Developing a RiskScore Model based on Angiogenesis-related lncRNAs for Colon Adenocarcinoma Prognostic Prediction


Cite item

Full Text

Abstract

Aim:We screened key angiogenesis-related lncRNAs based on colon adenocarcinoma (COAD) to construct a RiskScore model for predicting COAD prognosis and help reveal the pathogenesis of the COAD as well as optimize clinical treatment

Background:Regulatory roles of lncRNAs in tumor progression and prognosis have been confirmed, but few studies have probed into the role of angiogenesis-related lncRNAs in COAD.

Objective:To identify key angiogenesis-related lncRNAs and build a RiskScore model to predict the survival probability of COAD patients and help optimize clinical treatment.

Methods:Sample data were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The HALLMARK pathway score in the samples was calculated using the single sample gene set enrichment analysis (ssGSEA) method. LncRNAs associated with angiogenesis were filtered by an integrated pipeline algorithm. LncRNA-based subtypes were classified by ConsensusClusterPlus and then compared with other established subtypes. A RiskScore model was created based on univariate Cox, least absolute shrinkage and selection operator (LASSO) regression and stepwise regression analysis. The Kaplan-Meier curve was drawn by applying R package survival. The time-dependent ROC curves were drawn by the timeROC package. Finally, immunotherapy benefits and drug sensitivity were analyzed using tumor immune dysfunction and exclusion (TIDE) software and pRRophetic package.

Results:Pathway analysis showed that the angiogenesis pathway was a risk factor affecting the prognosis of COAD patients. A total of 66 lncRNAs associated with angiogenesis were screened, and three molecular subtypes (S1, S2, S3) were obtained. The prognosis of S1 and S2 was better than that of S3. Compared with the existing subtypes, the S3 subtype was significantly different from the other two subtypes. Immunoassay showed that immune cell scores of the S2 subtype were lower than those of the S1 and S3 subtypes, which also had the highest TIDE scores. We recruited 8 key lncRNAs to develop a RiskScore model. The high RiskScore group with inferior survival and higher TIDE scores was predicted to benefit limitedly from immunotherapy, but it may be more sensitive to chemotherapeutics. A nomogram designed by RiskScore signature and other clinicopathological characteristics shed light on rational predictive power for COAD treatment.

Conclusion:We constructed a RiskScore model based on angiogenesis-related lncRNAs, which could serve as potential prognostic predictors for COAD patients and may offer clues for the intervention of anti-angiogenic application. Our results may help evaluate the prognosis of COAD and provide better treatment strategies.

About the authors

Xianguo Li

Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College,, Huazhong University of Science and Technology

Email: info@benthamscience.net

Junping Lei

Department of General Surgery, Xiangyang No.1 People's Hospital,, Hubei University of Medicine

Email: info@benthamscience.net

Yongping Shi

Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College,, Huazhong University of Science and Technology

Email: info@benthamscience.net

Zuojie Peng

Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Minmin Gong

Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine

Author for correspondence.
Email: info@benthamscience.net

Xiaogang Shu

Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Akimoto, N.; Ugai, T.; Zhong, R.; Hamada, T.; Fujiyoshi, K.; Giannakis, M.; Wu, K.; Cao, Y.; Ng, K.; Ogino, S. Rising incidence of early-onset colorectal cancer - a call to action. Nat. Rev. Clin. Oncol., 2021, 18(4), 230-243. doi: 10.1038/s41571-020-00445-1 PMID: 33219329
  2. Burnett-Hartman, A.N.; Lee, J.K.; Demb, J.; Gupta, S. An update on the epidemiology, molecular characterization, diagnosis, and screening strategies for early-onset colorectal cancer. Gastroenterology, 2021, 160(4), 1041-1049. doi: 10.1053/j.gastro.2020.12.068 PMID: 33417940
  3. Jung, F.; Lee, M.; Doshi, S.; Zhao, G.; Lam Tin Cheung, K.; Chesney, T.; Guidolin, K.; Englesakis, M.; Lukovic, J.; O’Kane, G.; Quereshy, F.A.; Chadi, S.A. Neoadjuvant therapy versus direct to surgery for T4 colon cancer: Meta-analysis. Br. J. Surg., 2021, 109(1), 30-36. doi: 10.1093/bjs/znab382 PMID: 34921604
  4. Xu, M.; Chang, J.; Wang, W.; Wang, X.; Wang, X.; Weng, W.; Tan, C.; Zhang, M.; Ni, S.; Wang, L.; Huang, Z.; Deng, Z.; Li, W.; Huang, D.; Sheng, W. Classification of colon adenocarcinoma based on immunological characterizations: Implications for prognosis and immunotherapy. Front. Immunol., 2022, 13, 934083. doi: 10.3389/fimmu.2022.934083 PMID: 35967414
  5. Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet, 2021, 398(10304), 1002-1014. doi: 10.1016/S0140-6736(21)01206-X PMID: 34509219
  6. Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol., 2021, 18(6), 345-362. doi: 10.1038/s41571-021-00473-5 PMID: 33580222
  7. Choi, S.W.; Kim, H.W.; Nam, J.W. The small peptide world in long noncoding RNAs. Brief. Bioinform., 2019, 20(5), 1853-1864. doi: 10.1093/bib/bby055 PMID: 30010717
  8. Nojima, T.; Proudfoot, N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol., 2022, 23(6), 389-406. doi: 10.1038/s41580-021-00447-6 PMID: 35079163
  9. Núñez-Martínez, H.N.; Recillas-Targa, F. Emerging functions of lncRNA loci beyond the transcript itself. Int. J. Mol. Sci., 2022, 23(11), 6258. doi: 10.3390/ijms23116258 PMID: 35682937
  10. Park, E.G.; Pyo, S.J.; Cui, Y.; Yoon, S.H.; Nam, J.W. Tumor immune microenvironment lncRNAs. Brief. Bioinform., 2022, 23(1), bbab504. doi: 10.1093/bib/bbab504 PMID: 34891154
  11. Tan, Y.T.; Lin, J.F.; Li, T.; Li, J.J.; Xu, R.H.; Ju, H.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun., 2021, 41(2), 109-120. doi: 10.1002/cac2.12108 PMID: 33119215
  12. Bao, G.; Xu, R.; Wang, X.; Ji, J.; Wang, L.; Li, W.; Zhang, Q.; Huang, B.; Chen, A.; Zhang, D.; Kong, B.; Yang, Q.; Yuan, C.; Wang, X.; Wang, J.; Li, X. Identification of lncRNA signature associated with pan-cancer prognosis. IEEE J. Biomed. Health Inform., 2021, 25(6), 2317-2328. doi: 10.1109/JBHI.2020.3027680 PMID: 32991297
  13. Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci., 2019, 20(22), 5758. doi: 10.3390/ijms20225758 PMID: 31744051
  14. Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. Adv. Biol. Earth Sci, 2023, 8, 140-146.
  15. Ahmadian, E.; Dizaj, S.M.; Sharifi, S.; Shahi, S.; Khalilov, R.; Eftekhari, A.; Hasanzadeh, M. The potential of nanomaterials in theranostics of oral squamous cell carcinoma: Recent progress. Trends Analyt. Chem., 2019, 116, 167-176. doi: 10.1016/j.trac.2019.05.009
  16. Eftekhari, A.; Kryschi, C.; Pamies, D.; Gulec, S.; Ahmadian, E.; Janas, D.; Davaran, S.; Khalilov, R. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics, 2023, 7(3), 236-257. doi: 10.7150/ntno.77564 PMID: 37064613
  17. Hu, X.; Jing, F.; Wang, Q.; Shi, L.; Cao, Y.; Zhu, Z. Alteration of ornithine metabolic pathway in colon cancer and multivariate data modelling for cancer diagnosis. Oncologie, 2021, 23(2), 203-217. doi: 10.32604/Oncologie.2021.016155
  18. Ramapriyan, R.; Caetano, M.S.; Barsoumian, H.B.; Mafra, A.C.P.; Zambalde, E.P.; Menon, H.; Tsouko, E.; Welsh, J.W.; Cortez, M.A. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol. Ther., 2019, 195, 162-171. doi: 10.1016/j.pharmthera.2018.11.004 PMID: 30439456
  19. Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Experimen. Clin. Cancer Res., 2020, 39(1), 204.
  20. Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J. TISIDB: An integrated repository portal for tumor-immune system interactions. Bioinformatics, 2019, 35(20), 4200-4202. doi: 10.1093/bioinformatics/btz210 PMID: 30903160
  21. Song, X.; Guo, Y.; Song, P.; Duan, D.; Guo, W. Non-coding RNAs in regulating tumor angiogenesis. Front. Cell Dev. Biol., 2021, 9, 751578. doi: 10.3389/fcell.2021.751578 PMID: 34616746
  22. He, L.; Jin, M.; Jian, D.; Yang, B.; Dai, N.; Feng, Y.; Xiao, H.; Wang, D. Identification of four immune subtypes in locally advanced rectal cancer treated with neoadjuvant chemotherapy for predicting the efficacy of subsequent immune checkpoint blockade. Front. Immunol., 2022, 13, 955187. doi: 10.3389/fimmu.2022.955187 PMID: 36238279
  23. Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; Kirzin, S.; Chazal, M.; Fléjou, J.F.; Benchimol, D.; Berger, A.; Lagarde, A.; Pencreach, E.; Piard, F.; Elias, D.; Parc, Y.; Olschwang, S.; Milano, G.; Laurent-Puig, P.; Boige, V. Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med., 2013, 10(5), e1001453. doi: 10.1371/journal.pmed.1001453 PMID: 23700391
  24. Tripathi, M.K.; Deane, N.G.; Zhu, J.; An, H.; Mima, S.; Wang, X.; Padmanabhan, S.; Shi, Z.; Prodduturi, N.; Ciombor, K.K.; Chen, X.; Washington, M.K.; Zhang, B.; Beauchamp, R.D. Nuclear factor of activated T-cell activity is associated with metastatic capacity in colon cancer. Cancer Res., 2014, 74(23), 6947-6957. doi: 10.1158/0008-5472.CAN-14-1592 PMID: 25320007
  25. Kemper, K.; Versloot, M.; Cameron, K.; Colak, S.; de Sousa e Melo, F.; de Jong, J.H.; Bleackley, J.; Vermeulen, L.; Versteeg, R.; Koster, J.; Medema, J.P. Mutations in the Ras-Raf Axis underlie the prognostic value of CD133 in colorectal cancer. Clin. Cancer Res., 2012, 18(11), 3132-3141. doi: 10.1158/1078-0432.CCR-11-3066 PMID: 22496204
  26. Liu, Z.; Lu, T.; Wang, Y.; Jiao, D.; Li, Z.; Wang, L.; Liu, L.; Guo, C.; Zhao, Y.; Han, X. Establishment and experimental validation of an immune miRNA signature for assessing prognosis and immune landscape of patients with colorectal cancer. J. Cell. Mol. Med., 2021, 25(14), 6874-6886. doi: 10.1111/jcmm.16696 PMID: 34101338
  27. Li, Y.; Jiang, T.; Zhou, W.; Li, J.; Li, X.; Wang, Q.; Jin, X.; Yin, J.; Chen, L.; Zhang, Y.; Xu, J.; Li, X. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat. Commun., 2020, 11(1), 1000. doi: 10.1038/s41467-020-14802-2 PMID: 32081859
  28. Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 2017, 33(24), 3982-3984. doi: 10.1093/bioinformatics/btx513 PMID: 28961746
  29. Hu, X.; Ni, S.; Zhao, K.; Qian, J.; Duan, Y. Bioinformatics-led discovery of osteoarthritis biomarkers and inflammatory infiltrates. Front. Immunol., 2022, 13, 871008. doi: 10.3389/fimmu.2022.871008 PMID: 35734177
  30. Li, Q.; Cheng, Z.; Zhou, L.; Darmanis, S.; Neff, N.F.; Okamoto, J.; Gulati, G.; Bennett, M.L.; Sun, L.O.; Clarke, L.E.; Marschallinger, J.; Yu, G.; Quake, S.R.; Wyss-Coray, T.; Barres, B.A. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron, 2019, 101(2), 207-223.e10. doi: 10.1016/j.neuron.2018.12.006 PMID: 30606613
  31. Huang, T.X.; Fu, L. The immune landscape of esophageal cancer. Cancer Commun., 2019, 39(1), 79. doi: 10.1186/s40880-019-0427-z PMID: 31771653
  32. Giraud, J.; Chalopin, D.; Blanc, J.F.; Saleh, M. Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front. Immunol., 2021, 12, 655697. doi: 10.3389/fimmu.2021.655697 PMID: 33815418
  33. Eide, P.W.; Bruun, J.; Lothe, R.A.; Sveen, A. CMScaller: An R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Sci. Rep., 2017, 7(1), 16618. doi: 10.1038/s41598-017-16747-x PMID: 29192179
  34. Therneau, T.M.; Lumley, T. Package ‘survival’. R Top Doc., 2015, 128(10), 28-33.
  35. McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med., 2011, 21(3), 203-209. doi: 10.11613/BM.2011.029 PMID: 22420233
  36. Pei, S.; Liu, T.; Ren, X.; Li, W.; Chen, C.; Xie, Z. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief. Bioinform., 2021, 22(3), bbaa148. doi: 10.1093/bib/bbaa148 PMID: 32698196
  37. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  38. Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262. doi: 10.1016/j.celrep.2016.12.019 PMID: 28052254
  39. Danilova, L.; Ho, W.J.; Zhu, Q.; Vithayathil, T.; De Jesus-Acosta, A.; Azad, N.S.; Laheru, D.A.; Fertig, E.J.; Anders, R.; Jaffee, E.M.; Yarchoan, M. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol. Res., 2019, 7(6), 886-895. doi: 10.1158/2326-6066.CIR-18-0822 PMID: 31043417
  40. Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558. doi: 10.1038/s41591-018-0136-1 PMID: 30127393
  41. Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548. doi: 10.1038/nature25501 PMID: 29443960
  42. Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468. doi: 10.1371/journal.pone.0107468 PMID: 25229481
  43. Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol., 2019, 16(8), 469-493. doi: 10.1038/s41571-019-0181-9 PMID: 30816337
  44. Saman, H.; Raza, S.S.; Uddin, S.; Rasul, K. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. cancers, 2020, 12(5), 1172. doi: 10.3390/cancers12051172 PMID: 32384792
  45. Sun, W.; Xu, Y.; Zhao, B.; Zhao, M.; Chen, J.; Chu, Y.; Peng, H. The prognostic value and immunological role of angiogenesis-related patterns in colon adenocarcinoma. Front. Oncol., 2022, 12, 1003440. doi: 10.3389/fonc.2022.1003440 PMID: 36439446
  46. Fransvea, P.; Costa, G.; Sganga, G. Colorectal cancer: Greater neo-angiogenesis, less perforation, worst oncological outcomes. Med. Hypotheses, 2021, 146, 110458. doi: 10.1016/j.mehy.2020.110458 PMID: 33341528
  47. Deng, F.; Zhou, R.; Lin, C.; Yang, S.; Wang, H.; Li, W.; Zheng, K.; Lin, W.; Li, X.; Yao, X.; Pan, M.; Zhao, L. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics, 2019, 9(4), 1001-1014. doi: 10.7150/thno.30056 PMID: 30867812
  48. Ng, L.; Wong, S.K.M.; Huang, Z.; Lam, C.S.C.; Chow, A.K.M.; Foo, D.C.C.; Lo, O.S.H.; Pang, R.W.C.; Law, W.L. CD26 induces colorectal cancer angiogenesis and metastasis through CAV1/MMP1 signaling. Int. J. Mol. Sci., 2022, 23(3), 1181. doi: 10.3390/ijms23031181 PMID: 35163100
  49. Pashirzad, M.; Khorasanian, R.; Fard, M.M.; Arjmand, M.H.; Langari, H.; Khazaei, M.; Soleimanpour, S.; Rezayi, M.; Ferns, G.A.; Hassanian, S.M.; Avan, A. The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer. Curr. Cancer Drug Targets, 2021, 21(11), 932-943. doi: 10.2174/1568009621666211103113339 PMID: 34732116
  50. Guo, Y.; Guo, Y.; Chen, C.; Fan, D.; Wu, X.; Zhao, L.; Shao, B.; Sun, Z.; Ji, Z. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: Involvement of miR-30c-5p/TCF7 axis. Mol. Cancer, 2021, 20(1), 93. doi: 10.1186/s12943-021-01372-0 PMID: 34172072
  51. Hao, Z.; Liang, P.; He, C.; Sha, S.; Yang, Z.; Liu, Y.; Shi, J.; Zhu, Z.; Chang, Q. Prognostic risk assessment model and drug sensitivity analysis of colon adenocarcinoma (COAD) based on immune-related lncRNA pairs. BMC Bioinformatics, 2022, 23(1), 435. doi: 10.1186/s12859-022-04969-4 PMID: 36258178
  52. Xiao, J.; Wang, X.; Liu, Y.; Liu, X.; Yi, J.; Hu, J. Lactate metabolism-associated lncRNA pairs: A prognostic signature to reveal the immunological landscape and mediate therapeutic response in patients with colon adenocarcinoma. Front. Immunol., 2022, 13, 881359. doi: 10.3389/fimmu.2022.881359 PMID: 35911752
  53. Wang, H.; Lin, K.; Zhu, L.; Zhang, S.; Li, L.; Liao, Y.; Zhang, B.; Yang, M.; Liu, X.; Li, L.; Li, S.; Yang, L.; Wang, H.; Wang, Q.; Li, H.; Fu, S.; Zhang, X.; Jiang, P.; Zhang, Q.C.; Cheng, J.; Wang, D. Oncogenic lncRNA LINC00973 promotes Warburg effect by enhancing LDHA enzyme activity. Sci. Bull., 2021, 66(13), 1330-1341. doi: 10.1016/j.scib.2021.01.001 PMID: 36654155
  54. Liang, W.; Wu, J.; Qiu, X. LINC01116 facilitates colorectal cancer cell proliferation and angiogenesis through targeting EZH2-regulated TPM1. J. Transl. Med., 2021, 19(1), 45. doi: 10.1186/s12967-021-02707-7 PMID: 33499872
  55. Liu, X.; Chen, J.; Zhang, S.; Liu, X.; Long, X.; Lan, J.; Zhou, M.; Zheng, L.; Zhou, J. LINC00839 promotes colorectal cancer progression by recruiting RUVBL1 /Tip60 complexes to activate NRF1. EMBO Rep., 2022, 23(9), e54128. doi: 10.15252/embr.202154128 PMID: 35876654
  56. Chen, J.; Song, Y.; Li, M.; Zhang, Y.; Lin, T.; Sun, J.; Wang, D.; Liu, Y.; Guo, J.; Yu, W. Comprehensive analysis of ceRNA networks reveals prognostic lncRNAs related to immune infiltration in colorectal cancer. BMC Cancer, 2021, 21(1), 255. doi: 10.1186/s12885-021-07995-2 PMID: 33750326
  57. Ghafouri-Fard, S.; Khoshbakht, T.; Taheri, M.; Ebrahimzadeh, K. A review on the role of PCAT6 lncRNA in tumorigenesis. Biomed. Pharmacother., 2021, 142, 112010.
  58. Wang, S.; Chen, Z.; Gu, J.; Chen, X.; Wang, Z. The role of lncRNA PCAT6 in cancers. Front. Oncol., 2021, 11, 701495. doi: 10.3389/fonc.2021.701495 PMID: 34327141
  59. Huang, W.; Su, G.; Huang, X.; Zou, A.; Wu, J.; Yang, Y.; Zhu, Y.; Liang, S.; Li, D.; Ma, F.; Guo, L. Long noncoding RNA PCAT6 inhibits colon cancer cell apoptosis by regulating anti-apoptotic protein ARC expression via EZH2. Cell Cycle, 2019, 18(1), 69-83. doi: 10.1080/15384101.2018.1558872 PMID: 30569799
  60. Dong, F.; Ruan, S.; Wang, J.; Xia, Y.; Le, K.; Xiao, X.; Hu, T.; Wang, Q. M2 macrophage-induced lncRNA PCAT6 facilitates tumorigenesis and angiogenesis of triple-negative breast cancer through modulation of VEGFR2. Cell Death Dis., 2020, 11(9), 728. doi: 10.1038/s41419-020-02926-8 PMID: 32908134
  61. Batlle, E.; Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity, 2019, 50(4), 924-940. doi: 10.1016/j.immuni.2019.03.024 PMID: 30995507
  62. Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767. doi: 10.3390/ijms20112767 PMID: 31195692
  63. Ruan, X.J.; Ye, B.L.; Zheng, Z.H.; Li, S.T.; Zheng, X.F.; Zhang, S.Z. TGFβ1I1 suppressed cell migration and invasion in colorectal cancer by inhibiting the TGF-β pathway and EMT progress. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(13), 7294-7302. PMID: 32706067
  64. Khalilov, R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. Adv. Biol. Earth Sci., 2023, 8(1)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers