Recent Advances on the Antimicrobial Activities of Schiff Bases and their Metal Complexes: An Updated Overview
- Authors: Jorge J.1, Del Pino Santos K.2, Timóteo F.1, Piva Vasconcelos R.R.3, Ignacio Ayala Cáceres O.1, Juliane Arantes Granja I.4, de Souza D.1, Allievi Frizon T.E.5, Di Vaccari Botteselle G.6, Luiz Braga A.7, Saba S.4, Rashid H.1, Rafique J.3
-
Affiliations:
- Instituto de Química,, Universidade Federal do Mato Grosso do Sul
- Instituto de Química, Universidade Federal do Mato Grosso do Sul,
- Instituto de Química, Universidade Federal do Mato Grosso do Sul
- Instituto de Química,, Universidade Federal de Goiás - UFG
- Department of Energy and Sustainability, Universidade Federal de Santa Catarina - UFSC
- Departamento de Química,, Universidade Estadual do Centro-Oeste - UNICENTRO
- Departamento de Química, Universidade Federal de Santa Catarina,
- Issue: Vol 31, No 17 (2024)
- Pages: 2330-2344
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644472
- DOI: https://doi.org/10.2174/0929867330666230224092830
- ID: 644472
Cite item
Full Text
Abstract
Schiff bases represent a valuable class of organic compounds, synthesized via condensation of primary amines with ketones or aldehydes. They are renowned for possessing innumerable applications in agricultural chemistry, organic synthesis, chemical and biological sensing, coating, polymer and resin industries, catalysis, coordination chemistry, and drug designing. Schiff bases contain imine or azomethine (-C=N-) functional groups which are important pharmacophores for the design and synthesis of lead bioactive compounds. In medicinal chemistry, Schiff bases have attracted immense attention due to their diverse biological activities. This review aims to encompass the recent developments on the antimicrobial activities of Schiff bases. The article summarizes the antibacterial, antifungal, antiviral, antimalarial, and antileishmanial activities of Schiff bases reported since 2011.
About the authors
Juliana Jorge
Instituto de Química,, Universidade Federal do Mato Grosso do Sul
Email: info@benthamscience.net
Kristiane Del Pino Santos
Instituto de Química, Universidade Federal do Mato Grosso do Sul,
Email: info@benthamscience.net
Fernanda Timóteo
Instituto de Química,, Universidade Federal do Mato Grosso do Sul
Email: info@benthamscience.net
Rafael Rodrigo Piva Vasconcelos
Instituto de Química, Universidade Federal do Mato Grosso do Sul
Email: info@benthamscience.net
Osmar Ignacio Ayala Cáceres
Instituto de Química,, Universidade Federal do Mato Grosso do Sul
Email: info@benthamscience.net
Isis Juliane Arantes Granja
Instituto de Química,, Universidade Federal de Goiás - UFG
Email: info@benthamscience.net
David de Souza
Instituto de Química,, Universidade Federal do Mato Grosso do Sul
Email: info@benthamscience.net
Tiago Elias Allievi Frizon
Department of Energy and Sustainability, Universidade Federal de Santa Catarina - UFSC
Email: info@benthamscience.net
Giancarlo Di Vaccari Botteselle
Departamento de Química,, Universidade Estadual do Centro-Oeste - UNICENTRO
Email: info@benthamscience.net
Antonio Luiz Braga
Departamento de Química, Universidade Federal de Santa Catarina,
Email: info@benthamscience.net
Sumbal Saba
Instituto de Química,, Universidade Federal de Goiás - UFG
Author for correspondence.
Email: info@benthamscience.net
Haroon Rashid
Instituto de Química,, Universidade Federal do Mato Grosso do Sul
Author for correspondence.
Email: info@benthamscience.net
Jamal Rafique
Instituto de Química, Universidade Federal do Mato Grosso do Sul
Author for correspondence.
Email: info@benthamscience.net
References
- Golbedaghi, R.; Tabanez, A.M.; Esmaeili, S.; Fausto, R. Biological applications of macrocyclic schiff base ligands and their metal complexes: A survey of the literature (2005-2019). Appl. Organomet. Chem., 2020, 34(10), 1-33. doi: 10.1002/aoc.5884
- More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem., 2019, 14, 100195. doi: 10.1016/j.mtchem.2019.100195 PMID: 32289101
- Rauf, A. Synthesis, pH dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2017, 176, 155-167.
- Zhang, J.; Xu, L.; Wong, W.Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev., 2018, 355, 180-198. doi: 10.1016/j.ccr.2017.08.007
- da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, . Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8. doi: 10.1016/j.jare.2010.05.004
- Tsantis, S.T.; Tzimopoulos, D.I. Holyńska, M.; Perlepes, S.P. Oligonuclear actinoid complexes with schiff bases as ligandsolder achievements and recent progress. Int. J. Mol. Sci., 2020, 21(2), 555. doi: 10.3390/ijms21020555 PMID: 31952278
- Fabbrizzi, L. Beauty in chemistry: Making artistic molecules with Schiff bases. J. Org. Chem., 2020, 85(19), 12212-12226. doi: 10.1021/acs.joc.0c01420 PMID: 32864964
- Sharma, J.; Dogra, P.; Sharma, N. Applications of coordination compounds having schiff bases: A review. AIP Conf. Proc., 2019, 2142, 060002.
- Berhanu, A.L. Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K-H. A review of the applications of Schiff bases as optical chemical sensors. Trends Analyt. Chem., 2019, 116, 74-91. doi: 10.1016/j.trac.2019.04.025
- Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev., 2018, 370, 42-54. doi: 10.1016/j.ccr.2018.05.012
- Golbedaghi, R.; Fausto, R. Coordination aspects in Schiff bases cocrystals. Polyhedron, 2018, 155, 1-12. doi: 10.1016/j.poly.2018.06.049
- Mahadevi, P.; Sumathi, S. Mini review on the performance of Schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synth. Commun., 2020, 50(15), 2237-2249. doi: 10.1080/00397911.2020.1748200
- Yin, N.; Diao, H.; Liu, W.; Wang, J.; Feng, L. Preparation, regulation and biological application of a Schiff base fluorescence probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 1-5. doi: 10.1016/j.saa.2015.07.107 PMID: 26282317
- Udhayakumari, D.; Inbaraj, V. A review on schiff base fluorescent chemosensors for cell imaging applications. J. Fluoresc., 2020, 30(5), 1203-1223. doi: 10.1007/s10895-020-02570-7 PMID: 32737660
- Xin, Y.; Yuan, J. Schiffs base as a stimuli-responsive linker in polymer chemistry. Polym. Chem., 2012, 3(11), 3045-3055. doi: 10.1039/c2py20290e
- Liu, T.T.; Tseng, Y.W.; Yang, T.S. Functionalities of conjugated compounds of γ-aminobutyric acid with salicylaldehyde or cinnamaldehyde. Food Chem., 2016, 190, 1102-1108. doi: 10.1016/j.foodchem.2015.06.077 PMID: 26213082
- Gao, W.W.; Gopala, L.; Bheemanaboina, R.R.Y.; Zhang, G.B.; Li, S.; Zhou, C.H. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur. J. Med. Chem., 2018, 146, 15-37. doi: 10.1016/j.ejmech.2018.01.038 PMID: 29396362
- Patel, D.; Kumari, P.; Patel, N. Synthesis and biological evaluation of some thiazolidinones as antimicrobial agents. Eur. J. Med. Chem., 2012, 48, 354-362. doi: 10.1016/j.ejmech.2011.11.041 PMID: 22182927
- Mahyavanshi, V.; Marjadi, S.I.; Yadav, R. Synthesis and pharmacological studies of 1-(2-amino-1-(4-methoxyphenyl) ethyl) cyclohexanol analogs as potential microbial agents. Arab. J. Chem., 2017, 10, S804-S813. doi: 10.1016/j.arabjc.2012.12.009
- Panigrahi, A.; Are, V.N.; Jain, S.; Nayak, D.; Giri, S.; Sarma, T.K. Cationic organic nanoaggregates as aie luminogens for wash-free imaging of bacteria and broad-spectrum antimicrobial application. ACS Appl. Mater. Interfaces, 2020, 12(5), 5389-5402. doi: 10.1021/acsami.9b15629 PMID: 31931570
- Yadav, P.; Poddar, D.; Jain, P.; Singh, A.; Sarkar, A. Chemistry of schiff base synthesis and their applications: a greener approach. In: Applications of Biodegradable and Bio-Based Polymers for Human Health and a Cleaner Environment; Stoica, I.; Mukbaniani, O.; Rawat, N.K.; Hagi, A.K., Eds.; Apple Academic Press: USA, 2021. doi: 10.1201/9781003146360-20
- Bhatti, M.P.; Sagir, M.; Naz, M.Y. Novel Schiff Bases Transition Metal Complexes; Scholars' Press: India, 2014.
- Akitsu, T. Schiff base in Organic, Inorganic and Physical Chemistry Akitsu, T., Ed.; Interopen UK, 2022.
- Sahu, S.; Bharti, S.K.; Prasad, J. Synthesis and Biological Evaluation of some Novel Schiff bases Scholars. Press: India, 2021.
- Patil, M.K.; Masand, V.H.; Maldhure, A.K. Schiff base metal complexes precursor for metal oxide nanomaterials: A review. Curr. Nanosci., 2021, 17(4), 634-645. doi: 10.2174/1573413716999201127112204
- Pervaiz, M.; Munir, A.; Riaz, A.; Saeed, Z.; Younas, U.; Imran, M.; Ullah, S.; Bashir, R.; Rashid, A.; Adnan, A. Review article-Amalgamation, scrutinizing, and biological evaluation of the antimicrobial aptitude of thiosemicarbazide Schiff bases derivatives metal complexes. Inorg. Chem. Commun., 2022, 141, 109459. doi: 10.1016/j.inoche.2022.109459
- Aggarwal, N.; Maji, S. Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic - a review. Rev. Inorg. Chem., 2022, 42(4), 363-383. doi: 10.1515/revic-2021-0027
- Mathur, G.; Sharma, P.K.; Nain, S. A review on isatin metal complexes derived from schiff bases. Curr. Bioact. Compd., 2018, 14(3), 211-216. doi: 10.2174/1573407213666170221154354
- Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different schiff basesstructure, importance and classification. Molecules, 2022, 27(3), 787. doi: 10.3390/molecules27030787 PMID: 35164049
- Nair, S. Schiff base ligands: Synthesis and characterization ScholarsPress: India , 2019.
- Soroceanu, A.; Bargan, A. Advanced and biomedical applications of schiff-base ligands and their metal complexes: A review. Crystals, 2022, 12(10), 1436. doi: 10.3390/cryst12101436
- Galant, L.S.; Rafique, J.; Braga, A.L.; Braga, F.C.; Saba, S.; Radi, R.; da Rocha, J.B.T.; Santi, C.; Monsalve, M.; Farina, M.; de Bem, A.F. The thiol-modifier effects of organoselenium compounds and their cytoprotective actions in neuronal cells. Neurochem. Res., 2021, 46(1), 120-130. doi: 10.1007/s11064-020-03026-x PMID: 32285377
- Godoi, M.; Botteselle, G.V.; Rafique, J.; Rocha, M.S.T.; Pena, J.M.; Braga, A.L. Solvent-free fmoc protection of amines under microwave irradiation. Asian J. Org. Chem., 2013, 2(9), 746-749. doi: 10.1002/ajoc.201300092
- Rafique, J.; Farias, G.; Saba, S.; Zapp, E.; Casagrande, I.B.; Salla, C.A.M.; Bechtold, I.H.; Scheide, M.R.; Neto, J.S.S.; Souza, D.M., Jr; Braga, H.C.; Ribeiro, L.F.B.; Gastaldon, F.; Pich, C.T.; Frizon, T.E.A. Selenylated-oxadiazoles as promising DNA intercalators: Synthesis, electronic structure, DNA interaction and cleavage. Dyes Pigm., 2020, 180, 108519. doi: 10.16/j.dyepig.2020.108519 PMID: 32382200
- Saba, S.; Dos Santos, C.R.; Zavarise, B.R.; Naujorks, A.A.S.; Franco, M.S.; Schneider, A.R.; Scheide, M.R.; Affeldt, R.F.; Rafique, J.; Braga, A.L. Photoinduced, direct C(sp2)−H bond azo coupling of imidazoheteroarenes and imidazoanilines with aryl diazonium salts catalyzed by Eosin Y. Chemistry, 2020, 26(20), 4461-4466. doi: 10.1002/chem.201905308 PMID: 31816129
- Santos, D.C.; Rafique, J.; Saba, S.; Almeida, G.M.; Siminski, T.; Pádua, C.; Filho, D.W.; Zamoner, A.; Braga, A.L.; Pedrosa, R.C.; Ourique, F. Apoptosis oxidative damage-mediated and antiproliferative effect of selenylated imidazo1,2-apyridines on hepatocellular carcinoma HepG2 cells and in vivo. J. Biochem. Mol. Toxicol., 2021, 35(3), e22663. doi: 10.1002/jbt.22663 PMID: 33125183
- Peterle, M.M.; Scheide, M.R.; Silva, L.T.; Saba, S.; Rafique, J.; Braga, A.L. Copper-catalyzed three-component reaction of oxadiazoles, elemental Se/S and aryl iodides: Synthesis of chalcogenyl (Se/S)-oxadiazoles. ChemistrySelect, 2018, 3(46), 13191-13196. doi: 10.1002/slct.201801213
- Veloso, I.C.; Delanogare, E.; Machado, A.E.; Braga, S.P.; Rosa, G.K.; De Bem, A.F.; Rafique, J.; Saba, S.; da Trindade, R.N.; Galetto, F.Z.; Moreira, E.L.G. A selanylimidazopyridine (3-SePh-IP) reverses the prodepressant- and anxiogenic-like effects of a high-fat/high-fructose diet in mice. J. Pharm. Pharmacol., 2021, 73(5), 673-681. doi: 10.1093/jpp/rgaa070 PMID: 33772293
- Tornquist, B.L.; de Paula Bueno, G.; Manzano Willig, J.C.; de Oliveira, I.M.; Stefani, H.A.; Rafique, J.; Saba, S.; Almeida Iglesias, B.; Botteselle, G.V.; Manarin, F. Ytterbium (III) triflate/sodium dodecyl sulfate: A versatile recyclable and water-tolerant catalyst for the synthesis of bis(indolyl)methanes (BIMs). ChemistrySelect, 2018, 3(23), 6358-6363. doi: 10.1002/slct.201800673
- Frizon, T.E.A.; Vieira, A.A.; da Silva, F.N.; Saba, S.; Farias, G.; de Souza, B.; Zapp, E.; Lôpo, M.N.; Braga, H.C.; Grillo, F.; Curcio, S.F.; Cazati, T.; Rafique, J. Synthesis of 2,1,3-benzoxadiazole derivatives as new fluorophorescombined experimental, optical, electro, and theoretical study. Front Chem., 2020, 8, 360. doi: 10.3389/fchem.2020.00360 PMID: 32478032
- Frizon, T.E.A.; Cararo, J.H.; Saba, S.; Dal-Pont, G.C.; Michels, M.; Braga, H.C.; Pimentel, T.; Dal-Pizzol, F.; Valvassori, S.S.; Rafique, J. Synthesis of novel selenocyanates and evaluation of their effect in cultured mouse neurons submitted to oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 1-10. doi: 10.1155/2020/5417024 PMID: 33093936
- World Malaria Report. 2021. (Licence: CC BY-NC-SA 3.0 IGO, 2021).
- Fonkui, T.Y.; Ikhile, M.I.; Njobeh, P.B.; Ndinteh, D.T. Benzimidazole Schiff base derivatives: Synthesis, characterization and antimicrobial activity. BMC Chem., 2019, 13(1), 127. doi: 10.1186/s13065-019-0642-3 PMID: 31728454
- Okwor, I.; Uzonna, J. Social and economic burden of human leishmaniasis. Am. J. Trop. Med. Hyg., 2016, 94(3), 489-493. doi: 10.4269/ajtmh.15-0408 PMID: 26787156
- Faheem, K.K.B. ChandraSekhar, K. V. G., Adinarayana, N. & Murugesan, S. Recent evolution on syntesis strategies and anti-leishmanial activity of β-carboline derivatives - An update. Heilyon, 2020, 6, e04916. doi: 10.1016/j.heliyon.2020.e04916
- Chander, S.; Ashok, P.; Reguera, R.M.; Perez-Pertejo, M.Y.; Carbajo-Andres, R.; Balana-Fouce, R.; Gowri Chandra Sekhar, K.V.; Sankaranarayanan, M. Synthesis and activity of benzopiperidine, benzopyridine and phenyl piperazine based compounds against Leishmania infantum. Exp. Parasitol., 2018, 189, 49-60. doi: 10.1016/j.exppara.2018.04.017 PMID: 29702355
- Direkel, Ş Ünver, Y.; Akdemir, C. Antileishmanial activity of new synthesized schiff and mannich (morpholine) base compounds. Turkiye Parazitol. Derg., 2020, 44(4), 216-220. doi: 10.4274/tpd.galenos.2020.6900 PMID: 33269563
- Granato, J.D.T.; dos Santos, J.A.; Calixto, S.L.; Prado da Silva, N.; da Silva Martins, J.; da Silva, A.D.; Coimbra, E.S. Novel steroid derivatives: Synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomed. Pharmacother., 2018, 106, 1082-1090. doi: 10.1016/j.biopha.2018.07.056 PMID: 30119174
- Khattab, S.N.; Haiba, N.S.; Asal, A.M.; Bekhit, A.A.; Guemei, A.A.; Amer, A.; El-Faham, A. Study of antileishmanial activity of 2-aminobenzoyl amino acid hydrazides and their quinazoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(4), 918-921. doi: 10.1016/j.bmcl.2017.01.003 PMID: 28087274
- Mangwegape, D.K.; Zuma, N.H.; Aucamp, J.; NDa, D.D. Synthesis and in vitro antileishmanial efficacy of novel benzothiadiazine-1,1-dioxide derivatives. Arch. Pharm. (Weinheim), 2021, 354(5), 2000280. doi: 10.1002/ardp.202000280 PMID: 33491807
- Taha, M.; Sain, A.A.; Ali, M.; Anouar, E.H.; Rahim, F.; Ismail, N.H.; Adenan, M.I.; Imran, S.; Al-Harrasi, A.; Nawaz, F.; Iqbal, N.; Khan, K.M. Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorg. Chem., 2020, 99, 103819. doi: 10.1016/j.bioorg.2020.103819 PMID: 32325334
- Ünver, Y.; Tuluk, M.; Kahriman, N.; Emirik, M. Bektaş, E.; Direkel, Ş. New chalcone derivatives with schiff base-thiophene: Synthesis, biological activity, and molecular docking studies. Russ. J. Gen. Chem., 2019, 89(4), 794-799. doi: 10.1134/S107036321904025X
- Ünver, Y.; Ünlüer, D. Dı̇ rekel, Ş.; Durdaği, S. Bis benzothiophene Schiff bases: Synthesis and in silico-guided biological activity studies. Turk. J. Chem., 2020, 44(4), 1164-1176. doi: 10.3906/kim-2004-78 PMID: 33488220
- Süleymanoğlu, N.; Ustabaş, R.; Direkel, Ş.; Alpaslan, Y.B.; Ünver , Y. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 2017, 1150, 82-87. doi: 10.1016/j.molstruc.2017.08.075
- Tahir, M.; Sirajuddin, M.; Haider, A.; Ali, S.; Nadhman, A.; Rizzoli, C. Synthesis, spectroscopic characterization, crystal structure, interaction with DNA, CTAB as well as evaluation of biological potency, docking and molecular dynamics studies of N-(3,4,5-trimethoxybenzylidene)-2, 3-dimethylbenzenamine. J. Mol. Struct., 2019, 1178, 29-38. doi: 10.1016/j.molstruc.2018.10.014
- Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzodisothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789. doi: 10.1016/S0968-0896(03)00493-0 PMID: 14556794
- Maryam, M.; Tan, S.L.; Crouse, K.A.; Mohamed Tahir, M.I.; Chee, H.Y. Synthesis, characterization and evaluation of antidengue activity of enantiomeric Schiff bases derived from S-substituted dithiocarbazate. Turk. J. Chem., 2020, 44(5), 1395-1409. doi: 10.3906/kim-2006-22 PMID: 33488239
- Jarrahpour, A.; Sheikh, J.; Mounsi, I.E.; Juneja, H.; Hadda, T.B. Computational evaluation and experimental in vitro antibacterial, antifungal and antiviral activity of bis-Schiff bases of isatin and its derivatives. Med. Chem. Res., 2013, 22(3), 1203-1211. doi: 10.1007/s00044-012-0127-6
- Kumar, K.S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem., 2010, 45(11), 5474-5479. doi: 10.1016/j.ejmech.2010.07.058 PMID: 20724039
- Jarrahpour, A.; Khalili, D.; De Clercq, E.; Salmi, C.; Brunel, J. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 2007, 12(8), 1720-1730. doi: 10.3390/12081720 PMID: 17960083
- Ali, P.; Meshram, J.; Sheikh, J.; Tiwari, V.; Dongre, R.; Hadda, T.B. Predictions and correlations of structure activity relationship of some aminoantipyrine derivatives on the basis of theoretical and experimental ground. Med. Chem. Res., 2012, 21(2), 157-164. doi: 10.1007/s00044-010-9505-0
- Abbas, S.Y.; Farag, A.A.; Ammar, Y.A.; Atrees, A.A.; Mohamed, A.F.; El-Henawy, A.A. Synthesis, characterization, and antiviral activity of novel fluorinated isatin derivatives. Monatsh. Chem., 2013, 144(11), 1725-1733. doi: 10.1007/s00706-013-1034-3 PMID: 32214479
- Madni, M.; Hameed, S.; Ahmed, M.N.; Tahir, M.N.; Al-Masoudi, N.A.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26(10), 2653-2665. doi: 10.1007/s00044-017-1963-1
- Johnson, J.; Yardily, A. Synthesis, spectral investigation, thermal, molecular modeling and bio-molecular docking studies of a thiazole derived chalcone and its metal complexes. J. Coord. Chem., 2020, 73(11), 1712-1729. doi: 10.1080/00958972.2020.1795145
- Zhang, B.; Liu, Y.; Wang, Z.; Li, Y.; Wang, Q. Antiviral activity and mechanism of gossypols: Effects of the O 2 ˙- production rate and the chirality. RSC Advances, 2017, 7(17), 10266-10277. doi: 10.1039/C6RA28625A
- Ligon, B.L. Penicillin: its discovery and early development. Semin. Pediatr. Infect. Dis., 2004, 15(1), 52-57. doi: 10.1053/j.spid.2004.02.001 PMID: 15175995
- Kong, K.F.; Schneper, L.; Mathee, K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. Acta Pathol. Microbiol. Scand. Suppl., 2010, 118(1), 1-36. doi: 10.1111/j.1600-0463.2009.02563.x PMID: 20041868
- Majiduddin, F.K.; Materon, I.C.; Palzkill, T.G. Molecular analysis of beta-lactamase structure and function. Int. J. Med. Microbiol., 2002, 292(2), 127-137. doi: 10.1078/1438-4221-00198 PMID: 12195735
- Knowles, J.R. Penicillin resistance: The chemistry of. β-lactamase inhibition. Acc. Chem. Res., 1985, 18(4), 97-104. doi: 10.1021/ar00112a001
- Kumar, S.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Selvaraj, M.; Narasimhan, B. Synthesis, molecular docking and biological evaluation of bis-pyrimidine Schiff base derivatives. Chem. Cent. J., 2017, 11(1), 89. doi: 10.1186/s13065-017-0322-0 PMID: 29086867
- Duan, J.R.; Liu, H.B.; Jeyakkumar, P.; Gopala, L.; Li, S.; Geng, R.X.; Zhou, C.H. Design, synthesis and biological evaluation of novel Schiff base-bridged tetrahydroprotoberberine triazoles as a new type of potential antimicrobial agents. MedChemComm, 2017, 8(5), 907-916. doi: 10.1039/C6MD00688D PMID: 30108806
- Gong, H.H.; Baathulaa, K.; Lv, J.S.; Cai, G.X.; Zhou, C.H. Synthesis and biological evaluation of Schiff base-linked imidazolyl naphthalimides as novel potential anti-MRSA agents. MedChemComm, 2016, 7(5), 924-931. doi: 10.1039/C5MD00574D
- Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 893512.
- Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R. Soc. Open Sci., 2018, 5(5), 172435. doi: 10.1098/rsos.172435 PMID: 29892430
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459. doi: 10.1038/nature14098 PMID: 25561178
- Ng, V.; Kuehne, S.A.; Chan, W.C. Rational design and synthesis of modified teixobactin analogues: in vitro antibacterial activity against Staphylococcus aureus, Propionibacterium acnes and Pseudomonas aeruginosa. Chemistry, 2018, 24(36), 9136-9147. doi: 10.1002/chem.201801423 PMID: 29741277
- Amnerkar, N.D.; Bhongade, B.A.; Bhusari, K.P. Synthesis and biological evaluation of some 4-(6-substituted-1,3-benzothiazol-2-yl)amino-1,3-thiazole-2-amines and their Schiff bases. Arab. J. Chem., 2015, 8(4), 545-552. doi: 10.1016/j.arabjc.2014.11.034
- Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17(3), 337-344. doi: 10.1016/j.jscs.2011.10.022
- Mallikarjunaswamy, C.; Bhadregowda, D.G.; Mallesha, L. Synthesis of novel ( E )- N ′-(-(2-chloropyrimidin-4-yl)- N -(5-cyano-2-hydroxy-6-phenylpyrimidin-4-yl) formamidine derivatives and their antimicrobial activity. J. Saudi Chem. Soc., 2016, 20, S606-S614. doi: 10.1016/j.jscs.2013.04.005
- Chen, Y.; Mi, Y.; Sun, X.; Zhang, J.; Li, Q.; Ji, N.; Guo, Z. Novel inulin derivatives modified with schiff bases: Synthesis, characterization, and antifungal activity. Polymers (Basel), 2019, 11(6), 998. doi: 10.3390/polym11060998 PMID: 31167475
- Wei, L.; Tan, W.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Synthesis, characterization, and antifungal activity of schiff bases of inulin bearing pyridine ring. Polymers (Basel), 2019, 11(2), 371. doi: 10.3390/polym11020371 PMID: 30960355
- Carreño, A.; Gacitúa, M.; Páez-Hernández, D.; Polanco, R.; Preite, M.; Fuentes, J.A.; Mora, G.C.; Chávez, I.; Arratia-Pérez, R. Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond. New J. Chem., 2015, 39(10), 7822-7831. doi: 10.1039/C5NJ01469G
- Carreño, A.; Zúñiga, C.; Páez-Hernández, D.; Gacitúa, M.; Polanco, R.; Otero, C.; Arratia-Pérez, R.; Fuentes, J.A. Study of the structure-bioactivity relationship of three new pyridine Schiff bases: Synthesis, spectral characterization, DFT calculations and biological assays. New J. Chem., 2018, 42(11), 8851-8863. doi: 10.1039/C8NJ00390D
- Sabaa, M.W.; Elzanaty, A.M.; Abdel-Gawad, O.F.; Arafa, E.G. Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int. J. Biol. Macromol., 2018, 109, 1280-1291. doi: 10.1016/j.ijbiomac.2017.11.129 PMID: 29169941
- Anush, S.M.; Vishalakshi, B.; Kalluraya, B.; Manju, N. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. Int. J. Biol. Macromol., 2018, 119, 446-452. doi: 10.1016/j.ijbiomac.2018.07.129 PMID: 30036622
Supplementary files
