Drug Discovery Efforts to Identify Novel Treatments for Neglected Tropical Diseases - Cysteine Protease Inhibitors
- Authors: Giroud M.1, Kuhn B.1, Haap W.1
-
Affiliations:
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd.
- Issue: Vol 31, No 16 (2024)
- Pages: 2170-2194
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644440
- DOI: https://doi.org/10.2174/0109298673249097231017051733
- ID: 644440
Cite item
Full Text
Abstract
Background:Neglected tropical diseases are a severe burden for mankind, affecting an increasing number of people around the globe. Many of those diseases are caused by protozoan parasites in which cysteine proteases play a key role in the parasites pathogenesis.
Objective:In this review article, we summarize the drug discovery efforts of the research community from 2017 - 2022 with a special focus on the optimization of small molecule cysteine protease inhibitors in terms of selectivity profiles or drug-like properties as well as in vivo studies. The cysteine proteases evaluated by this methodology include Cathepsin B1 from Schistosoma mansoni, papain, cruzain, falcipain, and rhodesain.
Methods:Exhaustive literature searches were performed using the keywords "Cysteine Proteases" and "Neglected Tropical Diseases" including the years 2017 - 2022. Overall, approximately 3000 scientific papers were retrieved, which were filtered using specific keywords enabling the focus on drug discovery efforts.
Results and Conclusion:Potent and selective cysteine protease inhibitors to treat neglected tropical diseases were identified, which progressed to pharmacokinetic and in vivo efficacy studies. As far as the authors are aware of, none of those inhibitors reached the stage of active clinical development. Either the inhibitors potency or pharmacokinetic properties or safety profile or a combination thereof prevented further development of the compounds. More efforts with particular emphasis on optimizing pharmacokinetic and safety properties are needed, potentially by collaborations of academic and industrial research groups with complementary expertise. Furthermore, new warheads reacting with the catalytic cysteine should be exploited to advance the research field in order to make a meaningful impact on society.
Keywords
About the authors
Maude Giroud
Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd.
Email: info@benthamscience.net
Bernd Kuhn
Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd.
Email: info@benthamscience.net
Wolfgang Haap
Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd.
Author for correspondence.
Email: info@benthamscience.net
References
- Neglected tropical diseases. Available from: https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases (Accessed on: 2023- 02-01).
- Mora, C.; McKenzie, T.; Gaw, I.M.; Dean, J.M.; von Hammerstein, H.; Knudson, T.A.; Setter, R.O.; Smith, C.Z.; Webster, K.M.; Patz, J.A.; Franklin, E.C. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Chang., 2022, 12(9), 869-875. doi: 10.1038/s41558-022-01426-1 PMID: 35968032
- Al-Delaimy, A.K. The prospective effects of climate change on neglected tropical diseases in the eastern mediterranean region: A review. Curr. Environ. Health Rep., 2022, 9(2), 315-323. doi: 10.1007/s40572-022-00339-7 PMID: 35286599
- Ending the neglect to attain the sustainable development goals: A road map for neglected tropical diseases 20212030. Available from: https://www.who.int/publications-detail-redirect/9789240010352 (Accessed on: 2023-02-01).
- Sustainable Development Goals ⋅ United Nations Development Programme. UNDP. Available from: https://www.undp.org/sustainable-development-goals (Accessed on: 2023-02-01).
- Siqueira-Neto, J.L.; Debnath, A.; McCall, L.I.; Bernatchez, J.A.; Ndao, M.; Reed, S.L.; Rosenthal, P.J. Cysteine proteases in protozoan parasites. PLoS Negl. Trop. Dis., 2018, 12(8), e0006512. doi: 10.1371/journal.pntd.0006512 PMID: 30138453
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res., 2018, 46(D1), D624-D632. doi: 10.1093/nar/gkx1134 PMID: 29145643
- Jílková, A.; Horn, M.; Mare, M. Structural and functional characterization of schistosoma mansoni cathepsin B1. In: Methods in Molecular Biology; Humana Press Inc., 2020; pp. 145-158. doi: 10.1007/978-1-0716-0635-3_12
- Caffrey, C.R.; Salter, J.P.; Lucas, K.D.; Khiem, D.; Hsieh, I.; Lim, K.C.; Ruppel, A.; McKerrow, J.H.; Sajid, M. SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol. Biochem. Parasitol., 2002, 121(1), 49-61. doi: 10.1016/S0166-6851(02)00022-1 PMID: 11985862
- Sajid, M.; McKerrow, J.H.; Hansell, E.; Mathieu, M.A.; Lucas, K.D.; Hsieh, I.; Greenbaum, D.; Bogyo, M.; Salter, J.P.; Lim, K.C.; Franklin, C.; Kim, J-H.; Caffrey, C.R. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol., 2003, 131(1), 65-75. doi: 10.1016/S0166-6851(03)00194-4 PMID: 12967713
- Jílková, A.; Řezáčová, P.; Lepík, M.; Horn, M.; Váchová, J.; Fanfrlík, J.; Brynda, J.; McKerrow, J.H.; Caffrey, C.R.; Mare, M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem., 2011, 286(41), 35770-35781. doi: 10.1074/jbc.M111.271304 PMID: 21832058
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet, 2014, 383(9936), 2253-2264. doi: 10.1016/S0140-6736(13)61949-2 PMID: 24698483
- Caffrey, C.R. Chemotherapy of schistosomiasis: Present and future. Curr. Opin. Chem. Biol., 2007, 11(4), 433-439. doi: 10.1016/j.cbpa.2007.05.031 PMID: 17652008
- Caffrey, C.R.; Secor, W.E. Schistosomiasis. Curr. Opin. Infect. Dis., 2011, 24(5), 410-417. doi: 10.1097/QCO.0b013e328349156f PMID: 21734570
- Thétiot-Laurent, S.A.L.; Boissier, J.; Robert, A.; Meunier, B. Schistosomiasis chemotherapy. Angew. Chem. Int. Ed., 2013, 52(31), 7936-7956. doi: 10.1002/anie.201208390 PMID: 23813602
- Caffrey, C.R.; El-Sakkary, N.; Mäder, P.; Krieg, R.; Becker, K.; Schlitzer, M.; Drewry, D.H.; Vennerstrom, J.L.; Grevelding, C.G. Drug discovery and development for schistosomiasis. In: Neglected Tropical Diseases; John Wiley & Sons, Ltd, 2019; pp. 187-225. doi: 10.1002/9783527808656.ch8
- Abdulla, M.H.; Lim, K.C.; Sajid, M.; McKerrow, J.H.; Caffrey, C.R. Schistosomiasis mansoni: Novel chemotherapy using a cysteine protease inhibitor. PLoS Med., 2007, 4(1), e14. doi: 10.1371/journal.pmed.0040014 PMID: 17214506
- Horn, M.; Jílková, A.; Vondráek, J.; Mareová, L.; Caffrey, C.R.; Mare, M. Mapping the pro-peptide of the Schistosoma mansoni cathepsin B1 drug target: modulation of inhibition by heparin and design of mimetic inhibitors. ACS Chem. Biol., 2011, 6(6), 609-617. doi: 10.1021/cb100411v PMID: 21375333
- Jílková, A.; Horn, M.; Řezáčová, P.; Mareová, L.; Fajtová, P.; Brynda, J.; Vondráek, J.; McKerrow, J.H.; Caffrey, C.R.; Mare, M. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure, 2014, 22(12), 1786-1798. doi: 10.1016/j.str.2014.09.015 PMID: 25456815
- Jílková, A.; Horn, M.; Fanfrlík, J.; Küppers, J.; Pachl, P.; Řezáčová, P.; Lepík, M.; Fajtová, P.; Rubeová, P.; Chanová, M.; Caffrey, C.R.; Gütschow, M.; Mare, M. Azanitrile inhibitors of the SmCB1 protease target are lethal to Schistosoma mansoni: Structural and mechanistic insights into chemotype reactivity. ACS Infect. Dis., 2021, 7(1), 189-201. doi: 10.1021/acsinfecdis.0c00644 PMID: 33301315
- Jílková, A.; Rubeová, P.; Fanfrlík, J.; Fajtová, P.; Řezáčová, P.; Brynda, J.; Lepík, M.; Mertlíková-Kaiserová, H.; Emal, C.D.; Renslo, A.R.; Roush, W.R.; Horn, M.; Caffrey, C.R.; Mare, M. Druggable hot spots in the schistosomiasis cathepsin B1 target identified by functional and binding mode analysis of potent vinyl sulfone inhibitors. ACS Infect. Dis., 2021, 7(5), 1077-1088. doi: 10.1021/acsinfecdis.0c00501 PMID: 33175511
- Ward, D.J.; Van de Langemheen, H.; Koehne, E.; Kreidenweiss, A.; Liskamp, R.M.J. Highly tunable thiosulfonates as a novel class of cysteine protease inhibitors with anti- parasitic activity against Schistosoma mansoni. Bioorg. Med. Chem., 2019, 27(13), 2857-2870. doi: 10.1016/j.bmc.2019.05.014 PMID: 31126821
- Nakamura, Y.K.; Matsuo, T.; Shimoi, K.; Nakamura, Y.; Tomita, I. S-methyl methanethiosulfonate, bio-antimutagen in homogenates of Cruciferae and Liliaceae vegetables. Biosci. Biotechnol. Biochem., 1996, 60(9), 1439-1443. doi: 10.1271/bbb.60.1439 PMID: 8987591
- Rodríguez-Romero, A.; Hernández-Santoyo, A.; del Pozo Yauner, L.; Kornhauser, A.; Fernández-Velasco, D.A. Structure and inactivation of triosephosphate isomerase from Entamoeba histolytica. J. Mol. Biol., 2002, 322(4), 669-675. doi: 10.1016/S0022-2836(02)00809-4 PMID: 12270704
- Millian, N.S.; Garrow, T.A. Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch. Biochem. Biophys., 1998, 356(1), 93-98. doi: 10.1006/abbi.1998.0757 PMID: 9681996
- Lowther, W.T.; Brot, N.; Weissbach, H.; Honek, J.F.; Matthews, B.W. Thioldisulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. Proc. Natl. Acad. Sci., 2000, 97(12), 6463-6468. doi: 10.1073/pnas.97.12.6463 PMID: 10841552
- Chagas disease. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (Accessed on: 2023-02-01).
- Chagas disease - PAHO/WHO ⋅ Pan American Health Organization. Available from: https://www.paho.org/en/topics/chagas-disease (Accessed on: 2023-02-01).
- Symptoms, transmission, and current treatments for Chagas disease ⋅ DNDi. Available from: https://dndi.org/diseases/chagas/facts/ (Accessed on: 2023-02-01).
- Engel, J.C.; Doyle, P.S.; Palmer, J.; Hsieh, I.; Bainton, D.F.; McKerrow, J.H. Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. J. Cell Sci., 1998, 111(5), 597-606. doi: 10.1242/jcs.111.5.597 PMID: 9454733
- McKerrow, J.H. Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action. Int. J. Parasitol., 1999, 29(6), 833-837. doi: 10.1016/S0020-7519(99)00044-2 PMID: 10480720
- Cazzulo, J.; Stoka, V.; Turk, V. The major cysteine proteinase of Trypanosoma cruzi: A valid target for chemotherapy of Chagas disease. Curr. Pharm. Des., 2001, 7(12), 1143-1156. doi: 10.2174/1381612013397528 PMID: 11472258
- Massarico Serafim, R.A.; Gonçalves, J.E.; de Souza, F.P.; de Melo Loureiro, A.P.; Storpirtis, S.; Krogh, R.; Andricopulo, A.D.; Dias, L.C.; Ferreira, E.I. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity. Eur. J. Med. Chem., 2014, 82, 418-425. doi: 10.1016/j.ejmech.2014.05.077 PMID: 24929292
- Ferreira, L.G.; Andricopulo, A.D. Targeting cysteine proteases in trypanosomatid disease drug discovery. Pharmacol. Ther., 2017, 180, 49-61. doi: 10.1016/j.pharmthera.2017.06.004 PMID: 28579388
- Doyle, P.S.; Zhou, Y.M.; Hsieh, I.; Greenbaum, D.C.; McKerrow, J.H.; Engel, J.C. The Trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog., 2011, 7(9), e1002139. doi: 10.1371/journal.ppat.1002139 PMID: 21909255
- Ndao, M.; Beaulieu, C.; Black, W.C.; Isabel, E.; Vasquez- Camargo, F.; Nath-Chowdhury, M.; Massé, F.; Mellon, C.; Methot, N.; Nicoll-Griffith, D.A. Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob. Agents Chemother., 2014, 58(2), 1167-1178. doi: 10.1128/AAC.01855-13 PMID: 24323474
- Pauli, I.; Rezende, C.O., Jr; Slafer, B.W.; Dessoy, M.A.; de Souza, M.L.; Ferreira, L.L.G.; Adjanohun, A.L.M.; Ferreira, R.S.; Magalhães, L.G.; Krogh, R.; Michelan-Duarte, S.; Del Pintor, R.V.; da Silva, F.B.R.; Cruz, F.C.; Dias, L.C.; Andricopulo, A.D. Multiparameter optimization of trypanocidal cruzain inhibitors with in vivo activity and favorable pharmacokinetics. Front. Pharmacol., 2022, 12, 774069. doi: 10.3389/fphar.2021.774069 PMID: 35069198
- Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Eidam, O.; Mott, B.T.; Keiser, M.J.; McKerrow, J.H.; Maloney, D.J.; Irwin, J.J.; Shoichet, B.K. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem., 2010, 53(13), 4891-4905. doi: 10.1021/jm100488w PMID: 20540517
- Ferreira, R.S.; Dessoy, M.A.; Pauli, I.; Souza, M.L.; Krogh, R.; Sales, A.I.L.; Oliva, G.; Dias, L.C.; Andricopulo, A.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem., 2014, 57(6), 2380-2392. doi: 10.1021/jm401709b PMID: 24533839
- Kuhn, B.; Mohr, P.; Stahl, M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem., 2010, 53(6), 2601-2611. doi: 10.1021/jm100087s PMID: 20175530
- Libisch, M.G.; Rego, N.; Robello, C. Transcriptional studies on Trypanosoma cruzi host cell interactions: A complex puzzle of variables. Front. Cell. Infect. Microbiol., 2021, 11, 692134. doi: 10.3389/fcimb.2021.692134 PMID: 34222052
- Neitz, R.J.; Bryant, C.; Chen, S.; Gut, J.; Hugo Caselli, E.; Ponce, S.; Chowdhury, S.; Xu, H.; Arkin, M.R.; Ellman, J.A.; Renslo, A.R. Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas disease. Bioorg. Med. Chem. Lett., 2015, 25(21), 4834-4837. doi: 10.1016/j.bmcl.2015.06.066 PMID: 26144347
- Brak, K.; Kerr, I.D.; Barrett, K.T.; Fuchi, N.; Debnath, M.; Ang, K.; Engel, J.C.; McKerrow, J.H.; Doyle, P.S.; Brinen, L.S.; Ellman, J.A. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J. Med. Chem., 2010, 53(4), 1763-1773. doi: 10.1021/jm901633v PMID: 20088534
- Jacobsen, W.; Christians, U.; Benet, L.Z. In vitro evaluation of the disposition of a novel cysteine protease inhibitor. Drug Metab. Dispos., 2000, 28(11), 1343-1351. PMID: 11038163
- Tilley, L.; Straimer, J.; Gnädig, N.F.; Ralph, S.A.; Fidock, D.A. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol., 2016, 32(9), 682-696. doi: 10.1016/j.pt.2016.05.010 PMID: 27289273
- Fact sheet about malaria. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria
- Ettari, R.; Bova, F.; Zappalà, M.; Grasso, S.; Micale, N. Falcipain-2 inhibitors. Med. Res. Rev., 2010, 30(1), 136-167. doi: 10.1002/med.20163 PMID: 19526594
- Bekono, B.D.; Ntie-Kang, F.; Owono Owono, L.C.; Megnassan, E. Targeting cysteine proteases from Plasmodium falciparum: A general overview, rational drug design and computational approaches for drug discovery. Curr. Drug Targets, 2018, 19(5), 501-526. doi: 10.2174/1389450117666161221122432 PMID: 28003005
- Chen, W.; Huang, Z.; Wang, W.; Mao, F.; Guan, L.; Tang, Y.; Jiang, H.; Li, J.; Huang, J.; Jiang, L.; Zhu, J. Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely. Bioorg. Med. Chem., 2017, 25(24), 6467-6478. doi: 10.1016/j.bmc.2017.10.017 PMID: 29111368
- Stoye, A.; Juillard, A.; Tang, A.H.; Legac, J.; Gut, J.; White, K.L.; Charman, S.A.; Rosenthal, P.J.; Grau, G.E.R.; Hunt, N.H.; Payne, R.J. Falcipain inhibitors based on the natural product gallinamide a are potent in vitro and in vivo antimalarials. J. Med. Chem., 2019, 62(11), 5562-5578. doi: 10.1021/acs.jmedchem.9b00504 PMID: 31062592
- Gresty, K.J.; Gray, K.A.; Bobogare, A.; Wini, L.; Taleo, G.; Hii, J.; Cheng, Q.; Waters, N.C. Genetic mutations in Plasmodium falciparum and Plasmodium vivax dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) in Vanuatu and Solomon Islands prior to the introduction of artemisinin combination therapy. Malar. J., 2014, 13(1), 402. doi: 10.1186/1475-2875-13-402 PMID: 25311473
- Metzger, V.T.; Eun, C.; Kekenes-Huskey, P.M.; Huber, G.; McCammon, J.A. Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and Smoluchowski modeling. Biophys. J., 2014, 107(10), 2394-2402. doi: 10.1016/j.bpj.2014.09.039 PMID: 25418308
- Barnett, D.S.; Guy, R.K. Antimalarials in development in 2014. Chem. Rev., 2014, 114(22), 11221-11241. doi: 10.1021/cr500543f PMID: 25340626
- Lamb, K.M.; G-Dayanandan, N.; Wright, D.L.; Anderson, A.C. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase. Biochemistry, 2013, 52(41), 7318-7326. doi: 10.1021/bi400852h PMID: 24053334
- Huang, H.; Lu, W.; Li, X.; Cong, X.; Ma, H.; Liu, X.; Zhang, Y.; Che, P.; Ma, R.; Li, H.; Shen, X.; Jiang, H.; Huang, J.; Zhu, J. Design and synthesis of small molecular dual inhibitor of falcipain-2 and dihydrofolate reductase as antimalarial agent. Bioorg. Med. Chem. Lett., 2012, 22(2), 958-962. doi: 10.1016/j.bmcl.2011.12.011 PMID: 22192590
- Conroy, T.; Guo, J.T.; Elias, N.; Cergol, K.M.; Gut, J.; Legac, J.; Khatoon, L.; Liu, Y.; McGowan, S.; Rosenthal, P.J.; Hunt, N.H.; Payne, R.J. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials. J. Med. Chem., 2014, 57(24), 10557-10563. doi: 10.1021/jm501439w PMID: 25412465
- Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159. doi: 10.1016/S0140-6736(09)60829-1 PMID: 19833383
- Feasey, N.; Wansbrough-Jones, M.; Mabey, D.C.W.; Solomon, A.W. Neglected tropical diseases. Br. Med. Bull., 2010, 93(1), 179-200. doi: 10.1093/bmb/ldp046 PMID: 20007668
- Malvy, D.; Chappuis, F. Sleeping sickness. Clin. Microbiol. Infect., 2011, 17(7), 986-995. doi: 10.1111/j.1469-0691.2011.03536.x PMID: 21722252
- Priotto, G.; Kasparian, S.; Mutombo, W.; Ngouama, D.; Ghorashian, S.; Arnold, U.; Ghabri, S.; Baudin, E.; Buard, V.; Kazadi-Kyanza, S.; Ilunga, M.; Mutangala, W.; Pohlig, G.; Schmid, C.; Karunakara, U.; Torreele, E.; Kande, V. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: A multicentre, randomised, phase III, non-inferiority trial. Lancet, 2009, 374(9683), 56-64. doi: 10.1016/S0140-6736(09)61117-X PMID: 19559476
- Bisser, S.; NSiesi, F.X.; Lejon, V.; Preux, P.M.; Van Nieuwenhove, S.; Miaka Mia Bilenge, C.; Büscher, P. Equivalence trial of melarsoprol and nifurtimox monotherapy and combination therapy for the treatment of second-stage Trypanosoma brucei gambiense sleeping sickness. J. Infect. Dis., 2007, 195(3), 322-329. doi: 10.1086/510534 PMID: 17205469
- Delespaux, V.; Dekoning, H. Drugs and drug resistance in African trypanosomiasis. Drug Resist. Updat., 2007, 10(1-2), 30-50. doi: 10.1016/j.drup.2007.02.004 PMID: 17409013
- DNDi Best science for the most neglected. Available from: https://dndi.org/(Accessed on: 2023-02-01).
- Mesu, V.K.B.K.; Kalonji, W.M.; Bardonneau, C.; Mordt, O.V.; Blesson, S.; Simon, F.; Delhomme, S.; Bernhard, S.; Kuziena, W.; Lubaki, J.P.F.; Vuvu, S.L.; Ngima, P.N.; Mbembo, H.M.; Ilunga, M.; Bonama, A.K.; Heradi, J.A.; Solomo, J.L.L.; Mandula, G.; Badibabi, L.K.; Dama, F.R.; Lukula, P.K.; Tete, D.N.; Lumbala, C.; Scherrer, B.; Strub- Wourgaft, N.; Tarral, A. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: A pivotal multicentre, randomised, non-inferiority trial. Lancet, 2018, 391(10116), 144-154. doi: 10.1016/S0140-6736(17)32758-7 PMID: 29113731
- Fexinidazole for T.b. rhodesiense ⋅ DNDi. Available from: https://dndi.org/research-development/portfolio/fexinidazole-tb-rhodesiense/ (Accessed on: 2023-02-01).
- Betu Kumeso, V.K.; Kalonji, W.M.; Rembry, S.; Valverde, M.O.; Ngolo, T.D.; Prêtre, A.; Delhomme, S.; Ilunga, W.K.M.; Camara, M.; Catusse, J.; Schneitter, S.; Nusbaumer, M.; Mwamba, M.E.; Mahenzi, M.H.; Makaya, M.J.; Layba, C.M.; Akwaso, M.F.; Kaninda, B.L.; Kasongo, B.A.; Kavunga, L.P.; Mutanda, K.S.; Mariero, P.P.; Mokilifi, N.R.; Embana, M.H.; Asuka, A.N.A.; Kobo, M.V.; Mulenge, N.E.; Fifi, N.B.A.; Scherrer, B.; Strub- Wourgaft, N.; Tarral, A. Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: A multicentre, open-label, single-arm, phase 2/3 trial. Lancet Infect. Dis., 2023, 23(4), 463-470. doi: 10.1016/S1473-3099(22)00660-0 PMID: 36460027
- Ettari, R.; Previti, S.; Tamborini, L.; Cullia, G.; Grasso, S.; Zappalà, M. The inhibition of cysteine proteases rhodesain and TbCatB: A valuable approach to treat human African trypanosomiasis. Mini Rev. Med. Chem., 2016, 16(17), 1374-1391. doi: 10.2174/1389557515666160509125243 PMID: 27156518
- Caffrey, C.R.; Hansell, E.; Lucas, K.D.; Brinen, L.S.; Alvarez Hernandez, A.; Cheng, J.; Gwaltney, S.L., II; Roush, W.R.; Stierhof, Y.D.; Bogyo, M.; Steverding, D.; McKerrow, J.H. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol., 2001, 118(1), 61-73. doi: 10.1016/S0166-6851(01)00368-1 PMID: 11704274
- Davidbarry, J.; McCulloch, R. Antigenic variation in trypanosomes: Enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol., 2001, 49, 1-70. doi: 10.1016/S0065-308X(01)49037-3 PMID: 11461029
- Overath, P.; Chaudhri, M.; Steverding, D.; Ziegelbauer, K. Invariant surface proteins in bloodstream forms of Trypanosoma brucei. Parasitol. Today, 1994, 10(2), 53-58. doi: 10.1016/0169-4758(94)90393-X PMID: 15275499
- Lonsdale-Eccles, J.D.; Grab, D.J. Trypanosome hydrolases and the bloodbrain barrier. Trends Parasitol., 2002, 18(1), 17-19. doi: 10.1016/S1471-4922(01)02120-1 PMID: 11850009
- Abdulla, M.H.; OBrien, T.; Mackey, Z.B.; Sajid, M.; Grab, D.J.; McKerrow, J.H. RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PLoS Negl. Trop. Dis., 2008, 2(9), e298. doi: 10.1371/journal.pntd.0000298 PMID: 18820745
- Steverding, D.; Sexton, D.W.; Wang, X.; Gehrke, S.S.; Wagner, G.K.; Caffrey, C.R. Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int. J. Parasitol., 2012, 42(5), 481-488. doi: 10.1016/j.ijpara.2012.03.009 PMID: 22549023
- Kerr, I.D.; Lee, J.H.; Farady, C.J.; Marion, R.; Rickert, M.; Sajid, M.; Pandey, K.C.; Caffrey, C.R.; Legac, J.; Hansell, E.; McKerrow, J.H.; Craik, C.S.; Rosenthal, P.J.; Brinen, L.S. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J. Biol. Chem., 2009, 284(38), 25697-25703. doi: 10.1074/jbc.M109.014340 PMID: 19620707
- Kerr, I.D.; Wu, P.; Marion-Tsukamaki, R.; Mackey, Z.B.; Brinen, L.S. Crystal Structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl. Trop. Dis., 2010, 4(6), e701. doi: 10.1371/journal.pntd.0000701 PMID: 20544024
- Giroud, M.; Kuhn, B.; Saint-Auret, S.; Kuratli, C.; Martin, R.E.; Schuler, F.; Diederich, F.; Kaiser, M.; Brun, R.; Schirmeister, T.; Haap, W. 2 H-1,2,3-triazole-based dipeptidyl nitriles: Potent, selective, and trypanocidal rhodesain inhibitors by structure-based design. J. Med. Chem., 2018, 61(8), 3370-3388. doi: 10.1021/acs.jmedchem.7b01870 PMID: 29590751
- Giroud, M.; Dietzel, U.; Anselm, L.; Banner, D.; Kuglstatter, A.; Benz, J.; Blanc, J.B.; Gaufreteau, D.; Liu, H.; Lin, X.; Stich, A.; Kuhn, B.; Schuler, F.; Kaiser, M.; Brun, R.; Schirmeister, T.; Kisker, C.; Diederich, F.; Haap, W. Repurposing a library of human cathepsin L ligands: Identification of macrocyclic lactams as potent rhodesain and Trypanosoma brucei inhibitors. J. Med. Chem., 2018, 61(8), 3350-3369. doi: 10.1021/acs.jmedchem.7b01869 PMID: 29590750
- Eliel, E.L.; Wilen, S.H.; Mander, L.N. Chirality in molecules devoid of chiral centers. University of Pittsburgh, 1994.
- LaPlante, S.R.; Forgione, P.; Boucher, C.; Coulombe, R.; Gillard, J.; Hucke, O.; Jakalian, A.; Joly, M.A.; Kukolj, G.; Lemke, C.; McCollum, R.; Titolo, S.; Beaulieu, P.L.; Stammers, T. Enantiomeric atropisomers inhibit HCV polymerase and/or HIV matrix: characterizing hindered bond rotations and target selectivity. J. Med. Chem., 2014, 57(5), 1944-1951. doi: 10.1021/jm401202a PMID: 24024973
- Target product profile for sleeping sickness ⋅ DNDi. Available from: https://dndi.org/diseases/sleeping-sickness/target-product-profile/ (Accessed on: 2023-02-01).
- Jung, S.; Fuchs, N.; Johe, P.; Wagner, A.; Diehl, E.; Yuliani, T.; Zimmer, C.; Barthels, F.; Zimmermann, R.A.; Klein, P.; Waigel, W.; Meyr, J.; Opatz, T.; Tenzer, S.; Distler, U.; Räder, H.J.; Kersten, C.; Engels, B.; Hellmich, U.A.; Klein, J.; Schirmeister, T. Fluorovinylsulfones and -sulfonates as potent covalent reversible inhibitors of the trypanosomal cysteine protease rhodesain: Structureactivity relationship, inhibition mechanism, metabolism, and in vivo studies. J. Med. Chem., 2021, 64(16), 12322-12358. doi: 10.1021/acs.jmedchem.1c01002 PMID: 34378914
- Lee, C.U.; Grossmann, T.N. Reversible covalent inhibition of a protein target. Angew. Chem. Int. Ed., 2012, 51(35), 8699-8700. doi: 10.1002/anie.201203341 PMID: 22806944
- Lammert, C.; Einarsson, S.; Saha, C.; Niklasson, A.; Bjornsson, E.; Chalasani, N. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: Search for signals. Hepatology, 2008, 47(6), 2003-2009. doi: 10.1002/hep.22272 PMID: 18454504
- Kalgutkar, A.S.; Dalvie, D.K. Drug discovery for a new generation of covalent drugs. Expert Opin. Drug Discov., 2012, 7(7), 561-581. doi: 10.1517/17460441.2012.688744 PMID: 22607458
- Jung, S.; Fuchs, N.; Grathwol, C.; Hellmich, U.A.; Wagner, A.; Diehl, E.; Willmes, T.; Sotriffer, C.; Schirmeister, T. New peptidomimetic rhodesain inhibitors with improved selectivity towards human cathepsins. Eur. J. Med. Chem., 2022, 238, 114460. doi: 10.1016/j.ejmech.2022.114460 PMID: 35597010
- Boike, L.; Henning, N.J.; Nomura, D.K. Advances in covalent drug discovery. Nat. Rev. Drug Discov., 2022, 21(12), 881-898. doi: 10.1038/s41573-022-00542-z PMID: 36008483
- Serafim, R.A.M.; Haarer, L.; Pedreira, J.G.B.; Gehringer, M. Covalent chemical probes for protein kinases. Curr. Opin. Chem. Biol., 2023, 3, 100040. doi: 10.1016/j.crchbi.2022.100040
- De Vita, E. 10 years into the resurgence of covalent drugs. Future Med. Chem., 2021, 13(2), 193-210. doi: 10.4155/fmc-2020-0236 PMID: 33275063
Supplementary files
