Mass Spectrometry-based Detection of Mycotoxins in Imported Meat and their Perspective Role on Myocardial Apoptosis
- Authors: Ansari M.1, Al Abbasi F.1, Hosawi S.1, Baig M.2, Alhayyani S.3, Kumar V.4, Asar T.5, Anwar F.1
-
Affiliations:
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University
- , Dubai Pharmacy College. for Girls Campus
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah
- Issue: Vol 31, No 24 (2024)
- Pages: 3834-3843
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644864
- DOI: https://doi.org/10.2174/0929867330666230609100707
- ID: 644864
Cite item
Full Text
Abstract
Background:Fungal mycotoxins are the secondary metabolities and are harmful to plants, animals, and humans. Common aflatoxins are present and isolated from feeds and food comprises aflatoxins B1, B2, G1, and G2. Public health threats or risk of foodborne disease posed by mycotoxins, especially the export or import of such meat products are of primary concern. This study aims to determine the concentration of the level of aflatoxins B1, B2, G1, G2 M1, and M2 respectively in imported burger meat.
Methods:The present work is designed to select and collect the various samples of meat products from different sources and subjected to mycotoxin analysis by LCMS/MS. Random selection was made on sites of burger meat was found to be on sale.
Results:Simultaneous presence of several mycotoxins in the same sample of imported meat under the set conditions of LCMS/MS detected 26% (18 samples) was positive for various mycotoxins. The most frequent mycotoxins proportion in the analyzed samples was aflatoxin B1 (50%) followed by aflatoxin G1 (44%), aflatoxin G2 (38.8%), aflatoxin B2 (33%) respectively which were least among all with 16.66 and 11.11%.
Discussion:A positive correlation is deduced between CVD and mycotoxin present in burger meat. Isolated mycotoxins initiate death receptor-mediated apoptosis, death receptor-mediated necrosis, mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, and immunogenic cell deaths through various pathways that can damage the cardiac tissues.
Conclusion:The presence of these toxins in such samples is just the tip of the iceberg. Further investigation is necessary for complete clarifications of toxins on human health especially on CVD and other related metabolic complications.
Keywords
About the authors
Maged Ansari
Department of Biochemistry, Faculty of Sciences, King Abdulaziz University
Email: info@benthamscience.net
Fahad Al Abbasi
Department of Biochemistry, Faculty of Sciences, King Abdulaziz University
Email: info@benthamscience.net
Salman Hosawi
Department of Biochemistry, Faculty of Sciences, King Abdulaziz University
Email: info@benthamscience.net
Mirza Baig
, Dubai Pharmacy College. for Girls Campus
Email: info@benthamscience.net
Sultan Alhayyani
Department of Chemistry, College of Sciences & Arts, King Abdulaziz University
Email: info@benthamscience.net
Vikas Kumar
Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS
Email: info@benthamscience.net
Turky Asar
Department of Biology, College of Science and Arts at Alkamil, University of Jeddah
Email: info@benthamscience.net
Firoz Anwar
Department of Biochemistry, Faculty of Sciences, King Abdulaziz University
Author for correspondence.
Email: info@benthamscience.net
References
- Frisvad, J.C.; Thrane, U.; Filtenborg, O. Role and Use of Secondary Metabolites in Fungal Taxonomy. Chemical Fungal Taxonomy, 2020, 289-319. doi: 10.1201/9781003064626-12
- Chander, J. Textbook of medical mycology; JP Medical Ltd, 2017.
- Munkvold, G.P.; Proctor, R.H.; Moretti, A. Mycotoxin production in Fusarium according to contemporary species concepts. Annu. Rev. Phytopathol., 2021, 59(1), 373-402. doi: 10.1146/annurev-phyto-020620-102825 PMID: 34077240
- Barac, A. Mycotoxins and Human Disease. In: Clinically Relevant Mycoses; Springer, Cham, 2019. doi: 10.1007/978-3-319-92300-0_14
- Nouh, F.A.A.; Gezaf, S.A.; Abdel-Azeem, A.M. Aspergillus mycotoxins: Potential as biocontrol agents. In: Agriculturally Important Fungi for Sustainable Agriculture; Springer, 2020; pp. 217-237.
- Tahir, N.I.; Hussain, S.; Javed, M.; Rehman, H.; Shahzady, T.G.; Parveen, B.; Ali, K.G. Nature of aflatoxins: Their extraction, analysis, and control. J. Food Saf., 2018, 38(6), e12561. doi: 10.1111/jfs.12561
- Chandra, P. Aflatoxins: Food safety, human health hazards and their prevention. In: Aflatoxins; IntechOpen, 2021.
- Turna, N.S.; Wu, F. Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends Food Sci. Technol., 2021.
- Chhonker, S.; Rawat, D.; Naik, R.; Koiri, R. An overview of mycotoxins in human health with emphasis on development and progression of liver cancer. Clin. Oncol., 2018, 3, 1408.
- Wang, S.J.; Liu, B.R.; Zhang, F.; Li, Y.P.; Su, X.R.; Yang, C.T.; Cong, B.; Zhang, Z.H. Abnormal fatty acid metabolism and ceramide expression may discriminate myocardial infarction from strangulation death: A pilot study. Tissue Cell, 2023, 80, 101984. doi: 10.1016/j.tice.2022.101984 PMID: 36434828
- Tesfamariam, K.; De Boevre, M.; Kolsteren, P.; Belachew, T.; Mesfin, A.; De Saeger, S.; Lachat, C. Dietary mycotoxins exposure and child growth, immune system, morbidity, and mortality: a systematic literature review. Crit. Rev. Food Sci. Nutr., 2020, 60(19), 3321-3341. doi: 10.1080/10408398.2019.1685455 PMID: 31694387
- Viegas, S.; Assunção, R.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Martins, C.; Alvito, P.; Almeida, A.; Viegas, C. Exposure assessment to mycotoxins in a Portuguese fresh bread dough company by using a multi-biomarker approach. Toxins (Basel), 2018, 10(9), 342. doi: 10.3390/toxins10090342 PMID: 30142887
- Zhang, W.; Naveena, B.M.; Jo, C.; Sakata, R.; Zhou, G.; Banerjee, R.; Nishiumi, T. Technological demands of meat processingAn Asian perspective. Meat Sci., 2017, 132, 35-44. doi: 10.1016/j.meatsci.2017.05.008 PMID: 28648604
- Ritchie, H,; Roser, M, Meat and dairy production. Our World in Data. 2019. Available from: https://ourworldindata.org/meat-production
- OECD-FAO Agricultural Outlook 2019-2028 Special focus: Latin America. Available from: https://reliefweb.int/report/world/oecd-fao-agricultural-outlook-2019-2028-special-focus-latin-america?gclid=CjwKCAjwuqiiBhBtEiwATgvixL3VnmEDJCfU9DSrXdGNUReVOpyieruWJant-3_0buW4NT2WsPYD5BoCEGIQAvD_BwE
- Alrobaish, W.S.; Vlerick, P.; Luning, P.A.; Jacxsens, L. Food safety governance in Saudi Arabia: Challenges in control of imported food. J. Food Sci., 2021, 86(1), 16-30. doi: 10.1111/1750-3841.15552 PMID: 33314129
- Elzupir, A.O.; Abdulkhair, B.Y. Health risk from aflatoxins in processed meat products in Riyadh, KSA. Toxicon, 2020, 181, 1-5. doi: 10.1016/j.toxicon.2020.04.092 PMID: 32304673
- Das, A.K.; Nanda, P.; Das, A.; Biswas, S. Hazards and Safety Issues of Meat and Meat Products. In: Food Safety and Human Health; , 2019; pp. 145-168. doi: 10.1016/B978-0-12-816333-7.00006-0
- World Health Organization & Food and Agriculture Organization of the United Nations. INFOSAN members guide: Web annex: template for INFOSAN/IHR communication: National protocol for information sharing with National and International partners during food safety events and outbreaks of foodborne illness. 2020. Available from: https://apps.who.int/iris/handle/10665/337469
- Al-Thubaiti, E.; Shaikh Omar, A.; El-Omri, A.; Al-Matary, M.; Al-Mwallad, A.; Eldeeb, S. Safety of commercially available beef burger in Saudi Arabia. Coatings, 2021, 11(6), 686. doi: 10.3390/coatings11060686
- Blagojevic, B.; Nesbakken, T.; Alvseike, O.; Vågsholm, I.; Antic, D.; Johler, S.; Houf, K.; Meemken, D.; Nastasijevic, I.; Vieira Pinto, M.; Antunovic, B.; Georgiev, M.; Alban, L. Drivers, opportunities, and challenges of the European risk-based meat safety assurance system. Food Control, 2021, 124, 107870. doi: 10.1016/j.foodcont.2021.107870
- Islam, A.K.M.M.; Hong, S.M.; Lee, H.S.; Moon, B.C.; Kim, D.; Kwon, H. Identification and characterization of matrix components in spinach during QuEChERS sample preparation for pesticide residue analysis by LCESIMS/MS, GCMS and UPLC-DAD. J. Food Sci. Technol., 2018, 55(10), 3930-3938. doi: 10.1007/s13197-018-3318-4 PMID: 30228391
- Moreau, S.; Levi, M. Highly sensitive and rapid simultaneous method for 45 mycotoxins in baby food samples by HPLC-MS/MS using fast polarity switching (POCON1480E). Am. Soc. Mass Spectrom., 2014.
- Imran, M.; Cao, S.; Wan, S.; Chen, Z.; Saleemi, M.K.; Wang, N.; Naseem, M.; Munawar, J. Mycotoxins - a global one health concern: A review. Agrobiological Records, 2020, 2, 1-16. doi: 10.47278/journal.abr/2020.006
- Stoev, S.D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ. Toxicol. Pharmacol., 2015, 39(2), 794-809. doi: 10.1016/j.etap.2015.01.022 PMID: 25734690
- Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F. Potential economic losses to the US corn industry from aflatoxin contamination. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2016, 33(3), 540-550. doi: 10.1080/19440049.2016.1138545 PMID: 26807606
- Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci., 2019, 29, 99-108. doi: 10.1016/j.cofs.2019.08.009
- Kaynarca, H.D.; Hecer, C.; Ulusoy, B. Mycotoxin hazard in meat and meat products. Atatürk Üniv. Vet. Bilim. Derg., 2019, 14, 90-97.
- Ezekiel, C.N.; Sulyok, M.; Ogara, I.M.; Abia, W.A.; Warth, B.; arkanj, B.; Turner, P.C.; Krska, R. Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food Chem. Toxicol., 2019, 128, 171-179. doi: 10.1016/j.fct.2019.04.002 PMID: 30965105
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3489-3507. doi: 10.1080/10408398.2016.1140632 PMID: 26918653
- Di Paola, D.; Iaria, C.; Capparucci, F.; Arangia, A.; Crupi, R.; Cuzzocrea, S.; Spanò, N.; Gugliandolo, E.; Peritore, A.F. Impact of mycotoxin contaminations on aquatic organisms: Toxic effect of aflatoxin B1 and fumonisin B1 mixture. Toxins (Basel), 2022, 14(8), 518. doi: 10.3390/toxins14080518 PMID: 36006180
- Yusuf, S.; Wood, D.; Ralston, J.; Reddy, K.S. The World Heart Federations vision for worldwide cardiovascular disease prevention. Lancet, 2015, 386(9991), 399-402. doi: 10.1016/S0140-6736(15)60265-3 PMID: 25892680
- Zhe-Wei, S.; Li-Sha, G.; Yue-Chun, L. The role of necroptosis in cardiovascular disease. Front. Pharmacol., 2018, 9, 721. doi: 10.3389/fphar.2018.00721 PMID: 30034339
- Jia, X.F.; Liang, F.G.; Kitsis, R.N. Multiple cell death programs contribute to myocardial infarction. Circ Res, 2021, 129(3), 397-399. doi: 10.1161/CIRCRESAHA.121.319584
- Shi, G.Q.; Huang, W.L.; Zhang, J.; Zhao, H.; Shen, T.; Fontaine, R.E.; Yang, L.; Zhao, S.; Lu, B.L.; Wang, Y.B.; Ma, L.; Li, Z.X.; Gao, Y.; Yang, Z.L.; Zeng, G. Clusters of sudden unexplained death associated with the mushroom, Trogia venenata, in rural Yunnan Province, China. PLoS One, 2012, 7(5), e35894. doi: 10.1371/journal.pone.0035894 PMID: 22615743
- Pottenger, L.H.; Andrews, L.S.; Bachman, A.N.; Boogaard, P.J.; Cadet, J.; Embry, M.R.; Farmer, P.B.; Himmelstein, M.W.; Jarabek, A.M.; Martin, E.A.; Mauthe, R.J.; Persaud, R.; Preston, R.J.; Schoeny, R.; Skare, J.; Swenberg, J.A.; Williams, G.M.; Zeiger, E.; Zhang, F.; Kim, J.H. An organizational approach for the assessment of DNA adduct data in risk assessment: case studies for aflatoxin B 1, tamoxifen and vinyl chloride. Crit. Rev. Toxicol., 2014, 44(4), 348-391. doi: 10.3109/10408444.2013.873768 PMID: 24494825
- da Rocha, M.E.B.; Freire, F.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control, 2014, 36(1), 159-165. doi: 10.1016/j.foodcont.2013.08.021
- Mughal, M.J.; Peng, X.; Zhou, Y.; Fang, J. Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes. Oncotarget, 2017, 8(5), 8239-8249. doi: 10.18632/oncotarget.14158 PMID: 28030812
- Ge, J.; Yu, H.; Li, J.; Lian, Z.; Zhang, H.; Fang, H.; Qian, L. Assessment of aflatoxin B1 myocardial toxicity in rats: mitochondrial damage and cellular apoptosis in cardiomyocytes induced by aflatoxin B1. J. Int. Med. Res., 2017, 45(3), 1015-1023. doi: 10.1177/0300060517706579 PMID: 28553767
- Yilmaz, S.; Kaya, E.; Karaca, A.; Karatas, O. Aflatoxin B1 induced renal and cardiac damage in rats: Protective effect of lycopene. Res. Vet. Sci., 2018, 119, 268-275. doi: 10.1016/j.rvsc.2018.07.007 PMID: 30059796
- Wang, X.; Muhammad, I.; Sun, X.; Han, M.; Hamid, S.; Zhang, X. Protective role of curcumin in ameliorating AFB1-induced apoptosis via mitochondrial pathway in liver cells. Mol. Biol. Rep., 2018, 45(5), 881-891. doi: 10.1007/s11033-018-4234-4 PMID: 29974318
- Chen, X.; Li, C.; Chen, Y.; Ni, C.; Chen, X.; Zhang, L.; Xu, X.; Chen, M.; Ma, X.; Zhan, H.; Xu, A.; Ge, R.; Guo, X. Aflatoxin B1 impairs leydig cells through inhibiting AMPK/mTOR-mediated autophagy flux pathway. Chemosphere, 2019, 233, 261-272. doi: 10.1016/j.chemosphere.2019.05.273 PMID: 31176127
- Chang, X.; Tian, M.; Zhang, Q.; Liu, F.; Gao, J.; Li, S.; Liu, H.; Hou, X.; Li, L.; Li, C.; Sun, Y. Grape seed proanthocyanidin extract ameliorates cisplatin-induced testicular apoptosis via PI3K/Akt/mTOR and endoplasmic reticulum stress pathways in rats. J. Food Biochem., 2021, 45(8), e13825. doi: 10.1111/jfbc.13825 PMID: 34152018
- Chen, B.; Li, D.; Li, M.; Li, S.; Peng, K.; Shi, X.; Zhou, L.; Zhang, P.; Xu, Z.; Yin, H.; Wang, Y.; Zhao, X.; Zhu, Q. Induction of mitochondria-mediated apoptosis and PI3K/Akt/ mTOR-mediated autophagy by aflatoxin B2 in hepatocytes of broilers. Oncotarget, 2016, 7(51), 84989-84998. doi: 10.18632/oncotarget.13356 PMID: 27863407
- Shen, H.; Liu, J.; Wang, Y.; Lian, H.; Wang, J.; Xing, L.; Yan, X.; Wang, J.; Zhang, X. Aflatoxin G1-induced oxidative stress causes DNA damage and triggers apoptosis through MAPK signaling pathway in A549 cells. Food Chem. Toxicol., 2013, 62, 661-669. doi: 10.1016/j.fct.2013.09.030 PMID: 24090735
- Fouad, M.T.; El-Shenawy, M.; El-Desouky, T.A. Efficiency of Selected Lactic Acid Bacteria Isolated from some dairy products on aflatoxin B1 and ochratoxin A. J. Pure Appl. Microbiol., 2021, 15(1), 312-319. doi: 10.22207/JPAM.15.1.24
- Enciso, J.M.; López de Cerain, A.; Pastor, L.; Azqueta, A.; Vettorazzi, A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem. Toxicol., 2018, 116(Pt B), 379-387. doi: 10.1016/j.fct.2018.04.050 PMID: 29689355
- Herman, D.; Mantle, P. Immunohistochemical analysis of rat renal tumours caused by ochratoxin A. Toxins (Basel), 2017, 9(12), 384. doi: 10.3390/toxins9120384 PMID: 29182526
- Mally, A.; Dekant, W. DNA adduct formation by ochratoxin A: Review of the available evidence. Food Addit. Contam., 2005, 22(sup1)(Suppl. 1), 65-74. doi: 10.1080/02652030500317544 PMID: 16332624
- Mantle, P.; Kilic, M.; Mor, F.; Ozmen, O. Contribution of organ vasculature in rat renal analysis for ochratoxin a: relevance to toxicology of nephrotoxins. Toxins (Basel), 2015, 7(4), 1005-1017. doi: 10.3390/toxins7041005 PMID: 25811304
- Said, S.; Hernandez, G.T. The link between chronic kidney disease and cardiovascular disease. J. Nephropathol., 2014, 3(3), 99-104. PMID: 25093157
- Kosicki, R.; Buharowska-Donten, J.; Twarużek, M. Ochratoxin A levels in serum of Polish dialysis patients with chronic renal failure. Toxicon, 2021, 200, 183-188. doi: 10.1016/j.toxicon.2021.08.002 PMID: 34375657
- Li, H.; Mao, X.; Liu, K.; Sun, J.; Li, B.; Malyar, R.M.; Liu, D.; Pan, C.; Gan, F.; Liu, Y.; Huang, K.; Chen, X. Ochratoxin A induces nephrotoxicity in vitro and in vivovia pyroptosis. Arch. Toxicol., 2021, 95(4), 1489-1502. doi: 10.1007/s00204-021-02993-6 PMID: 33543323
- Li, H.; Wang, M.; Kang, W.; Lin, Z.; Gan, F.; Huang, K. Non-cytotoxic dosage of fumonisin B1 aggravates ochratoxin A-induced nephrocytotoxicity and apoptosis via ROS-dependent JNK/MAPK signaling pathway. Toxicology, 2021, 457, 152802. doi: 10.1016/j.tox.2021.152802 PMID: 33905761
- Song, Y.; Liu, W.; Zhao, Y.; Zang, J.; Gao, H. Ochratoxin A induces human kidney tubular epithelial cell apoptosis through regulating lipid raft/ PTEN / AKT signaling pathway. Environ. Toxicol., 2021, 36(9), 1880-1885. doi: 10.1002/tox.23308 PMID: 34101318
- Zhang, Q.; Chen, W.; Zhang, B.; Li, C.; Zhang, X.; Wang, Q.; Wang, Y.; Zhou, Q.; Li, X.; Shen, X.L. Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A. Toxicology, 2021, 450, 152681. doi: 10.1016/j.tox.2021.152681 PMID: 33465424
- Tai, H.; Jiang, X.; Lan, Z.; Li, Y.; Kong, L.; Yao, S.; Song, N.; Lv, M.; Wu, J.; Yang, P.; Xiao, X.; Yang, G.; Kuang, J.; Jia, L. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemia-reperfusion injury in obese rats. BMC Complementary Medicine and Therapies, 2021, 21(1), 100. doi: 10.1186/s12906-021-03270-w PMID: 33752661
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Domińska, K.; Piastowska-Ciesielska, A.W. The dose-dependent effect of zearalenone on mitochondrial metabolism, plasma membrane permeabilization and cell cycle in human prostate cancer cell lines. Chemosphere, 2017, 180, 455-466. doi: 10.1016/j.chemosphere.2017.04.027 PMID: 28427036
- Bhatnagar, D.; Yu, J.; Ehrlich, K.C. Toxins of filamentous fungi. Chem. Immunol., 2002, 81, 167-206. PMID: 12102001
- Zheng, W.; Feng, N.; Wang, Y.; Noll, L.; Xu, S.; Liu, X.; Lu, N.; Zou, H.; Gu, J.; Yuan, Y.; Liu, X.; Zhu, G.; Bian, J.; Bai, J.; Liu, Z. Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem. Toxicol., 2019, 126, 262-276. doi: 10.1016/j.fct.2019.02.031 PMID: 30825585
- Woźny, M.; Dobosz, S.; Hliwa, P.; Gomułka, P.; Król, J.; Obremski, K.; Blahova, J.; Svobodova, Z.; Michalik, O.; Ocalewicz, K.; Brzuzan, P. Feed-borne exposure to zearalenone impairs reproduction of rainbow trout. Aquaculture, 2020, 528, 735522. doi: 10.1016/j.aquaculture.2020.735522
- Wan, B.; Yuan, X.; Yang, W.; Jiao, N.; Li, Y.; Liu, F.; Liu, M.; Yang, Z.; Huang, L.; Jiang, S. The effects of zearalenone on the localization and expression of reproductive hormones in the ovaries of weaned gilts. Toxins (Basel), 2021, 13(9), 626. doi: 10.3390/toxins13090626 PMID: 34564630
- Hennig-Pauka, I.; Koch, F.J.; Schaumberger, S.; Woechtl, B.; Novak, J.; Sulyok, M.; Nagl, V. Current challenges in the diagnosis of zearalenone toxicosis as illustrated by a field case of hyperestrogenism in suckling piglets. Porcine Health Manag., 2018, 4(1), 18. doi: 10.1186/s40813-018-0095-4 PMID: 30221009
- Gao, X.; Xiao, Z.H.; Liu, M.; Zhang, N.Y.; Khalil, M.M.; Gu, C.Q.; Qi, D.S.; Sun, L.H. Dietary silymarin supplementation alleviates zearalenone-induced hepatotoxicity and reproductive toxicity in rats. J. Nutr., 2018, 148(8), 1209-1216. doi: 10.1093/jn/nxy114 PMID: 30137478
- Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 20012018. Food Chem. Toxicol., 2019, 129, 211-228. doi: 10.1016/j.fct.2019.04.047 PMID: 31034935
- El Golli, E.; Hassen, W.; Bouslimi, A.; Bouaziz, C.; Ladjimi, M.M.; Bacha, H. Induction of Hsp 70 in Vero cells in response to mycotoxins. Toxicol. Lett., 2006, 166(2), 122-130. doi: 10.1016/j.toxlet.2006.06.004 PMID: 16870361
- Salem, I.B.; Boussabbeh, M.; Neffati, F.; Najjar, M.F.; Abid-Essefi, S.; Bacha, H. Zearalenone-induced changes in biochemical parameters, oxidative stress and apoptosis in cardiac tissue. Hum. Exp. Toxicol., 2016, 35(6), 623-634. doi: 10.1177/0960327115597467 PMID: 26231423
- Ben Salem, I.; Boussabbeh, M.; Da Silva, J.P.; Guilbert, A.; Bacha, H.; Abid-Essefi, S.; Lemaire, C. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway. Toxicol. Appl. Pharmacol., 2017, 314, 82-90. doi: 10.1016/j.taap.2016.11.012 PMID: 27889531
Supplementary files
