Comprehensive scRNA-seq Analysis and Identification of CD8_+T Cell Related Gene Markers for Predicting Prognosis and Drug Resistance of Hepatocellular Carcinoma


Cite item

Full Text

Abstract

Background:Tumor heterogeneity of immune infiltration of cells plays a decisive role in hepatocellular carcinoma (HCC) therapy response and prognosis. This study investigated the effect of different subtypes of CD8+T cells on the HCC tumor microenvironment about its prognosis.

Methods:Single-cell RNA sequencing, transcriptome, and single-nucleotide variant data from LUAD patients were obtained based on the GEO, TCGA, and HCCD18 databases. CD8+ T cells-associated subtypes were identified by consensus clustering analysis, and genes with the highest correlation with prognostic CD8+ T cell subtypes were identified using WGCNA. The ssGSEA and ESTIMATE algorithms were used to calculate pathway enrichment scores and immune cell infiltration levels between different subtypes. Finally, the TIDE algorithm, CYT score, and tumor responsiveness score were utilized to predict patient response to immunotherapy.

Results:We defined 3 CD8+T cell clusters (CD8_0, CD8_1, CD8_2) based on the scRNA- seq dataset (GSE149614). Among, CD8_2 was prognosis-related risk factor with HCC. We screened 30 prognosis genes from CD8_2, and identified 3 molecular subtypes (clust1, clust2, clust3). Clust1 had better survival outcomes, higher gene mutation, and enhanced immune infiltration. Furthermore, we identified a 12 genes signature (including CYP7A1, SPP1, MSC, CXCL8, CXCL1, GCNT3, TMEM45A, SPP2, ME1, TSPAN13, S100A9, and NQO1) with excellent prediction performance for HCC prognosis. In addition, High-score patients with higher immune infiltration benefited less from immunotherapy. The sensitivity of low-score patients to multiple drugs including Parthenolide and Shikonin was significantly higher than that of high-score patients. Moreover, high-score patients had increased oxidative stress pathways scores, and the RiskScore was closely associated with oxidative stress pathways scores. And the nomogram had good clinical utility.

Conclusion:To predict the survival outcome and immunotherapy response for HCC, we developed a 12-gene signature based on the heterogeneity of the CD8+ T cells.

About the authors

Lu Cao

The Institute for Cell Transplantation and Gene Therapy, Central South University

Email: info@benthamscience.net

Muqi Liu

The Institute for Cell Transplantation and Gene Therapy, Central South University

Email: info@benthamscience.net

Xiaoqian Ma

The Institute for Cell Transplantation and Gene Therapy, Central South University

Email: info@benthamscience.net

Pengfei Rong

The Institute for Cell Transplantation and Gene Therapy, Central South University

Email: info@benthamscience.net

Juan Zhang

The Institute for Cell Transplantation and Gene Therapy, Central South University

Email: info@benthamscience.net

Wei Wang

The Institute for Cell Transplantation and Gene Therapy, Central South University,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314. doi: 10.1016/S0140-6736(18)30010-2 PMID: 29307467
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. Kulik, L.; El-Serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology, 2019, 156(2), 477-491.e1. doi: 10.1053/j.gastro.2018.08.065 PMID: 30367835
  4. Wang, L.; Park, H.; Chhim, S.; Ding, Y.; Jiang, W.; Queen, C.; Kim, K.J. A novel monoclonal antibody to fibroblast growth factor 2 effectively inhibits growth of hepatocellular carcinoma xenografts. Mol. Cancer Ther., 2012, 11(4), 864-872. doi: 10.1158/1535-7163.MCT-11-0813 PMID: 22351746
  5. Radvanyi, L.G. Tumor-infiltrating lymphocyte therapy. Cancer J., 2015, 21(6), 450-464. doi: 10.1097/PPO.0000000000000162 PMID: 26588676
  6. Rosenberg, S.A.; Spiess, P.; Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science, 1986, 233(4770), 1318-1321. doi: 10.1126/science.3489291 PMID: 3489291
  7. Harlin, H.; Meng, Y.; Peterson, A.C.; Zha, Y.; Tretiakova, M.; Slingluff, C.; McKee, M.; Gajewski, T.F. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res., 2009, 69(7), 3077-3085. doi: 10.1158/0008-5472.CAN-08-2281 PMID: 19293190
  8. Ji, R.R.; Chasalow, S.D.; Wang, L.; Hamid, O.; Schmidt, H.; Cogswell, J.; Alaparthy, S.; Berman, D.; Jure-Kunkel, M.; Siemers, N.O.; Jackson, J.R.; Shahabi, V. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother., 2012, 61(7), 1019-1031. doi: 10.1007/s00262-011-1172-6 PMID: 22146893
  9. Hutter, C.; Zenklusen, J.C. The cancer genome atlas: Creating lasting value beyond its data. Cell, 2018, 173(2), 283-285. doi: 10.1016/j.cell.2018.03.042 PMID: 29625045
  10. Toro-Domínguez, D.; Martorell-Marugán, J.; López-Domínguez, R.; García-Moreno, A.; González-Rumayor, V.; Alarcón-Riquelme, M.E.; Carmona-Sáez, P. ImaGEO: Integrative gene expression meta-analysis from GEO database. Bioinformatics, 2019, 35(5), 880-882. doi: 10.1093/bioinformatics/bty721 PMID: 30137226
  11. Lian, Q.; Wang, S.; Zhang, G.; Wang, D.; Luo, G.; Tang, J.; Chen, L.; Gu, J. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteom. Bioinform., 2018, 16(4), 269-275. doi: 10.1016/j.gpb.2018.07.003 PMID: 30266410
  12. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform., 2008, 9(1), 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
  13. Horvath, S.; Zhang, B.; Carlson, M.; Lu, K.V.; Zhu, S.; Felciano, R.M.; Laurance, M.F.; Zhao, W.; Qi, S.; Chen, Z.; Lee, Y.; Scheck, A.C.; Liau, L.M.; Wu, H.; Geschwind, D.H.; Febbo, P.G.; Kornblum, H.I.; Cloughesy, T.F.; Nelson, S.F.; Mischel, P.S. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl. Acad. Sci., 2006, 103(46), 17402-17407. doi: 10.1073/pnas.0608396103 PMID: 17090670
  14. Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573. doi: 10.1093/bioinformatics/btq170 PMID: 20427518
  15. Yang, P.; Chen, W.; Xu, H.; Yang, J.; Jiang, J.; Jiang, Y.; Xu, G. Correlation of CCL8 expression with immune cell infiltration of skin cutaneous melanoma: Potential as a prognostic indicator and therapeutic pathway. Cancer Cell Int., 2021, 21(1), 635. doi: 10.1186/s12935-021-02350-8 PMID: 34844613
  16. Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262. doi: 10.1016/j.celrep.2016.12.019 PMID: 28052254
  17. Engebretsen, S.; Bohlin, J. Statistical predictions with glmnet. Clin. Epigenetics, 2019, 11(1), 123. doi: 10.1186/s13148-019-0730-1 PMID: 31443682
  18. Pan, X.; Jin, X.; Wang, J.; Hu, Q.; Dai, B. Placenta inflammation is closely associated with gestational diabetes mellitus. Am. J. Transl. Res., 2021, 13(5), 4068-4079. PMID: 34149999
  19. Yan, D.; Li, C.; Zhou, Y.; Yan, X.; Zhi, W.; Qian, H.; Han, Y. Exploration of combinational therapeutic strategies for HCC based on TCGA HCC database. Oncologie, 2022, 24(1), 101-111. doi: 10.32604/oncologie.2022.020357
  20. Speiser, D.E.; Ho, P.C.; Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol., 2016, 16(10), 599-611. doi: 10.1038/nri.2016.80 PMID: 27526640
  21. Thommen, D.S.; Schumacher, T.N. T cell dysfunction in cancer. Cancer Cell, 2018, 33(4), 547-562. doi: 10.1016/j.ccell.2018.03.012 PMID: 29634943
  22. Poureau, P.G.; Metges, J.P. Fundamentals of digestive cancers immunology, especially gastric and hepatocellular carcinomasfondamentaux de l’immunologie des cancers digestifs (gastriques et hépatocellulaires). Oncologie, 2021, 23(1), 47-59. doi: 10.32604/Oncologie.2021.15525
  23. Hashimoto, M.; Kamphorst, A.O.; Im, S.J.; Kissick, H.T.; Pillai, R.N.; Ramalingam, S.S.; Araki, K.; Ahmed, R. CD8 T cell exhaustion in chronic infection and cancer: Opportunities for interventions. Annu. Rev. Med., 2018, 69(1), 301-318. doi: 10.1146/annurev-med-012017-043208 PMID: 29414259
  24. He, Q.F.; Xu, Y.; Li, J.; Huang, Z.M.; Li, X.H.; Wang, X. CD8+ T-cell exhaustion in cancer: Mechanisms and new area for cancer immunotherapy. Brief. Funct. Genomics, 2019, 18(2), 99-106. doi: 10.1093/bfgp/ely006 PMID: 29554204
  25. Wherry, E.J. T cell exhaustion. Nat. Immunol., 2011, 12(6), 492-499. doi: 10.1038/ni.2035 PMID: 21739672
  26. Wang, X.; Lu, X.J.; Sun, B. The pros and cons of dying tumour cells in adaptive immune responses. Nat. Rev. Immunol., 2017, 17(9), 591. doi: 10.1038/nri.2017.87 PMID: 28757605
  27. Flecken, T.; Schmidt, N.; Hild, S.; Gostick, E.; Drognitz, O.; Zeiser, R.; Schemmer, P.; Bruns, H.; Eiermann, T.; Price, D.A.; Blum, H.E.; Neumann-Haefelin, C.; Thimme, R. Immunodominance and functional alterations of tumor-associated antigen-specific CD8 + T-cell responses in hepatocellular carcinoma. Hepatology, 2014, 59(4), 1415-1426. doi: 10.1002/hep.26731 PMID: 24002931
  28. Wang, L.; Ma, X.; Chen, Y.; Zhang, J.; Zhang, J.; Wang, W.; Chen, S. MiR-145-5p suppresses hepatocellular carcinoma progression by targeting ABHD17C. Oncologie, 2022, 24(4), 897-912. doi: 10.32604/oncologie.2022.025693
  29. Wu, C.; Zhou, Y.; Wang, M.; Dai, G.; Liu, X.; Lai, L.; Tang, S. Bioinformatics analysis explores potential hub genes in nonalcoholic fatty liver disease. Front. Genet., 2021, 12, 772487. doi: 10.3389/fgene.2021.772487 PMID: 34777484
  30. Casagrande, V.; Mauriello, A.; Bischetti, S.; Mavilio, M.; Federici, M.; Menghini, R. Hepatocyte specific TIMP3 expression prevents diet dependent fatty liver disease and hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 6747. doi: 10.1038/s41598-017-06439-x PMID: 28751722
  31. Liu, L.; Zhang, R.; Deng, J.; Dai, X.; Zhu, X.; Fu, Q.; Zhang, H.; Tong, Z.; Zhao, P.; Fang, W.; Zheng, Y.; Bao, X. Construction of TME and Identification of crosstalk between malignant cells and macrophages by SPP1 in hepatocellular carcinoma. Cancer Immunol. Immunother., 2022, 71(1), 121-136. doi: 10.1007/s00262-021-02967-8 PMID: 34028567
  32. Zhu, J.; Zhou, Y.; Wang, L.; Hao, J.; Chen, R.; Liu, L.; Li, J. CXCL5/CXCL8 is a promising potential prognostic and tumor microenvironment-related cluster in hepatocellular carcinoma. J. Gastrointest. Oncol., 2020, 11(6), 1364-1380. doi: 10.21037/jgo-20-556 PMID: 33457007
  33. He, Q.; Huang, W.; Liu, D.; Zhang, T.; Wang, Y.; Ji, X.; Xie, M.; Sun, M.; Tian, D.; Liu, M.; Xia, L. Homeobox B5 promotes metastasis and poor prognosis in Hepatocellular Carcinoma, via FGFR4 and CXCL1 upregulation. Theranostics, 2021, 11(12), 5759-5777. doi: 10.7150/thno.57659 PMID: 33897880
  34. Liu, T.; Zhang, S.; Chen, J.; Jiang, K.; Zhang, Q.; Guo, K.; Liu, Y. The transcriptional profiling of glycogenes associated with hepatocellular carcinoma metastasis. PLoS One, 2014, 9(9), e107941. doi: 10.1371/journal.pone.0107941 PMID: 25232831
  35. Xu, D.; Wang, Y.; Wu, J.; Lin, S.; Chen, Y.; Zheng, J. Identification and clinical validation of EMT-associated prognostic features based on hepatocellular carcinoma. Cancer Cell Int., 2021, 21(1), 621. doi: 10.1186/s12935-021-02326-8 PMID: 34819088
  36. Zhang, X.; Kang, C.; Li, N.; Liu, X.; Zhang, J.; Gao, F.; Dai, L. Identification of special key genes for alcohol-related hepatocellular carcinoma through bioinformatic analysis. PeerJ, 2019, 7, e6375. doi: 10.7717/peerj.6375 PMID: 30755830
  37. Wen, D.; Liu, D.; Tang, J.; Dong, L.; Liu, Y.; Tao, Z.; Wan, J.; Gao, D.; Wang, L.; Sun, H.; Fan, J.; Wu, W. Malic enzyme 1 induces epithelial–mesenchymal transition and indicates poor prognosis in hepatocellular carcinoma. Tumour Biol., 2015, 36(8), 6211-6221. doi: 10.1007/s13277-015-3306-5 PMID: 25753478
  38. Liao, J.; Li, J.Z.; Xu, J.; Xu, Y.; Wen, W.P.; Zheng, L.; Li, L. High S100A9+ cell density predicts a poor prognosis in hepatocellular carcinoma patients after curative resection. Aging, 2021, 13(12), 16367-16380. doi: 10.18632/aging.203162 PMID: 34157683
  39. Zhong, C.; Niu, Y.; Liu, W.; Yuan, Y.; Li, K.; Shi, Y.; Qiu, Z.; Li, K.; Lin, Z.; Huang, Z.; Zuo, D.; Yang, Z.; Liao, Y.; Zhang, Y.; Wang, C.; Qiu, J.; He, W.; Yuan, Y.; Li, B. S100A9 derived from chemoembolization-induced hypoxia governs mitochondrial function in hepatocellular carcinoma progression. Adv. Sci., 2022, 9(30), 2202206. doi: 10.1002/advs.202202206 PMID: 36041055
  40. Yang, Y.; Zheng, J.; Wang, M.; Zhang, J.; Tian, T.; Wang, Z.; Yuan, S.; Liu, L.; Zhu, P.; Gu, F.; Fu, S.; Shan, Y.; Pan, Z.; Zhou, W. Retracted: NQO1 promotes an aggressive phenotype in hepatocellular carcinoma via amplifying ERK-NRF2 signaling. Cancer Sci., 2021, 112(2), 641-654. doi: 10.1111/cas.14744 PMID: 33222332
  41. Sharma, A.; Rajappa, M.; Saxena, A.; Sharma, M. Antioxidant status in advanced cervical cancer patients undergoing neoadjuvant chemoradiation. Br. J. Biomed. Sci., 2007, 64(1), 23-27. doi: 10.1080/09674845.2007.11732751 PMID: 17444415
  42. Jelic, M.; Mandic, A.; Maricic, S.; Srdjenovic, B. Oxidative stress and its role in cancer. J. Cancer Res. Ther., 2021, 17(1), 22-28. doi: 10.4103/jcrt.JCRT_862_16 PMID: 33723127
  43. Gabbia, D.; Cannella, L.; De Martin, S. The role of oxidative stress in NAFLD-NASH-HCC transition-focus on nadph oxidases. Biomedicines, 2021, 9(6), 687. doi: 10.3390/biomedicines9060687 PMID: 34204571
  44. Yang, Y.; Karsli-Uzunbas, G.; Poillet-Perez, L.; Sawant, A.; Hu, Z.S.; Zhao, Y.; Moore, D.; Hu, W.; White, E. Autophagy promotes mammalian survival by suppressing oxidative stress and p53. Genes Dev., 2020, 34(9-10), 688-700. doi: 10.1101/gad.335570.119 PMID: 32193353

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers