Recent Advances on the Antimicrobial Activities of Schiff Bases and their Metal Complexes: An Updated Overview


Cite item

Full Text

Abstract

Schiff bases represent a valuable class of organic compounds, synthesized via condensation of primary amines with ketones or aldehydes. They are renowned for possessing innumerable applications in agricultural chemistry, organic synthesis, chemical and biological sensing, coating, polymer and resin industries, catalysis, coordination chemistry, and drug designing. Schiff bases contain imine or azomethine (-C=N-) functional groups which are important pharmacophores for the design and synthesis of lead bioactive compounds. In medicinal chemistry, Schiff bases have attracted immense attention due to their diverse biological activities. This review aims to encompass the recent developments on the antimicrobial activities of Schiff bases. The article summarizes the antibacterial, antifungal, antiviral, antimalarial, and antileishmanial activities of Schiff bases reported since 2011.

About the authors

Juliana Jorge

Instituto de Química,, Universidade Federal do Mato Grosso do Sul

Email: info@benthamscience.net

Kristiane Del Pino Santos

Instituto de Química, Universidade Federal do Mato Grosso do Sul,

Email: info@benthamscience.net

Fernanda Timóteo

Instituto de Química,, Universidade Federal do Mato Grosso do Sul

Email: info@benthamscience.net

Rafael Rodrigo Piva Vasconcelos

Instituto de Química, Universidade Federal do Mato Grosso do Sul

Email: info@benthamscience.net

Osmar Ignacio Ayala Cáceres

Instituto de Química,, Universidade Federal do Mato Grosso do Sul

Email: info@benthamscience.net

Isis Juliane Arantes Granja

Instituto de Química,, Universidade Federal de Goiás - UFG

Email: info@benthamscience.net

David de Souza

Instituto de Química,, Universidade Federal do Mato Grosso do Sul

Email: info@benthamscience.net

Tiago Elias Allievi Frizon

Department of Energy and Sustainability, Universidade Federal de Santa Catarina - UFSC

Email: info@benthamscience.net

Giancarlo Di Vaccari Botteselle

Departamento de Química,, Universidade Estadual do Centro-Oeste - UNICENTRO

Email: info@benthamscience.net

Antonio Luiz Braga

Departamento de Química, Universidade Federal de Santa Catarina,

Email: info@benthamscience.net

Sumbal Saba

Instituto de Química,, Universidade Federal de Goiás - UFG

Author for correspondence.
Email: info@benthamscience.net

Haroon Rashid

Instituto de Química,, Universidade Federal do Mato Grosso do Sul

Author for correspondence.
Email: info@benthamscience.net

Jamal Rafique

Instituto de Química, Universidade Federal do Mato Grosso do Sul

Author for correspondence.
Email: info@benthamscience.net

References

  1. Golbedaghi, R.; Tabanez, A.M.; Esmaeili, S.; Fausto, R. Biological applications of macrocyclic schiff base ligands and their metal complexes: A survey of the literature (2005-2019). Appl. Organomet. Chem., 2020, 34(10), 1-33. doi: 10.1002/aoc.5884
  2. More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem., 2019, 14, 100195. doi: 10.1016/j.mtchem.2019.100195 PMID: 32289101
  3. Rauf, A. Synthesis, pH dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2017, 176, 155-167.
  4. Zhang, J.; Xu, L.; Wong, W.Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev., 2018, 355, 180-198. doi: 10.1016/j.ccr.2017.08.007
  5. da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, . Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8. doi: 10.1016/j.jare.2010.05.004
  6. Tsantis, S.T.; Tzimopoulos, D.I. Holyńska, M.; Perlepes, S.P. Oligonuclear actinoid complexes with schiff bases as ligands—older achievements and recent progress. Int. J. Mol. Sci., 2020, 21(2), 555. doi: 10.3390/ijms21020555 PMID: 31952278
  7. Fabbrizzi, L. Beauty in chemistry: Making artistic molecules with Schiff bases. J. Org. Chem., 2020, 85(19), 12212-12226. doi: 10.1021/acs.joc.0c01420 PMID: 32864964
  8. Sharma, J.; Dogra, P.; Sharma, N. Applications of coordination compounds having schiff bases: A review. AIP Conf. Proc., 2019, 2142, 060002.
  9. Berhanu, A.L. Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K-H. A review of the applications of Schiff bases as optical chemical sensors. Trends Analyt. Chem., 2019, 116, 74-91. doi: 10.1016/j.trac.2019.04.025
  10. Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev., 2018, 370, 42-54. doi: 10.1016/j.ccr.2018.05.012
  11. Golbedaghi, R.; Fausto, R. Coordination aspects in Schiff bases cocrystals. Polyhedron, 2018, 155, 1-12. doi: 10.1016/j.poly.2018.06.049
  12. Mahadevi, P.; Sumathi, S. Mini review on the performance of Schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synth. Commun., 2020, 50(15), 2237-2249. doi: 10.1080/00397911.2020.1748200
  13. Yin, N.; Diao, H.; Liu, W.; Wang, J.; Feng, L. Preparation, regulation and biological application of a Schiff base fluorescence probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 1-5. doi: 10.1016/j.saa.2015.07.107 PMID: 26282317
  14. Udhayakumari, D.; Inbaraj, V. A review on schiff base fluorescent chemosensors for cell imaging applications. J. Fluoresc., 2020, 30(5), 1203-1223. doi: 10.1007/s10895-020-02570-7 PMID: 32737660
  15. Xin, Y.; Yuan, J. Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem., 2012, 3(11), 3045-3055. doi: 10.1039/c2py20290e
  16. Liu, T.T.; Tseng, Y.W.; Yang, T.S. Functionalities of conjugated compounds of γ-aminobutyric acid with salicylaldehyde or cinnamaldehyde. Food Chem., 2016, 190, 1102-1108. doi: 10.1016/j.foodchem.2015.06.077 PMID: 26213082
  17. Gao, W.W.; Gopala, L.; Bheemanaboina, R.R.Y.; Zhang, G.B.; Li, S.; Zhou, C.H. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur. J. Med. Chem., 2018, 146, 15-37. doi: 10.1016/j.ejmech.2018.01.038 PMID: 29396362
  18. Patel, D.; Kumari, P.; Patel, N. Synthesis and biological evaluation of some thiazolidinones as antimicrobial agents. Eur. J. Med. Chem., 2012, 48, 354-362. doi: 10.1016/j.ejmech.2011.11.041 PMID: 22182927
  19. Mahyavanshi, V.; Marjadi, S.I.; Yadav, R. Synthesis and pharmacological studies of 1-(2-amino-1-(4-methoxyphenyl) ethyl) cyclohexanol analogs as potential microbial agents. Arab. J. Chem., 2017, 10, S804-S813. doi: 10.1016/j.arabjc.2012.12.009
  20. Panigrahi, A.; Are, V.N.; Jain, S.; Nayak, D.; Giri, S.; Sarma, T.K. Cationic organic nanoaggregates as aie luminogens for wash-free imaging of bacteria and broad-spectrum antimicrobial application. ACS Appl. Mater. Interfaces, 2020, 12(5), 5389-5402. doi: 10.1021/acsami.9b15629 PMID: 31931570
  21. Yadav, P.; Poddar, D.; Jain, P.; Singh, A.; Sarkar, A. Chemistry of schiff base synthesis and their applications: a greener approach. In: Applications of Biodegradable and Bio-Based Polymers for Human Health and a Cleaner Environment; Stoica, I.; Mukbaniani, O.; Rawat, N.K.; Hagi, A.K., Eds.; Apple Academic Press: USA, 2021. doi: 10.1201/9781003146360-20
  22. Bhatti, M.P.; Sagir, M.; Naz, M.Y. Novel Schiff Bases Transition Metal Complexes; Scholars' Press: India, 2014.
  23. Akitsu, T. Schiff base in Organic, Inorganic and Physical Chemistry Akitsu, T., Ed.; Interopen UK, 2022.
  24. Sahu, S.; Bharti, S.K.; Prasad, J. Synthesis and Biological Evaluation of some Novel Schiff bases Scholars. Press: India, 2021.
  25. Patil, M.K.; Masand, V.H.; Maldhure, A.K. Schiff base metal complexes precursor for metal oxide nanomaterials: A review. Curr. Nanosci., 2021, 17(4), 634-645. doi: 10.2174/1573413716999201127112204
  26. Pervaiz, M.; Munir, A.; Riaz, A.; Saeed, Z.; Younas, U.; Imran, M.; Ullah, S.; Bashir, R.; Rashid, A.; Adnan, A. Review article-Amalgamation, scrutinizing, and biological evaluation of the antimicrobial aptitude of thiosemicarbazide Schiff bases derivatives metal complexes. Inorg. Chem. Commun., 2022, 141, 109459. doi: 10.1016/j.inoche.2022.109459
  27. Aggarwal, N.; Maji, S. Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic - a review. Rev. Inorg. Chem., 2022, 42(4), 363-383. doi: 10.1515/revic-2021-0027
  28. Mathur, G.; Sharma, P.K.; Nain, S. A review on isatin metal complexes derived from schiff bases. Curr. Bioact. Compd., 2018, 14(3), 211-216. doi: 10.2174/1573407213666170221154354
  29. Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different schiff bases—structure, importance and classification. Molecules, 2022, 27(3), 787. doi: 10.3390/molecules27030787 PMID: 35164049
  30. Nair, S. Schiff base ligands: Synthesis and characterization ScholarsPress: India , 2019.
  31. Soroceanu, A.; Bargan, A. Advanced and biomedical applications of schiff-base ligands and their metal complexes: A review. Crystals, 2022, 12(10), 1436. doi: 10.3390/cryst12101436
  32. Galant, L.S.; Rafique, J.; Braga, A.L.; Braga, F.C.; Saba, S.; Radi, R.; da Rocha, J.B.T.; Santi, C.; Monsalve, M.; Farina, M.; de Bem, A.F. The thiol-modifier effects of organoselenium compounds and their cytoprotective actions in neuronal cells. Neurochem. Res., 2021, 46(1), 120-130. doi: 10.1007/s11064-020-03026-x PMID: 32285377
  33. Godoi, M.; Botteselle, G.V.; Rafique, J.; Rocha, M.S.T.; Pena, J.M.; Braga, A.L. Solvent-free fmoc protection of amines under microwave irradiation. Asian J. Org. Chem., 2013, 2(9), 746-749. doi: 10.1002/ajoc.201300092
  34. Rafique, J.; Farias, G.; Saba, S.; Zapp, E.; Casagrande, I.B.; Salla, C.A.M.; Bechtold, I.H.; Scheide, M.R.; Neto, J.S.S.; Souza, D.M., Jr; Braga, H.C.; Ribeiro, L.F.B.; Gastaldon, F.; Pich, C.T.; Frizon, T.E.A. Selenylated-oxadiazoles as promising DNA intercalators: Synthesis, electronic structure, DNA interaction and cleavage. Dyes Pigm., 2020, 180, 108519. doi: 10.16/j.dyepig.2020.108519 PMID: 32382200
  35. Saba, S.; Dos Santos, C.R.; Zavarise, B.R.; Naujorks, A.A.S.; Franco, M.S.; Schneider, A.R.; Scheide, M.R.; Affeldt, R.F.; Rafique, J.; Braga, A.L. Photoinduced, direct C(sp2)−H bond azo coupling of imidazoheteroarenes and imidazoanilines with aryl diazonium salts catalyzed by Eosin Y. Chemistry, 2020, 26(20), 4461-4466. doi: 10.1002/chem.201905308 PMID: 31816129
  36. Santos, D.C.; Rafique, J.; Saba, S.; Almeida, G.M.; Siminski, T.; Pádua, C.; Filho, D.W.; Zamoner, A.; Braga, A.L.; Pedrosa, R.C.; Ourique, F. Apoptosis oxidative damage-mediated and antiproliferative effect of selenylated imidazo1,2-apyridines on hepatocellular carcinoma HepG2 cells and in vivo. J. Biochem. Mol. Toxicol., 2021, 35(3), e22663. doi: 10.1002/jbt.22663 PMID: 33125183
  37. Peterle, M.M.; Scheide, M.R.; Silva, L.T.; Saba, S.; Rafique, J.; Braga, A.L. Copper-catalyzed three-component reaction of oxadiazoles, elemental Se/S and aryl iodides: Synthesis of chalcogenyl (Se/S)-oxadiazoles. ChemistrySelect, 2018, 3(46), 13191-13196. doi: 10.1002/slct.201801213
  38. Veloso, I.C.; Delanogare, E.; Machado, A.E.; Braga, S.P.; Rosa, G.K.; De Bem, A.F.; Rafique, J.; Saba, S.; da Trindade, R.N.; Galetto, F.Z.; Moreira, E.L.G. A selanylimidazopyridine (3-SePh-IP) reverses the prodepressant- and anxiogenic-like effects of a high-fat/high-fructose diet in mice. J. Pharm. Pharmacol., 2021, 73(5), 673-681. doi: 10.1093/jpp/rgaa070 PMID: 33772293
  39. Tornquist, B.L.; de Paula Bueno, G.; Manzano Willig, J.C.; de Oliveira, I.M.; Stefani, H.A.; Rafique, J.; Saba, S.; Almeida Iglesias, B.; Botteselle, G.V.; Manarin, F. Ytterbium (III) triflate/sodium dodecyl sulfate: A versatile recyclable and water-tolerant catalyst for the synthesis of bis(indolyl)methanes (BIMs). ChemistrySelect, 2018, 3(23), 6358-6363. doi: 10.1002/slct.201800673
  40. Frizon, T.E.A.; Vieira, A.A.; da Silva, F.N.; Saba, S.; Farias, G.; de Souza, B.; Zapp, E.; Lôpo, M.N.; Braga, H.C.; Grillo, F.; Curcio, S.F.; Cazati, T.; Rafique, J. Synthesis of 2,1,3-benzoxadiazole derivatives as new fluorophores—combined experimental, optical, electro, and theoretical study. Front Chem., 2020, 8, 360. doi: 10.3389/fchem.2020.00360 PMID: 32478032
  41. Frizon, T.E.A.; Cararo, J.H.; Saba, S.; Dal-Pont, G.C.; Michels, M.; Braga, H.C.; Pimentel, T.; Dal-Pizzol, F.; Valvassori, S.S.; Rafique, J. Synthesis of novel selenocyanates and evaluation of their effect in cultured mouse neurons submitted to oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 1-10. doi: 10.1155/2020/5417024 PMID: 33093936
  42. World Malaria Report. 2021. (Licence: CC BY-NC-SA 3.0 IGO, 2021).
  43. Fonkui, T.Y.; Ikhile, M.I.; Njobeh, P.B.; Ndinteh, D.T. Benzimidazole Schiff base derivatives: Synthesis, characterization and antimicrobial activity. BMC Chem., 2019, 13(1), 127. doi: 10.1186/s13065-019-0642-3 PMID: 31728454
  44. Okwor, I.; Uzonna, J. Social and economic burden of human leishmaniasis. Am. J. Trop. Med. Hyg., 2016, 94(3), 489-493. doi: 10.4269/ajtmh.15-0408 PMID: 26787156
  45. Faheem, K.K.B. ChandraSekhar, K. V. G., Adinarayana, N. & Murugesan, S. Recent evolution on syntesis strategies and anti-leishmanial activity of β-carboline derivatives - An update. Heilyon, 2020, 6, e04916. doi: 10.1016/j.heliyon.2020.e04916
  46. Chander, S.; Ashok, P.; Reguera, R.M.; Perez-Pertejo, M.Y.; Carbajo-Andres, R.; Balana-Fouce, R.; Gowri Chandra Sekhar, K.V.; Sankaranarayanan, M. Synthesis and activity of benzopiperidine, benzopyridine and phenyl piperazine based compounds against Leishmania infantum. Exp. Parasitol., 2018, 189, 49-60. doi: 10.1016/j.exppara.2018.04.017 PMID: 29702355
  47. Direkel, Ş Ünver, Y.; Akdemir, C. Antileishmanial activity of new synthesized schiff and mannich (morpholine) base compounds. Turkiye Parazitol. Derg., 2020, 44(4), 216-220. doi: 10.4274/tpd.galenos.2020.6900 PMID: 33269563
  48. Granato, J.D.T.; dos Santos, J.A.; Calixto, S.L.; Prado da Silva, N.; da Silva Martins, J.; da Silva, A.D.; Coimbra, E.S. Novel steroid derivatives: Synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomed. Pharmacother., 2018, 106, 1082-1090. doi: 10.1016/j.biopha.2018.07.056 PMID: 30119174
  49. Khattab, S.N.; Haiba, N.S.; Asal, A.M.; Bekhit, A.A.; Guemei, A.A.; Amer, A.; El-Faham, A. Study of antileishmanial activity of 2-aminobenzoyl amino acid hydrazides and their quinazoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(4), 918-921. doi: 10.1016/j.bmcl.2017.01.003 PMID: 28087274
  50. Mangwegape, D.K.; Zuma, N.H.; Aucamp, J.; N’Da, D.D. Synthesis and in vitro antileishmanial efficacy of novel benzothiadiazine-1,1-dioxide derivatives. Arch. Pharm. (Weinheim), 2021, 354(5), 2000280. doi: 10.1002/ardp.202000280 PMID: 33491807
  51. Taha, M.; Sain, A.A.; Ali, M.; Anouar, E.H.; Rahim, F.; Ismail, N.H.; Adenan, M.I.; Imran, S.; Al-Harrasi, A.; Nawaz, F.; Iqbal, N.; Khan, K.M. Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorg. Chem., 2020, 99, 103819. doi: 10.1016/j.bioorg.2020.103819 PMID: 32325334
  52. Ünver, Y.; Tuluk, M.; Kahriman, N.; Emirik, M. Bektaş, E.; Direkel, Ş. New chalcone derivatives with schiff base-thiophene: Synthesis, biological activity, and molecular docking studies. Russ. J. Gen. Chem., 2019, 89(4), 794-799. doi: 10.1134/S107036321904025X
  53. Ünver, Y.; Ünlüer, D. Dı̇ rekel, Ş.; Durdaği, S. Bis benzothiophene Schiff bases: Synthesis and in silico-guided biological activity studies. Turk. J. Chem., 2020, 44(4), 1164-1176. doi: 10.3906/kim-2004-78 PMID: 33488220
  54. Süleymanoğlu, N.; Ustabaş, R.; Direkel, Ş.; Alpaslan, Y.B.; Ünver , Y. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 2017, 1150, 82-87. doi: 10.1016/j.molstruc.2017.08.075
  55. Tahir, M.; Sirajuddin, M.; Haider, A.; Ali, S.; Nadhman, A.; Rizzoli, C. Synthesis, spectroscopic characterization, crystal structure, interaction with DNA, CTAB as well as evaluation of biological potency, docking and molecular dynamics studies of N-(3,4,5-trimethoxybenzylidene)-2, 3-dimethylbenzenamine. J. Mol. Struct., 2019, 1178, 29-38. doi: 10.1016/j.molstruc.2018.10.014
  56. Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzodisothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789. doi: 10.1016/S0968-0896(03)00493-0 PMID: 14556794
  57. Maryam, M.; Tan, S.L.; Crouse, K.A.; Mohamed Tahir, M.I.; Chee, H.Y. Synthesis, characterization and evaluation of antidengue activity of enantiomeric Schiff bases derived from S-substituted dithiocarbazate. Turk. J. Chem., 2020, 44(5), 1395-1409. doi: 10.3906/kim-2006-22 PMID: 33488239
  58. Jarrahpour, A.; Sheikh, J.; Mounsi, I.E.; Juneja, H.; Hadda, T.B. Computational evaluation and experimental in vitro antibacterial, antifungal and antiviral activity of bis-Schiff bases of isatin and its derivatives. Med. Chem. Res., 2013, 22(3), 1203-1211. doi: 10.1007/s00044-012-0127-6
  59. Kumar, K.S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem., 2010, 45(11), 5474-5479. doi: 10.1016/j.ejmech.2010.07.058 PMID: 20724039
  60. Jarrahpour, A.; Khalili, D.; De Clercq, E.; Salmi, C.; Brunel, J. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 2007, 12(8), 1720-1730. doi: 10.3390/12081720 PMID: 17960083
  61. Ali, P.; Meshram, J.; Sheikh, J.; Tiwari, V.; Dongre, R.; Hadda, T.B. Predictions and correlations of structure activity relationship of some aminoantipyrine derivatives on the basis of theoretical and experimental ground. Med. Chem. Res., 2012, 21(2), 157-164. doi: 10.1007/s00044-010-9505-0
  62. Abbas, S.Y.; Farag, A.A.; Ammar, Y.A.; Atrees, A.A.; Mohamed, A.F.; El-Henawy, A.A. Synthesis, characterization, and antiviral activity of novel fluorinated isatin derivatives. Monatsh. Chem., 2013, 144(11), 1725-1733. doi: 10.1007/s00706-013-1034-3 PMID: 32214479
  63. Madni, M.; Hameed, S.; Ahmed, M.N.; Tahir, M.N.; Al-Masoudi, N.A.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26(10), 2653-2665. doi: 10.1007/s00044-017-1963-1
  64. Johnson, J.; Yardily, A. Synthesis, spectral investigation, thermal, molecular modeling and bio-molecular docking studies of a thiazole derived chalcone and its metal complexes. J. Coord. Chem., 2020, 73(11), 1712-1729. doi: 10.1080/00958972.2020.1795145
  65. Zhang, B.; Liu, Y.; Wang, Z.; Li, Y.; Wang, Q. Antiviral activity and mechanism of gossypols: Effects of the O 2 ˙- production rate and the chirality. RSC Advances, 2017, 7(17), 10266-10277. doi: 10.1039/C6RA28625A
  66. Ligon, B.L. Penicillin: its discovery and early development. Semin. Pediatr. Infect. Dis., 2004, 15(1), 52-57. doi: 10.1053/j.spid.2004.02.001 PMID: 15175995
  67. Kong, K.F.; Schneper, L.; Mathee, K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. Acta Pathol. Microbiol. Scand. Suppl., 2010, 118(1), 1-36. doi: 10.1111/j.1600-0463.2009.02563.x PMID: 20041868
  68. Majiduddin, F.K.; Materon, I.C.; Palzkill, T.G. Molecular analysis of beta-lactamase structure and function. Int. J. Med. Microbiol., 2002, 292(2), 127-137. doi: 10.1078/1438-4221-00198 PMID: 12195735
  69. Knowles, J.R. Penicillin resistance: The chemistry of. β-lactamase inhibition. Acc. Chem. Res., 1985, 18(4), 97-104. doi: 10.1021/ar00112a001
  70. Kumar, S.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Selvaraj, M.; Narasimhan, B. Synthesis, molecular docking and biological evaluation of bis-pyrimidine Schiff base derivatives. Chem. Cent. J., 2017, 11(1), 89. doi: 10.1186/s13065-017-0322-0 PMID: 29086867
  71. Duan, J.R.; Liu, H.B.; Jeyakkumar, P.; Gopala, L.; Li, S.; Geng, R.X.; Zhou, C.H. Design, synthesis and biological evaluation of novel Schiff base-bridged tetrahydroprotoberberine triazoles as a new type of potential antimicrobial agents. MedChemComm, 2017, 8(5), 907-916. doi: 10.1039/C6MD00688D PMID: 30108806
  72. Gong, H.H.; Baathulaa, K.; Lv, J.S.; Cai, G.X.; Zhou, C.H. Synthesis and biological evaluation of Schiff base-linked imidazolyl naphthalimides as novel potential anti-MRSA agents. MedChemComm, 2016, 7(5), 924-931. doi: 10.1039/C5MD00574D
  73. Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 893512.
  74. Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R. Soc. Open Sci., 2018, 5(5), 172435. doi: 10.1098/rsos.172435 PMID: 29892430
  75. Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459. doi: 10.1038/nature14098 PMID: 25561178
  76. Ng, V.; Kuehne, S.A.; Chan, W.C. Rational design and synthesis of modified teixobactin analogues: in vitro antibacterial activity against Staphylococcus aureus, Propionibacterium acnes and Pseudomonas aeruginosa. Chemistry, 2018, 24(36), 9136-9147. doi: 10.1002/chem.201801423 PMID: 29741277
  77. Amnerkar, N.D.; Bhongade, B.A.; Bhusari, K.P. Synthesis and biological evaluation of some 4-(6-substituted-1,3-benzothiazol-2-yl)amino-1,3-thiazole-2-amines and their Schiff bases. Arab. J. Chem., 2015, 8(4), 545-552. doi: 10.1016/j.arabjc.2014.11.034
  78. Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17(3), 337-344. doi: 10.1016/j.jscs.2011.10.022
  79. Mallikarjunaswamy, C.; Bhadregowda, D.G.; Mallesha, L. Synthesis of novel ( E )- N ′-(-(2-chloropyrimidin-4-yl)- N -(5-cyano-2-hydroxy-6-phenylpyrimidin-4-yl) formamidine derivatives and their antimicrobial activity. J. Saudi Chem. Soc., 2016, 20, S606-S614. doi: 10.1016/j.jscs.2013.04.005
  80. Chen, Y.; Mi, Y.; Sun, X.; Zhang, J.; Li, Q.; Ji, N.; Guo, Z. Novel inulin derivatives modified with schiff bases: Synthesis, characterization, and antifungal activity. Polymers (Basel), 2019, 11(6), 998. doi: 10.3390/polym11060998 PMID: 31167475
  81. Wei, L.; Tan, W.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Synthesis, characterization, and antifungal activity of schiff bases of inulin bearing pyridine ring. Polymers (Basel), 2019, 11(2), 371. doi: 10.3390/polym11020371 PMID: 30960355
  82. Carreño, A.; Gacitúa, M.; Páez-Hernández, D.; Polanco, R.; Preite, M.; Fuentes, J.A.; Mora, G.C.; Chávez, I.; Arratia-Pérez, R. Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond. New J. Chem., 2015, 39(10), 7822-7831. doi: 10.1039/C5NJ01469G
  83. Carreño, A.; Zúñiga, C.; Páez-Hernández, D.; Gacitúa, M.; Polanco, R.; Otero, C.; Arratia-Pérez, R.; Fuentes, J.A. Study of the structure-bioactivity relationship of three new pyridine Schiff bases: Synthesis, spectral characterization, DFT calculations and biological assays. New J. Chem., 2018, 42(11), 8851-8863. doi: 10.1039/C8NJ00390D
  84. Sabaa, M.W.; Elzanaty, A.M.; Abdel-Gawad, O.F.; Arafa, E.G. Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int. J. Biol. Macromol., 2018, 109, 1280-1291. doi: 10.1016/j.ijbiomac.2017.11.129 PMID: 29169941
  85. Anush, S.M.; Vishalakshi, B.; Kalluraya, B.; Manju, N. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. Int. J. Biol. Macromol., 2018, 119, 446-452. doi: 10.1016/j.ijbiomac.2018.07.129 PMID: 30036622

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers