miR-26a is a Key Therapeutic Target with Enormous Potential in the Diagnosis and Prognosis of Human Disease


如何引用文章

全文:

详细

MicroRNA-26a (miR-26a) belongs to small non-coding regulatory RNA molecules emerging as fundamental post-transcriptional regulators inhibiting gene expression that plays vital roles in various processes of human diseases such as depression, renal ischemia and reperfusion injury, liver injury and some refractory cancer. In this review, we expound on the results of studies about miR-26a with emphasis on its function in animal models or in vitro cell culture to simulate the most common human disease in the clinic. Furthermore, we also illustrate the underlying mechanisms of miR-26a in strengthening the antitumor activity of antineoplastic drugs. Importantly, dysregulation of miR-26a has been related to many chronic and malignant diseases, especially in neurological disorders in the brain such as depression and neurodegenerative diseases as well as cancers such as papillary thyroid carcinoma, hepatocellular carcinoma and so on. It follows that miR-26a has a strong possibility to be a potential therapeutic target for the treatment of neurological disorders and cancers. Although the research of miRNAs has made great progress in the last few decades, much is yet to be discovered, especially regarding their underlying mechanisms and roles in the complex diseases of humans. Consequently, miR-26a has been analyzed in chronic and malignant diseases, and we discuss the dysregulation of miR-26a and functional roles in the development and pathogenesis of these diseases, which is very helpful for understanding their mechanisms as new biomarkers for diagnosing and curing diseases in the near future.

作者简介

Wei Guan

Department of Pharmacology, Pharmacy College,, Nantong University

Email: info@benthamscience.net

Yan Chen

Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University

Email: info@benthamscience.net

Yan Fan

Department of Pharmacy, Zhangjiagang Second People's Hospital

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci., 2019, 20(24), 6249. doi: 10.3390/ijms20246249 PMID: 31835747
  2. Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465. doi: 10.1002/jcp.27486 PMID: 30471116
  3. Ginckels, P.; Holvoet, P. Oxidative stress and inflammation in cardiovascular diseases and cancer: Role of non- coding RNAs. Yale J. Biol. Med., 2022, 95(1), 129-152. PMID: 35370493
  4. Wang, B.; Zhang, A.; Wang, H.; Klein, J.D.; Tan, L.; Wang, Z.M.; Du, J.; Naqvi, N.; Liu, B.C.; Wang, X.H. miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics, 2019, 9(7), 1864-1877. doi: 10.7150/thno.29579 PMID: 31037144
  5. Cai, B.; Qu, X.; Kan, D.; Luo, Y. miR-26a-5p suppresses nasopharyngeal carcinoma progression by inhibiting PTGS2 expression. Cell Cycle, 2022, 21(6), 618-629. doi: 10.1080/15384101.2022.2030168 PMID: 35073820
  6. Li, Y.; Fan, C.; Wang, L.; Lan, T.; Gao, R.; Wang, W.; Yu, S.Y. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J. Clin. Invest., 2021, 131(16), e148853. doi: 10.1172/JCI148853 PMID: 34228643
  7. Chen, B.; Deng, Y.; Wang, X.; Xia, Z.; He, Y.; Zhang, P.; Syed, S.E.; Li, Q.; Liang, S. miR-26a enhances colorectal cancer cell growth by targeting RREB1 deacetylation to activate AKT-mediated glycolysis. Cancer Lett., 2021, 521, 1-13. doi: 10.1016/j.canlet.2021.08.017 PMID: 34419497
  8. Shen, B.; Mei, M.; Pu, Y.; Zhang, H.; Liu, H.; Tang, M.; Pan, Q.; He, Y.; Wu, X.; Zhao, H. Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1α/mir-26a/TRPC6/PARP1 Signaling. Mol. Ther. Nucleic Acids, 2019, 17, 701-713. doi: 10.1016/j.omtn.2019.06.025 PMID: 31422287
  9. Kong, B.; Qin, Z.; Ye, Z.; Yang, X.; Li, L.; Su, Q. microRNA-26a-5p affects myocardial injury induced by coronary microembolization by modulating HMGA1. J. Cell. Biochem., 2019, 120(6), 10756-10766. doi: 10.1002/jcb.28367 PMID: 30652345
  10. Su, Y.; Deng, M.F.; Xiong, W.; Xie, A.J.; Guo, J.; Liang, Z.H.; Hu, B.; Chen, J.G.; Zhu, X.; Man, H.Y.; Lu, Y.; Liu, D.; Tang, B.; Zhu, L.Q. MicroRNA-26a/Death-associated protein kinase 1 signaling induces synucleinopathy and dopaminergic neuron degeneration in parkinson’s disease. Biol. Psychiatry, 2019, 85(9), 769-781. doi: 10.1016/j.biopsych.2018.12.008 PMID: 30718039
  11. Li, C.; Li, Y.; Lu, Y.; Niu, Z.; Zhao, H.; Peng, Y.; Li, M. miR-26 family and its target genes in tumorigenesis and development. Crit. Rev. Oncol. Hematol., 2021, 157, 103124. doi: 10.1016/j.critrevonc.2020.103124 PMID: 33254041
  12. Li, X.; Pan, X.; Fu, X.; Yang, Y.; Chen, J.; Lin, W. MicroRNA-26a: An emerging regulator of renal biology and disease. Kidney Blood Press. Res., 2019, 44(3), 287-297. doi: 10.1159/000499646 PMID: 31163420
  13. Icli, B.; Dorbala, P.; Feinberg, M.W. An emerging role for the miR-26 family in cardiovascular disease. Trends Cardiovasc. Med., 2014, 24(6), 241-248. doi: 10.1016/j.tcm.2014.06.003 PMID: 25066487
  14. Pelletier, D.; Rivera, B.; Fabian, M.R.; Foulkes, W.D. miRNA biogenesis and inherited disorders: clinico-molecular insights. Trends Genet., 2023, 39(5), 401-414. doi: 10.1016/j.tig.2023.01.009 PMID: 36863945
  15. Zeng, Y.; Yi, R.; Cullen, B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J., 2005, 24(1), 138-148. doi: 10.1038/sj.emboj.7600491 PMID: 15565168
  16. Saito, K.; Ishizuka, A.; Siomi, H.; Siomi, M.C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol., 2005, 3(7), e235. doi: 10.1371/journal.pbio.0030235 PMID: 15918769
  17. Fukunaga, R.; Han, B.W.; Hung, J.H.; Xu, J.; Weng, Z.; Zamore, P.D. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell, 2012, 151(3), 533-546. doi: 10.1016/j.cell.2012.09.027 PMID: 23063653
  18. Jiang, F.; Zong, Y.; Ma, X.; Jiang, C.; Shan, H.; Lin, Y.; Xia, W.; Yin, F.; Wang, N.; Zhou, L.; Zhou, Z.; Yu, X. miR-26a attenuated bone-specific insulin resistance and bone quality in diabetic mice. Mol. Ther. Nucleic Acids, 2020, 20, 459-467. doi: 10.1016/j.omtn.2020.03.010 PMID: 32278305
  19. Xing, X.; Guo, S.; Zhang, G.; Liu, Y.; Bi, S.; Wang, X.; Lu, Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Braz. J. Med. Biol. Res., 2020, 53(2), e9106. doi: 10.1590/1414-431x20199106 PMID: 31994603
  20. Cheng, C.; Chen, X.; Wang, Y.; Cheng, W.; Zuo, X.; Tang, W.; Huang, W. MSCs-derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol. Med., 2021, 27(1), 67. doi: 10.1186/s10020-021-00324-0 PMID: 34215174
  21. Gao, S.; Bian, T.; Su, M.; Liu, Y.; Zhang, Y. miR-26a inhibits ovarian cancer cell proliferation, migration and invasion by targeting TCF12. Oncol. Rep., 2020, 43(1), 368-374. PMID: 31789414
  22. Gong, Y.; Wu, W.; Zou, X.; Liu, F.; Wei, T.; Zhu, J. MiR-26a inhibits thyroid cancer cell proliferation by targeting ARPP19. Am. J. Cancer Res., 2018, 8(6), 1030-1039. PMID: 30034940
  23. Wang, H.; Hu, Z.; Chen, L. Enhanced plasma miR-26a-5p promotes the progression of bladder cancer via targeting PTEN. Oncol. Lett., 2018, 16(4), 4223-4228. doi: 10.3892/ol.2018.9163 PMID: 30197668
  24. Rock, P.L.; Roiser, J.P.; Riedel, W.J.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med., 2014, 44(10), 2029-2040. doi: 10.1017/S0033291713002535 PMID: 24168753
  25. Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int. J. Mol. Sci., 2020, 21(20), 7777. doi: 10.3390/ijms21207777 PMID: 33096634
  26. Wu, Z.; Cai, Z.; Shi, H.; Huang, X.; Cai, M.; Yuan, K.; Huang, P.; Shi, G.; Yan, T.; Li, Z. Effective biomarkers and therapeutic targets of nerve-immunity interaction in the treatment of depression: An integrated investigation of the miRNA-mRNA regulatory networks. Aging, 2022, 14(8), 3569-3596. doi: 10.18632/aging.204030 PMID: 35468096
  27. Homorogan, C.; Enatescu, V.R.; Nitusca, D.; Marcu, A.; Seclaman, E.; Marian, C. Distribution of microRNAs associated with major depressive disorder among blood compartments. J. Int. Med. Res., 2021, 49(4), 03000605211006633. doi: 10.1177/03000605211006633 PMID: 33827323
  28. Bocchio-Chiavetto, L.; Maffioletti, E.; Bettinsoli, P.; Giovannini, C.; Bignotti, S.; Tardito, D.; Corrada, D.; Milanesi, L.; Gennarelli, M. Blood microRNA changes in depressed patients during antidepressant treatment. Eur. Neuropsychopharmacol., 2013, 23(7), 602-611. doi: 10.1016/j.euroneuro.2012.06.013 PMID: 22925464
  29. Carrillo, M.C.; Brashear, H.R.; Logovinsky, V.; Ryan, J.M.; Feldman, H.H.; Siemers, E.R.; Abushakra, S.; Hartley, D.M.; Petersen, R.C.; Khachaturian, A.S.; Sperling, R.A. Can we prevent Alzheimer’s disease? Secondary "prevention" trials in Alzheimer’s disease. Alzheimers Dement., 2013, 9(2), 123-131.e1. doi: 10.1016/j.jalz.2012.12.004 PMID: 23411394
  30. Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554. doi: 10.2147/IJN.S200490 PMID: 31410002
  31. Inui, M.; Martello, G.; Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol., 2010, 11(4), 252-263. doi: 10.1038/nrm2868 PMID: 20216554
  32. Li, B.; Sun, H. miR-26a promotes neurite outgrowth by repressing PTEN expression. Mol. Med. Rep., 2013, 8(2), 676-680. doi: 10.3892/mmr.2013.1534 PMID: 23783805
  33. Demuro, S.; Di Martino, R.M.C.; Ortega, J.A.; Cavalli, A. GSK-3β, FYN, and DYRK1A: Master regulators in neurodegenerative pathways. Int. J. Mol. Sci., 2021, 22(16), 9098. doi: 10.3390/ijms22169098 PMID: 34445804
  34. Liu, Y.; Wang, L.; Xie, F.; Wang, X.; Hou, Y.; Wang, X.; Liu, J. Overexpression of miR-26a-5p suppresses tau phosphorylation and Aβ accumulation in the Alzheimer’s disease mice by targeting DYRK1A. Curr. Neurovasc. Res., 2020, 17(3), 241-248. doi: 10.2174/1567202617666200414142637 PMID: 32286945
  35. Xie, T.; Pei, Y.; Shan, P.; Xiao, Q.; Zhou, F.; Huang, L.; Wang, S. Identification of miRNA–mRNA Pairs in the Alzheimer’s disease expression profile and explore the effect of miR-26a-5p/PTGS2 on amyloid-β induced neurotoxicity in Alzheimer’s disease cell model. Front. Aging Neurosci., 2022, 14, 909222. doi: 10.3389/fnagi.2022.909222 PMID: 35783137
  36. Paredes, C.; Hsu, R.C.; Tong, A.; Johnson, J.R. Obesity and pregnancy. Neoreviews, 2021, 22(2), e78-e87. doi: 10.1542/neo.22-2-e78 PMID: 33526637
  37. Marcelin, G.; Silveira, A.L.M.; Martins, L.B.; Ferreira, A.V.M.; Clément, K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J. Clin. Invest., 2019, 129(10), 4032-4040. doi: 10.1172/JCI129192 PMID: 31498150
  38. Cirillo, F.; Catellani, C.; Sartori, C.; Lazzeroni, P.; Amarri, S.; Street, M.E. Obesity, insulin resistance, and colorectal cancer: Could miRNA dysregulation play a role? Int. J. Mol. Sci., 2019, 20(12), 2922. doi: 10.3390/ijms20122922 PMID: 31207998
  39. Fu, X.; Dong, B.; Tian, Y.; Lefebvre, P.; Meng, Z.; Wang, X.; Pattou, F.; Han, W.; Wang, X.; Lou, F.; Jove, R.; Staels, B.; Moore, D.D.; Huang, W. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J. Clin. Invest., 2015, 125(6), 2497-2509. doi: 10.1172/JCI75438 PMID: 25961460
  40. Acharya, A.; Berry, D.C.; Zhang, H.; Jiang, Y.; Jones, B.T.; Hammer, R.E.; Graff, J.M.; Mendell, J.T. miR-26 suppresses adipocyte progenitor differentiation and fat production by targeting Fbxl19. Genes Dev., 2019, 33(19-20), 1367-1380. doi: 10.1101/gad.328955.119 PMID: 31488578
  41. Kim, N.H.; Ahn, J.; Choi, Y.M.; Son, H.J.; Choi, W.H.; Cho, H.J.; Yu, J.H.; Seo, J.A.; Jang, Y.J.; Jung, C.H.; Ha, T.Y. Differential circulating and visceral fat microRNA expression of non-obese and obese subjects. Clin. Nutr., 2020, 39(3), 910-916. doi: 10.1016/j.clnu.2019.03.033 PMID: 31003790
  42. Hsieh, C.H.; Rau, C.S.; Wu, S.C.; Yang, J.C.S.; Wu, Y.C.; Lu, T.H.; Tzeng, S.L.; Wu, C.J.; Lin, C.W. Weight-reduction through a low-fat diet causes differential expression of circulating microRNAs in obese C57BL/6 mice. BMC Genomics, 2015, 16(1), 699. doi: 10.1186/s12864-015-1896-3 PMID: 26377847
  43. Blagosklonny, M.V. Once again on rapamycin-induced insulin resistance and longevity: Despite of or owing to. Aging, 2012, 4(5), 350-358. doi: 10.18632/aging.100461 PMID: 22683661
  44. Osna, N.A.; Donohue, T.M., Jr; Kharbanda, K.K. Alcoholic liver disease: Pathogenesis and current management. Alcohol Res., 2017, 38(2), 147-161. PMID: 28988570
  45. Lackner, C.; Tiniakos, D. Fibrosis and alcohol-related liver disease. J. Hepatol., 2019, 70(2), 294-304. doi: 10.1016/j.jhep.2018.12.003 PMID: 30658730
  46. Zhao, Z.; Lin, C.Y.; Cheng, K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl. Res., 2019, 214, 17-29. doi: 10.1016/j.trsl.2019.07.007 PMID: 31476281
  47. Wang, X.; He, Y.; Mackowiak, B.; Gao, B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 2021, 70(4), 784-795. doi: 10.1136/gutjnl-2020-322526 PMID: 33127832
  48. Blaya, D.; Pose, E.; Coll, M.; Lozano, J.J.; Graupera, I.; Schierwagen, R.; Jansen, C.; Castro, P.; Fernandez, S.; Sidorova, J.; Vasa-Nicotera, M.; Solà, E.; Caballería, J.; Trebicka, J.; Ginès, P.; Sancho-Bru, P. Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure. JHEP Reports, 2021, 3(2), 100233. doi: 10.1016/j.jhepr.2021.100233 PMID: 33665588
  49. Zhou, J.; Li, Z.; Huang, Y.; Ju, W.; Wang, D.; Zhu, X.; He, X. MicroRNA-26a targets the mdm2/p53 loop directly in response to liver regeneration. Int. J. Mol. Med., 2019, 44(4), 1505-1514. doi: 10.3892/ijmm.2019.4282 PMID: 31364731
  50. Kalayinia, S.; Goodarzynejad, H.; Maleki, M.; Mahdieh, N. Next generation sequencing applications for cardiovascular disease. Ann. Med., 2018, 50(2), 91-109. doi: 10.1080/07853890.2017.1392595 PMID: 29027470
  51. Huang, Y. The novel regulatory role of lnc RNA -mi RNA-MRNA axis in cardiovascular diseases. J. Cell. Mol. Med., 2018, 22(12), 5768-5775. doi: 10.1111/jcmm.13866 PMID: 30188595
  52. Kalayinia, S.; Arjmand, F.; Maleki, M.; Malakootian, M.; Singh, C.P. MicroRNAs: Roles in cardiovascular development and disease. Cardiovasc. Pathol., 2021, 50, 107296. doi: 10.1016/j.carpath.2020.107296 PMID: 33022373
  53. Lu, D.; Thum, T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat. Rev. Cardiol., 2019, 16(11), 661-674. doi: 10.1038/s41569-019-0218-x PMID: 31186539
  54. Shi, H.; Li, H.; Zhang, F.; Xue, H.; Zhang, Y.; Han, Q. MiR-26a-5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17. Cell Biol. Int., 2021, 45(11), 2357-2367. doi: 10.1002/cbin.11685 PMID: 34370360
  55. Tang, L.; Xie, J.; Yu, X.; Zheng, Y. MiR-26a-5p inhibits GSK3β expression and promotes cardiac hypertrophy in vitro. PeerJ, 2020, 8, e10371. doi: 10.7717/peerj.10371 PMID: 33240671
  56. Deng, S.; Solinas, A.; Calvisi, D.F. Cabozantinib for HCC Treatment, from clinical back to experimental models. Front. Oncol., 2021, 11, 756672. doi: 10.3389/fonc.2021.756672 PMID: 34722310
  57. Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol., 2014, 9(1), 287-314. doi: 10.1146/annurev-pathol-012513-104715 PMID: 24079833
  58. Wang, Y.; Sun, B.; Sun, H.; Zhao, X.; Wang, X.; Zhao, N.; Zhang, Y.; Li, Y.; Gu, Q.; Liu, F.; Shao, B.; An, J. Regulation of proliferation, angiogenesis and apoptosis in hepatocellular carcinoma by miR-26b-5p. Tumour Biol., 2016, 37(8), 10965-10979. doi: 10.1007/s13277-016-4964-7 PMID: 26891666
  59. Zhang, Y.F.; Zhang, A.R.; Zhang, B.C.; Rao, Z.G.; Gao, J.F.; Lv, M.H.; Wu, Y.Y.; Wang, S.M.; Wang, R.Q.; Fang, D.C. MiR-26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1-E2F1 signaling pathway. Mol. Biol. Rep., 2013, 40(2), 1711-1720. doi: 10.1007/s11033-012-2222-7 PMID: 23108995
  60. Chang, L.; Li, K.; Guo, T. miR-26a-5p suppresses tumor metastasis by regulating EMT and is associated with prognosis in HCC. Clin. Transl. Oncol., 2017, 19(6), 695-703. doi: 10.1007/s12094-016-1582-1 PMID: 27864783
  61. Zhu, W.J.; Yan, Y.; Zhang, J.W.; Tang, Y.D.; Han, B. Effect and mechanism of miR-26a-5p on proliferation and apoptosis of hepatocellular carcinoma cells. Cancer Manag. Res., 2020, 12, 3013-3022. doi: 10.2147/CMAR.S237752 PMID: 32431544
  62. Liebner, D.A.; Shah, M.H. Thyroid cancer: Pathogenesis and targeted therapy. Ther. Adv. Endocrinol. Metab., 2011, 2(5), 173-195. doi: 10.1177/2042018811419889 PMID: 23148184
  63. Lin, R.X.; Yang, S.L.; Jia, Y.; Wu, J.C.; Xu, Z.; Zhang, H. Epigenetic regulation of papillary thyroid carcinoma by long non-coding RNAs. Semin. Cancer Biol., 2022, 83, 253-260. doi: 10.1016/j.semcancer.2021.03.027 PMID: 33785446
  64. Wu, Y.C.; Li, S.Y.; Jia, Y.F. MicroRNA-26a suppresses the malignant biological behaviors of papillary thyroid carcinoma by targeting ROCK1 and regulating PI3K/AKT signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 8940-8949. PMID: 31696481
  65. Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14. doi: 10.1016/j.bpobgyn.2016.08.006 PMID: 27743768
  66. Sun, T.Y.; Xie, H.J.; He, H.; Li, Z.; Kong, L.F. miR-26a inhibits the proliferation of ovarian cancer cells via regulating CDC6 expression. Am. J. Transl. Res., 2016, 8(2), 1037-1046. PMID: 27158389
  67. Shen, W.; Song, M.; Liu, J.; Qiu, G.; Li, T.; Hu, Y.; Liu, H. MiR-26a promotes ovarian cancer proliferation and tumorigenesis. PLoS One, 2014, 9(1), e86871. doi: 10.1371/journal.pone.0086871 PMID: 24466274
  68. Testa, U.; Castelli, G.; Pelosi, E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines, 2019, 6(3), 82. doi: 10.3390/medicines6030082 PMID: 31366128
  69. Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730. doi: 10.3390/molecules27175730 PMID: 36080493
  70. Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet., 2012, 13(5), 358-369. doi: 10.1038/nrg3198 PMID: 22510765
  71. Mohammadi Torbati, P.; Asadi, F.; Fard-Esfahani, P. Circulating miR-20a and miR-26a as biomarkers in prostate cancer. Asian Pac. J. Cancer Prev., 2019, 20(5), 1453-1456. doi: 10.31557/APJCP.2019.20.5.1453 PMID: 31127907
  72. Yang, B.; Tang, X.; Wang, Z.; Sun, D.; Wei, X.; Ding, Y. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Biosci. Rep., 2018, 38(5), BSR20180677. doi: 10.1042/BSR20180677 PMID: 29967294
  73. Urabe, F.; Kosaka, N.; Sawa, Y.; Yamamoto, Y.; Ito, K.; Yamamoto, T.; Kimura, T.; Egawa, S.; Ochiya, T. miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Sci. Adv., 2020, 6(18), eaay3051. doi: 10.1126/sciadv.aay3051 PMID: 32494663
  74. Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203. doi: 10.1007/s10555-020-09925-3 PMID: 32894370
  75. He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; Wang, X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci., 2020, 16(14), 2628-2647. doi: 10.7150/ijbs.47203 PMID: 32792861
  76. Deng, M.; Tang, H.; Lu, X.; Liu, M.; Lu, X.; Gu, Y.; Liu, J.; He, Z. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One, 2013, 8(8), e72662. doi: 10.1371/journal.pone.0072662 PMID: 24015269
  77. Ding, K.; Wu, Z.; Wang, N.; Wang, X.; Wang, Y.; Qian, P.; Meng, G.; Tan, S. MiR-26a performs converse roles in proliferation and metastasis of different gastric cancer cells via regulating of PTEN expression. Pathol. Res. Pract., 2017, 213(5), 467-475. doi: 10.1016/j.prp.2017.01.026 PMID: 28242043
  78. Śledzińska, P.; Bebyn, M.G.; Furtak, J.; Kowalewski, J.; Lewandowska, M.A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci., 2021, 22(19), 10373. doi: 10.3390/ijms221910373 PMID: 34638714
  79. McNamara, M.G.; Lwin, Z.; Jiang, H.; Chung, C.; Millar, B.A.; Sahgal, A.; Laperriere, N.; Mason, W.P. Conditional probability of survival and post-progression survival in patients with glioblastoma in the temozolomide treatment era. J. Neurooncol., 2014, 117(1), 153-160. doi: 10.1007/s11060-014-1368-7 PMID: 24469855
  80. Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol. Med. Chir., 2018, 58(10), 405-421. doi: 10.2176/nmc.ra.2018-0141 PMID: 30249919
  81. Menon, A.; Abd-Aziz, N.; Khalid, K.; Poh, C.L.; Naidu, R. miRNA: A promising therapeutic target in cancer. Int. J. Mol. Sci., 2022, 23(19), 11502. doi: 10.3390/ijms231911502 PMID: 36232799
  82. Huang, W.; Zhong, Z.; Luo, C.; Xiao, Y.; Li, L.; Zhang, X.; Yang, L.; Xiao, K.; Ning, Y.; Chen, L.; Liu, Q.; Hu, X.; Zhang, J.; Ding, X.; Xiang, S. The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics, 2019, 9(19), 5497-5516. doi: 10.7150/thno.33800 PMID: 31534499
  83. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30. doi: 10.3322/caac.21442 PMID: 29313949
  84. Liao, R.; Lin, Y.; Zhu, L. Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol. Biol. Rep., 2018, 45(6), 2913-2923. doi: 10.1007/s11033-018-4358-6 PMID: 30194558
  85. Li, M.; Ma, W. miR-26a reverses multidrug resistance in osteosarcoma by targeting MCL1. Front. Cell Dev. Biol., 2021, 9, 645381. doi: 10.3389/fcell.2021.645381 PMID: 33816494
  86. Rolfo, C.; Fanale, D.; Hong, D.; Tsimberidou, A.; Piha- Paul, S.; Pauwels, P.; Meerbeeck, J.; Caruso, S.; Bazan, V.; Cicero, G.; Russo, A.; Giovannetti, E. Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr. Pharm. Biotechnol., 2014, 15(5), 475-485. doi: 10.2174/1389201015666140519123219 PMID: 24846062
  87. Yang, Y.; Zhang, P.; Zhao, Y.; Yang, J.; Jiang, G.; Fan, J. Decreased MicroRNA-26a expression causes cisplatin resistance in human non-small cell lung cancer. Cancer Biol. Ther., 2016, 17(5), 515-525. doi: 10.1080/15384047.2015.1095405 PMID: 26492332
  88. Zhou, Y.; Wen, L.; Cheng, F.; Yin, C. MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J. Gastroenterol., 2015, 21(5), 313-319. doi: 10.4103/1319-3767.166206 PMID: 26458859
  89. Vishnoi, A.; Rani, S. miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol. Biol., 2023, 2595, 1-12. doi: 10.1007/978-1-0716-2823-2_1 PMID: 36441451
  90. Amin, M.M.J.; Trevelyan, C.J.; Turner, N.A. MicroRNA-214 in health and disease. Cells, 2021, 10(12), 3274. doi: 10.3390/cells10123274 PMID: 34943783
  91. Zhou, X.; Deng, X.; Liu, M.; He, M.; Long, W.; Xu, Z.; Zhang, K.; Liu, T.; So, K.F.; Fu, Q.L.; Zhou, L. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy. J. Control. Release, 2023, 357, 1-19. doi: 10.1016/j.jconrel.2023.03.033 PMID: 36958402
  92. Zou, J.; Sun, J.; Chen, H.; Fan, X.; Qiu, Z.; Li, Y.; Shi, J. The regulatory roles of miR-26a in the development of fracture and osteoblasts. Ann. Transl. Med., 2022, 10(2), 37. doi: 10.21037/atm-21-6101 PMID: 35282137
  93. Zhuang, C.; Jiang, W.; Huang, D.; Xu, L.; Yang, Q.; Zheng, L.; Wang, X.; Hu, L. Serum miR-21, miR-26a and miR-101 as potential biomarkers of hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol., 2016, 40(4), 386-396. doi: 10.1016/j.clinre.2015.11.002 PMID: 26669589
  94. Shi, D.; Wang, H.; Ding, M.; Yang, M.; Li, C.; Yang, W.; Chen, L. MicroRNA-26a-5p inhibits proliferation, invasion and metastasis by repressing the expression of Wnt5a in papillary thyroid carcinoma. OncoTargets Ther., 2019, 12, 6605-6616. doi: 10.2147/OTT.S205994 PMID: 31496749
  95. Li, H.; Xu, W.; Wang, T.; Yu, C.; Rao, X.; Hong, X.; Wang, X. miR-26a inhibits the proliferation and migration of prostate cancer by targeting CDC6. Minerva Med., 2021, 112(5), 661-663. doi: 10.23736/S0026-4806.20.06479-4 PMID: 32166936
  96. Li, Y.; Wang, P.; Wu, L.L.; Yan, J.; Pang, X.Y.; Liu, S.J. miR-26a-5p inhibit gastric cancer cell proliferation and invasion through mediated Wnt5a. OncoTargets Ther., 2020, 13, 2537-2550. doi: 10.2147/OTT.S241199 PMID: 32273724
  97. Li, H.H.; Wang, J.D.; Wang, W.; Wang, H.F.; Lv, J.Q. Effect of miR-26a-5p on gastric cancer cell proliferation, migration and invasion by targeting COL10A1. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1186-1194. PMID: 32096148
  98. Cai, Y.; Zhang, T.; Chen, G.; Liu, C. MiR-26a-5p heightens breast cancer cell sensitivity to paclitaxel via targeting flap endonuclease 1. Ann. Clin. Lab. Sci., 2023, 53(1), 116-125. PMID: 36889769
  99. Yuan, Y.L.; Yu, H.; Mu, S.M.; Dong, Y.D.; Li, D.Y. MiR-26a-5p inhibits cell proliferation and enhances doxorubicin sensitivity in hcc cells via targeting AURKA. Technol. Cancer Res. Treat., 2019, 18, 1533033851833. doi: 10.1177/1533033819851833 PMID: 31570091

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024