in A549 cells. Food Chem. Toxicol., 2013, 62, 661-669. doi: 10.1016/j.fct.2013.09.030 PMID: 24090735
  46. Fouad, M.T.; El-Shenawy, M.; El-Desouky, T.A. Efficiency of Selected Lactic Acid Bacteria Isolated from some dairy products on aflatoxin B1 and ochratoxin A. J. Pure Appl. Microbiol., 2021, 15(1), 312-319. doi: 10.22207/JPAM.15.1.24
  47. Enciso, J.M.; López de Cerain, A.; Pastor, L.; Azqueta, A.; Vettorazzi, A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem. Toxicol., 2018, 116(Pt B), 379-387. doi: 10.1016/j.fct.2018.04.050 PMID: 29689355
  48. Herman, D.; Mantle, P. Immunohistochemical analysis of rat renal tumours caused by ochratoxin A. Toxins (Basel), 2017, 9(12), 384. doi: 10.3390/toxins9120384 PMID: 29182526
  49. Mally, A.; Dekant, W. DNA adduct formation by ochratoxin A: Review of the available evidence. Food Addit. Contam., 2005, 22(sup1)(Suppl. 1), 65-74. doi: 10.1080/02652030500317544 PMID: 16332624
  50. Mantle, P.; Kilic, M.; Mor, F.; Ozmen, O. Contribution of organ vasculature in rat renal analysis for ochratoxin a: relevance to toxicology of nephrotoxins. Toxins (Basel), 2015, 7(4), 1005-1017. doi: 10.3390/toxins7041005 PMID: 25811304
  51. Said, S.; Hernandez, G.T. The link between chronic kidney disease and cardiovascular disease. J. Nephropathol., 2014, 3(3), 99-104. PMID: 25093157
  52. Kosicki, R.; Buharowska-Donten, J.; Twarużek, M. Ochratoxin A levels in serum of Polish dialysis patients with chronic renal failure. Toxicon, 2021, 200, 183-188. doi: 10.1016/j.toxicon.2021.08.002 PMID: 34375657
  53. Li, H.; Mao, X.; Liu, K.; Sun, J.; Li, B.; Malyar, R.M.; Liu, D.; Pan, C.; Gan, F.; Liu, Y.; Huang, K.; Chen, X. Ochratoxin A induces nephrotoxicity in vitro and in vivovia pyroptosis. Arch. Toxicol., 2021, 95(4), 1489-1502. doi: 10.1007/s00204-021-02993-6 PMID: 33543323
  54. Li, H.; Wang, M.; Kang, W.; Lin, Z.; Gan, F.; Huang, K. Non-cytotoxic dosage of fumonisin B1 aggravates ochratoxin A-induced nephrocytotoxicity and apoptosis via ROS-dependent JNK/MAPK signaling pathway. Toxicology, 2021, 457, 152802. doi: 10.1016/j.tox.2021.152802 PMID: 33905761
  55. Song, Y.; Liu, W.; Zhao, Y.; Zang, J.; Gao, H. Ochratoxin A induces human kidney tubular epithelial cell apoptosis through regulating lipid raft/ PTEN / AKT signaling pathway. Environ. Toxicol., 2021, 36(9), 1880-1885. doi: 10.1002/tox.23308 PMID: 34101318
  56. Zhang, Q.; Chen, W.; Zhang, B.; Li, C.; Zhang, X.; Wang, Q.; Wang, Y.; Zhou, Q.; Li, X.; Shen, X.L. Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A. Toxicology, 2021, 450, 152681. doi: 10.1016/j.tox.2021.152681 PMID: 33465424
  57. Tai, H.; Jiang, X.; Lan, Z.; Li, Y.; Kong, L.; Yao, S.; Song, N.; Lv, M.; Wu, J.; Yang, P.; Xiao, X.; Yang, G.; Kuang, J.; Jia, L. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemia-reperfusion injury in obese rats. BMC Complementary Medicine and Therapies, 2021, 21(1), 100. doi: 10.1186/s12906-021-03270-w PMID: 33752661
  58. Kowalska, K.; Habrowska-Górczyńska, D.E.; Domińska, K.; Piastowska-Ciesielska, A.W. The dose-dependent effect of zearalenone on mitochondrial metabolism, plasma membrane permeabilization and cell cycle in human prostate cancer cell lines. Chemosphere, 2017, 180, 455-466. doi: 10.1016/j.chemosphere.2017.04.027 PMID: 28427036
  59. Bhatnagar, D.; Yu, J.; Ehrlich, K.C. Toxins of filamentous fungi. Chem. Immunol., 2002, 81, 167-206. PMID: 12102001
  60. Zheng, W.; Feng, N.; Wang, Y.; Noll, L.; Xu, S.; Liu, X.; Lu, N.; Zou, H.; Gu, J.; Yuan, Y.; Liu, X.; Zhu, G.; Bian, J.; Bai, J.; Liu, Z. Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem. Toxicol., 2019, 126, 262-276. doi: 10.1016/j.fct.2019.02.031 PMID: 30825585
  61. Woźny, M.; Dobosz, S.; Hliwa, P.; Gomułka, P.; Król, J.; Obremski, K.; Blahova, J.; Svobodova, Z.; Michalik, O.; Ocalewicz, K.; Brzuzan, P. Feed-borne exposure to zearalenone impairs reproduction of rainbow trout. Aquaculture, 2020, 528, 735522. doi: 10.1016/j.aquaculture.2020.735522
  62. Wan, B.; Yuan, X.; Yang, W.; Jiao, N.; Li, Y.; Liu, F.; Liu, M.; Yang, Z.; Huang, L.; Jiang, S. The effects of zearalenone on the localization and expression of reproductive hormones in the ovaries of weaned gilts. Toxins (Basel), 2021, 13(9), 626. doi: 10.3390/toxins13090626 PMID: 34564630
  63. Hennig-Pauka, I.; Koch, F.J.; Schaumberger, S.; Woechtl, B.; Novak, J.; Sulyok, M.; Nagl, V. Current challenges in the diagnosis of zearalenone toxicosis as illustrated by a field case of hyperestrogenism in suckling piglets. Porcine Health Manag., 2018, 4(1), 18. doi: 10.1186/s40813-018-0095-4 PMID: 30221009
  64. Gao, X.; Xiao, Z.H.; Liu, M.; Zhang, N.Y.; Khalil, M.M.; Gu, C.Q.; Qi, D.S.; Sun, L.H. Dietary silymarin supplementation alleviates zearalenone-induced hepatotoxicity and reproductive toxicity in rats. J. Nutr., 2018, 148(8), 1209-1216. doi: 10.1093/jn/nxy114 PMID: 30137478
  65. Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food Chem. Toxicol., 2019, 129, 211-228. doi: 10.1016/j.fct.2019.04.047 PMID: 31034935
  66. El Golli, E.; Hassen, W.; Bouslimi, A.; Bouaziz, C.; Ladjimi, M.M.; Bacha, H. Induction of Hsp 70 in Vero cells in response to mycotoxins. Toxicol. Lett., 2006, 166(2), 122-130. doi: 10.1016/j.toxlet.2006.06.004 PMID: 16870361
  67. Salem, I.B.; Boussabbeh, M.; Neffati, F.; Najjar, M.F.; Abid-Essefi, S.; Bacha, H. Zearalenone-induced changes in biochemical parameters, oxidative stress and apoptosis in cardiac tissue. Hum. Exp. Toxicol., 2016, 35(6), 623-634. doi: 10.1177/0960327115597467 PMID: 26231423
  68. Ben Salem, I.; Boussabbeh, M.; Da Silva, J.P.; Guilbert, A.; Bacha, H.; Abid-Essefi, S.; Lemaire, C. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway. Toxicol. Appl. Pharmacol., 2017, 314, 82-90. doi: 10.1016/j.taap.2016.11.012 PMID: 27889531

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers