Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors


Дәйексөз келтіру

Толық мәтін

Аннотация

Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.

Авторлар туралы

Shengying Lou

Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University

Email: info@benthamscience.net

Miaolian Wu

Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Sunliang Cui

Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Martinon, F.; Burns, K.; Tschopp, J. The Inflammasome. Mol. Cell, 2002, 10(2), 417-426. doi: 10.1016/S1097-2765(02)00599-3 PMID: 12191486
  2. Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov., 2020, 6(1), 36. doi: 10.1038/s41421-020-0167-x PMID: 32550001
  3. Singh, P.; Kumar, N.; Singh, M.; Kaur, M.; Singh, G.; Narang, A.; Kanwal, A.; Sharma, K.; Singh, B.; Napoli, M.D.; Mastana, S. Neutrophil extracellular traps and NLRP3 inflammasome: A disturbing duo in atherosclerosis, inflammation and atherothrombosis. Vaccines, 2023, 11(2), 261. doi: 10.3390/vaccines11020261 PMID: 36851139
  4. Sharma, D.; Kanneganti, T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol., 2016, 213(6), 617-629. doi: 10.1083/jcb.201602089 PMID: 27325789
  5. Christgen, S.; Place, D.E.; Kanneganti, T.D. Toward targeting inflammasomes: Insights into their regulation and activation. Cell Res., 2020, 30(4), 315-327. doi: 10.1038/s41422-020-0295-8 PMID: 32152420
  6. Xu, J.; Núñez, G. The NLRP3 inflammasome: Activation and regulation. Trends Biochem. Sci., 2023, 48(4), 331-344. doi: 10.1016/j.tibs.2022.10.002 PMID: 36336552
  7. Ohto, U.; Kamitsukasa, Y.; Ishida, H.; Zhang, Z.; Murakami, K.; Hirama, C.; Maekawa, S.; Shimizu, T. Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation. Proc. Natl. Acad. Sci., 2022, 119(11), e2121353119. doi: 10.1073/pnas.2121353119 PMID: 35254907
  8. Tapia-Abellán, A.; Angosto-Bazarra, D.; Alarcón-Vila, C.; Baños, M. C; Hafner-Bratkovič, I.; Oliva, B.; Pelegrín, P. Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation. Sci. Adv., 2021, 7, eabf44. doi: 10.1126/sciadv.abf4468
  9. Dekker, C.; Mattes, H.; Wright, M.; Boettcher, A.; Hinniger, A.; Hughes, N.; Kapps-Fouthier, S.; Eder, J.; Erbel, P.; Stiefl, N.; Mackay, A.; Farady, C.J. Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition. J. Mol. Biol., 2021, 433(24), 167309. doi: 10.1016/j.jmb.2021.167309 PMID: 34687713
  10. Sharif, H.; Wang, L.; Wang, W.L.; Magupalli, V.G.; Andreeva, L.; Qiao, Q.; Hauenstein, A.V.; Wu, Z.; Núñez, G.; Mao, Y.; Wu, H. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature, 2019, 570(7761), 338-343. doi: 10.1038/s41586-019-1295-z PMID: 31189953
  11. Andreeva, L.; David, L.; Rawson, S.; Shen, C.; Pasricha, T.; Pelegrin, P.; Wu, H. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell, 2021, 184(26), 6299-6312.e22. doi: 10.1016/j.cell.2021.11.011 PMID: 34861190
  12. Hafner-Bratkovič, I. NLRP3 is its own gatekeeper: A group hug of NLRP3 monomers controls inflammation. Trends Biochem. Sci., 2022, 47(8), 635-637. doi: 10.1016/j.tibs.2022.03.014 PMID: 35382945
  13. Hochheiser, I.V.; Pilsl, M.; Hagelueken, G.; Moecking, J.; Marleaux, M.; Brinkschulte, R.; Latz, E.; Engel, C.; Geyer, M. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature, 2022, 604(7904), 184-189. doi: 10.1038/s41586-022-04467-w PMID: 35114687
  14. Xiao, L.; Magupalli, V.G.; Wu, H. Cryo-EM structures of the active NLRP3 inflammasome disc. Nature, 2023, 613(7944), 595-600. doi: 10.1038/s41586-022-05570-8 PMID: 36442502
  15. Swanson, K.V.; Deng, M.; Ting, J.P.Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol., 2019, 19(8), 477-489. doi: 10.1038/s41577-019-0165-0 PMID: 31036962
  16. Li, Y.; Fu, T.M.; Lu, A.; Witt, K.; Ruan, J.; Shen, C.; Wu, H. Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc. Natl. Acad. Sci., 2018, 115(43), 10845-10852. doi: 10.1073/pnas.1810524115 PMID: 30279182
  17. Vong, C.T.; Tseng, H.H.L.; Yao, P.; Yu, H.; Wang, S.; Zhong, Z.; Wang, Y. Specific NLRP3 inflammasome inhibitors: Promising therapeutic agents for inflammatory diseases. Drug Discov. Today, 2021, 26(6), 1394-1408. doi: 10.1016/j.drudis.2021.02.018 PMID: 33636340
  18. Fu, J.; Wu, H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol., 2023, 41(1), 301-316. doi: 10.1146/annurev-immunol-081022-021207 PMID: 36750315
  19. Lamkanfi, M.; Dixit, V.M. A new lead to NLRP3 inhibition. J. Exp. Med., 2017, 214(11), 3147-3149. doi: 10.1084/jem.20171848 PMID: 29061692
  20. Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, 17(8), 588-606. doi: 10.1038/nrd.2018.97 PMID: 30026524
  21. Accogli, T.; Hibos, C.; Vegran, F. Canonical and non-canonical functions of NLRP3. J. Adv. Res., 2023, 53, 137-151. doi: 10.1016/j.jare.2023.01.001 PMID: 36610670
  22. Yang, Y.; Wang, H.; Kouadir, M.; Song, H.; Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis., 2019, 10(2), 128. doi: 10.1038/s41419-019-1413-8 PMID: 30755589
  23. Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol., 2021, 18(5), 1141-1160. doi: 10.1038/s41423-021-00670-3 PMID: 33850310
  24. Song, N.; Liu, Z.S.; Xue, W.; Bai, Z.F.; Wang, Q.Y.; Dai, J.; Liu, X.; Huang, Y.J.; Cai, H.; Zhan, X.Y.; Han, Q.Y.; Wang, H.; Chen, Y.; Li, H.Y.; Li, A.L.; Zhang, X.M.; Zhou, T.; Li, T. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell, 2017, 68(1), 185-197.e6. doi: 10.1016/j.molcel.2017.08.017 PMID: 28943315
  25. Xu, T.; Yu, W.; Fang, H.; Wang, Z.; Chi, Z.; Guo, X.; Jiang, D.; Zhang, K.; Chen, S.; Li, M.; Guo, Y.; Zhang, J.; Yang, D.; Yu, Q.; Wang, D.; Zhang, X. Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation. Cell Death Differ., 2022, 29(8), 1582-1595. doi: 10.1038/s41418-022-00947-8 PMID: 35110683
  26. Ge, Q.; Chen, X.; Zhao, Y.; Mu, H.; Zhang, J. Modulatory mechanisms of NLRP3: Potential roles in inflammasome activation. Life Sci., 2021, 267, 118918. doi: 10.1016/j.lfs.2020.118918 PMID: 33352170
  27. Gong, T.; Yang, Y.; Jin, T.; Jiang, W.; Zhou, R. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol., 2018, 39(5), 393-406. doi: 10.1016/j.it.2018.01.009 PMID: 29452983
  28. Chen, M.; Ye, X.; He, X.; Ouyang, D. The signaling pathways regulating NLRP3 inflammasome activation. Inflammation, 2021, 44(4), 1229-1245. doi: 10.1007/s10753-021-01439-6 PMID: 34009550
  29. Wang, L.; Sharif, H.; Vora, S.M.; Zheng, Y.; Wu, H. Structures and functions of the inflammasome engine. J. Allergy Clin. Immunol., 2021, 147(6), 2021-2029. doi: 10.1016/j.jaci.2021.04.018 PMID: 34092352
  30. Dowling, J.K.; O’Neill, L.A.J. Biochemical regulation of the inflammasome. Crit. Rev. Biochem. Mol. Biol., 2012, 47(5), 424-443. doi: 10.3109/10409238.2012.694844 PMID: 22681257
  31. Haneklaus, M.; O’Neill, L.A.J.; Coll, R.C. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: Recent developments. Curr. Opin. Immunol., 2013, 25(1), 40-45. doi: 10.1016/j.coi.2012.12.004 PMID: 23305783
  32. Kayagaki, N.; Warming, S.; Lamkanfi, M.; Walle, L.V.; Louie, S.; Dong, J.; Newton, K.; Qu, Y.; Liu, J.; Heldens, S.; Zhang, J.; Lee, W.P.; Roose-Girma, M.; Dixit, V.M. Non-canonical inflammasome activation targets caspase-11. Nature, 2011, 479(7371), 117-121. doi: 10.1038/nature10558 PMID: 22002608
  33. Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521), 187-192. doi: 10.1038/nature13683 PMID: 25119034
  34. Moretti, J.; Jia, B.; Hutchins, Z.; Roy, S.; Yip, H.; Wu, J.; Shan, M.; Jaffrey, S.R.; Coers, J.; Blander, J.M. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome. Nat. Immunol., 2022, 23(5), 705-717. doi: 10.1038/s41590-022-01192-4 PMID: 35487985
  35. Yang, Z.H.; Han, J. Dual ligand engagement for noncanonical inflammasome activation. Nat. Immunol., 2022, 23(5), 651-653. doi: 10.1038/s41590-022-01188-0 PMID: 35487984
  36. Gaidt, M.M.; Ebert, T.S.; Chauhan, D.; Schmidt, T.; Schmid-Burgk, J.L.; Rapino, F.; Robertson, A.A.B.; Cooper, M.A.; Graf, T.; Hornung, V. Human monocytes engage an alternative inflammasome pathway. Immunity, 2016, 44(4), 833-846. doi: 10.1016/j.immuni.2016.01.012 PMID: 27037191
  37. Huang, Y.; Xu, W.; Zhou, R. NLRP3 inflammasome activation and cell death. Cell. Mol. Immunol., 2021, 18(9), 2114-2127. doi: 10.1038/s41423-021-00740-6 PMID: 34321623
  38. Li, Y.; Huang, H.; Liu, B.; Zhang, Y.; Pan, X.; Yu, X.Y.; Shen, Z.; Song, Y.H. Inflammasomes as therapeutic targets in human diseases. Signal Transduct. Target. Ther., 2021, 6(1), 247. doi: 10.1038/s41392-021-00650-z PMID: 34210954
  39. Moltrasio, C.; Romagnuolo, M.; Marzano, A.V. NLRP3 inflammasome and NLRP3-related autoinflammatory diseases: From cryopyrin function to targeted therapies. Front. Immunol., 2022, 13, 1007705. doi: 10.3389/fimmu.2022.1007705 PMID: 36275641
  40. de Torre-Minguela, C.; Mesa del Castillo, P.; Pelegrín, P. The NLRP3 and pyrin inflammasomes: Implications in the pathophysiology of autoinflammatory diseases. Front. Immunol., 2017, 8, 43. doi: 10.3389/fimmu.2017.00043 PMID: 28191008
  41. de Jesus, A.A.; Canna, S.W.; Liu, Y.; Goldbach-Mansky, R. Molecular mechanisms in genetically defined autoinflammatory diseases: Disorders of amplified danger signaling. Annu. Rev. Immunol., 2015, 33(1), 823-874. doi: 10.1146/annurev-immunol-032414-112227 PMID: 25706096
  42. Booshehri, L.M.; Hoffman, H.M. CAPS and NLRP3. J. Clin. Immunol., 2019, 39(3), 277-286. doi: 10.1007/s10875-019-00638-z PMID: 31077002
  43. Cuisset, L.; Jeru, I.; Dumont, B.; Fabre, A.; Cochet, E.; Le Bozec, J.; Delpech, M.; Amselem, S.; Touitou, I. Mutations in the autoinflammatory cryopyrin-associated periodic syndrome gene: Epidemiological study and lessons from eight years of genetic analysis in France. Ann. Rheum. Dis., 2011, 70(3), 495-499. doi: 10.1136/ard.2010.138420 PMID: 21109514
  44. Theodoropoulou, K.; Spel, L.; Zaffalon, L.; Delacrétaz, M.; Hofer, M.; Martinon, F. NLRP3 leucine-rich repeats control induced and spontaneous inflammasome activation in cryopyrin-associated periodic syndrome. J. Allergy Clin. Immunol., 2023, 151(1), 222-232.e9. doi: 10.1016/j.jaci.2022.08.019 PMID: 36075321
  45. Guan, Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J. Immunol. Res., 2019, 2019, 1-16. doi: 10.1155/2019/7247238 PMID: 31886308
  46. Bauer, C.; Duewell, P.; Mayer, C.; Lehr, H.A.; Fitzgerald, K.A.; Dauer, M.; Tschopp, J.; Endres, S.; Latz, E.; Schnurr, M. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut, 2010, 59(9), 1192-1199. doi: 10.1136/gut.2009.197822 PMID: 20442201
  47. Liu, L.; Dong, Y.; Ye, M.; Jin, S.; Yang, J.; Joosse, M.E.; Sun, Y.; Zhang, J.; Lazarev, M.; Brant, S.R.; Safar, B.; Marohn, M.; Mezey, E.; Li, X. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. J. Crohn’s Colitis, 2017, 11(6), 737-750. PMID: 27993998
  48. Wang, S.L.; Zhang, M.M.; Zhou, H.; Su, G.Q.; Ding, Y.; Xu, G.H.; Wang, X.; Li, C.F.; Huang, W.F.; Yi, L.T. Inhibition of NLRP3 attenuates sodium dextran sulfate-induced inflammatory bowel disease through gut microbiota regulation. Biomed. J., 2023, 46(5), 100580. doi: 10.1016/j.bj.2023.01.004 PMID: 36758943
  49. Chen, Q.L.; Yin, H.R.; He, Q.Y.; Wang, Y. Targeting the NLRP3 inflammasome as new therapeutic avenue for inflammatory bowel disease. Biomed. Pharmacother., 2021, 138, 111442. doi: 10.1016/j.biopha.2021.111442 PMID: 33667791
  50. Zaki, M.H.; Boyd, K.L.; Vogel, P.; Kastan, M.B.; Lamkanfi, M.; Kanneganti, T.D. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity, 2010, 32(3), 379-391. doi: 10.1016/j.immuni.2010.03.003 PMID: 20303296
  51. Song, Y.; Zhao, Y.; Ma, Y.; Wang, Z.; Rong, L.; Wang, B.; Zhang, N. Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev., 2021, 60, 61-75. doi: 10.1016/j.cytogfr.2021.03.003 PMID: 33773897
  52. Zhen, Y.; Zhang, H. NLRP3 inflammasome and inflammatory bowel disease. Front. Immunol., 2019, 10, 276. doi: 10.3389/fimmu.2019.00276 PMID: 30873162
  53. Toldo, S.; Mezzaroma, E.; Buckley, L.F.; Potere, N.; Di Nisio, M.; Biondi-Zoccai, G.; Van Tassell, B.W.; Abbate, A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol. Ther., 2022, 236, 108053. doi: 10.1016/j.pharmthera.2021.108053 PMID: 34906598
  54. Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res., 2018, 122(12), 1722-1740. doi: 10.1161/CIRCRESAHA.118.311362 PMID: 29880500
  55. Baldrighi, M.; Mallat, Z.; Li, X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis, 2017, 267, 127-138. doi: 10.1016/j.atherosclerosis.2017.10.027 PMID: 29126031
  56. Poznyak, A.V.; Melnichenko, A.A.; Wetzker, R.; Gerasimova, E.V.; Orekhov, A.N. NLPR3 inflammasomes and their significance for atherosclerosis. Biomedicines, 2020, 8(7), 205. doi: 10.3390/biomedicines8070205 PMID: 32664349
  57. Jiang, C.; Xie, S.; Yang, G.; Wang, N. Spotlight on NLRP3 inflammasome: Role in pathogenesis and therapies of atherosclerosis. J. Inflamm. Res., 2021, 14, 7143-7172. doi: 10.2147/JIR.S344730 PMID: 34992411
  58. Hoseini, Z.; Sepahvand, F.; Rashidi, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J. Cell. Physiol., 2018, 233(3), 2116-2132. doi: 10.1002/jcp.25930 PMID: 28345767
  59. Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361. doi: 10.1038/nature08938 PMID: 20428172
  60. Zheng, F.; Xing, S.; Gong, Z.; Mu, W.; Xing, Q. Cancer statistics. Cancer J. Clin., 2014, 73, 17-48.
  61. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  62. Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29. doi: 10.3322/caac.21208 PMID: 24399786
  63. Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018, 17(1), 158. doi: 10.1186/s12943-018-0900-3 PMID: 30447690
  64. Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008, 320(5876), 674-677. doi: 10.1126/science.1156995 PMID: 18403674
  65. Cox, L.A., Jr Dose-response modeling of NLRP3 inflammasome-mediated diseases: Asbestos, lung cancer, and malignant mesothelioma as examples. Crit. Rev. Toxicol., 2019, 49(7), 614-635. doi: 10.1080/10408444.2019.1692779 PMID: 31905042
  66. Wang, Y.; Kong, H.; Zeng, X.; Liu, W.; Wang, Z.; Yan, X.; Wang, H.; Xie, W. Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells. Oncol. Rep., 2016, 35(4), 2053-2064. doi: 10.3892/or.2016.4569 PMID: 26782741
  67. Faria, S.S.; Costantini, S.; de Lima, V.C.C.; de Andrade, V.P.; Rialland, M.; Cedric, R.; Budillon, A.; Magalhães, K.G. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J. Biomed. Sci., 2021, 28(1), 26. doi: 10.1186/s12929-021-00724-8 PMID: 33840390
  68. Ershaid, N.; Sharon, Y.; Doron, H.; Raz, Y.; Shani, O.; Cohen, N.; Monteran, L.; Leider-Trejo, L.; Ben-Shmuel, A.; Yassin, M.; Gerlic, M.; Ben-Baruch, A.; Pasmanik-Chor, M.; Apte, R.; Erez, N. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat. Commun., 2019, 10(1), 4375. doi: 10.1038/s41467-019-12370-8 PMID: 31558756
  69. Wang, Y.; Zhang, H.; Xu, Y.; Peng, T.; Meng, X.; Zou, F. NLRP3 induces the autocrine secretion of IL-1β to promote epithelial–mesenchymal transition and metastasis in breast cancer. Biochem. Biophys. Res. Commun., 2021, 560, 72-79. doi: 10.1016/j.bbrc.2021.04.122 PMID: 33975248
  70. Guo, B.; Fu, S.; Zhang, J.; Liu, B.; Li, Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci. Rep., 2016, 6(1), 36107. doi: 10.1038/srep36107 PMID: 27786298
  71. Missiroli, S.; Perrone, M.; Boncompagni, C.; Borghi, C.; Campagnaro, A.; Marchetti, F.; Anania, G.; Greco, P.; Fiorica, F.; Pinton, P.; Giorgi, C. Targeting the NLRP3 inflammasome as a new therapeutic option for overcoming cancer. Cancers, 2021, 13(10), 2297. doi: 10.3390/cancers13102297 PMID: 34064909
  72. Peek, R.M., Jr Orchestration of aberrant epithelial signaling by Helicobacter pylori CagA. Sci. STKE, 2005, 2005(277), pe14. doi: 10.1126/stke.2772005pe14 PMID: 15798102
  73. Lamb, A.; Chen, L.F. Role of the Helicobacter pylori -induced inflammatory response in the development of gastric cancer. J. Cell. Biochem., 2013, 114(3), 491-497. doi: 10.1002/jcb.24389 PMID: 22961880
  74. Semper, R.P.; Mejías-Luque, R.; Groß, C.; Anderl, F.; Müller, A.; Vieth, M.; Busch, D.H.; Prazeres da Costa, C.; Ruland, J.; Groß, O.; Gerhard, M. Helicobacter pylori-induced IL-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the cag pathogenicity island. J. Immunol., 2014, 193(7), 3566-3576. doi: 10.4049/jimmunol.1400362 PMID: 25172489
  75. Deans, D A C.; Wigmore, S.J.; Gilmour, H.; Paterson-Brown, S.; Ross, J.A.; Fearon, K.C.H. Elevated tumour interleukin-1β is associated with systemic inflammation: a marker of reduced survival in gastro-oesophageal cancer. Br. J. Cancer, 2006, 95(11), 1568-1575. doi: 10.1038/sj.bjc.6603446 PMID: 17088911
  76. Bagheri, V.; Memar, B.; Momtazi, A.A.; Sahebkar, A.; Gholamin, M.; Abbaszadegan, M.R. Cytokine networks and their association with Helicobacter pylori infection in gastric carcinoma. J. Cell. Physiol., 2018, 233(4), 2791-2803. doi: 10.1002/jcp.25822 PMID: 28121015
  77. Li, S.; Liang, X.; Ma, L.; Shen, L.; Li, T.; Zheng, L.; Sun, A.; Shang, W.; Chen, C.; Zhao, W.; Jia, J. MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene, 2018, 37(7), 884-896. doi: 10.1038/onc.2017.381 PMID: 29059152
  78. Karki, R.; Kanneganti, T.D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer, 2019, 19(4), 197-214. doi: 10.1038/s41568-019-0123-y PMID: 30842595
  79. Hamarsheh, S.; Zeiser, R. NLRP3 inflammasome activation in cancer: A double-edged sword. Front. Immunol., 2020, 11, 1444. doi: 10.3389/fimmu.2020.01444 PMID: 32733479
  80. Zaki, M.H.; Vogel, P.; Body-Malapel, M.; Lamkanfi, M.; Kanneganti, T.D. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J. Immunol., 2010, 185(8), 4912-4920. doi: 10.4049/jimmunol.1002046 PMID: 20855874
  81. Sharma, B.R.; Kanneganti, T.D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol., 2021, 22(5), 550-559. doi: 10.1038/s41590-021-00886-5 PMID: 33707781
  82. McCarron, R.M.; Shapiro, B.; Rawles, J. Luo, J. Depression. Ann. Intern. Med., 2021, 174(5), ITC65-ITC80. doi: 10.7326/AITC202105180 PMID: 33971098
  83. Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry, 2009, 65(9), 732-741. doi: 10.1016/j.biopsych.2008.11.029 PMID: 19150053
  84. Iwata, M.; Ota, K.T.; Duman, R.S. The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain Behav. Immun., 2013, 31, 105-114. doi: 10.1016/j.bbi.2012.12.008 PMID: 23261775
  85. Zhang, Y.; Liu, L.; Peng, Y.L.; Liu, Y.Z.; Wu, T.Y.; Shen, X.L.; Zhou, J.R.; Sun, D.Y.; Huang, A.J.; Wang, X.; Wang, Y.X.; Jiang, C.L. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci. Ther., 2014, 20(2), 119-124. doi: 10.1111/cns.12170 PMID: 24279434
  86. Alcocer-Gómez, E.; Ulecia-Morón, C.; Marín-Aguilar, F.; Rybkina, T.; Casas-Barquero, N.; Ruiz-Cabello, J.; Ryffel, B.; Apetoh, L.; Ghiringhelli, F.; Bullón, P.; Sánchez-Alcazar, J.A.; Carrión, A.M.; Cordero, M.D. Stress-induced depressive behaviors require a functional NLRP3 inflammasome. Mol. Neurobiol., 2016, 53(7), 4874-4882. doi: 10.1007/s12035-015-9408-7 PMID: 26362308
  87. Kaufmann, F.N.; Costa, A.P.; Ghisleni, G.; Diaz, A.P.; Rodrigues, A.L.S.; Peluffo, H.; Kaster, M.P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav. Immun., 2017, 64, 367-383. doi: 10.1016/j.bbi.2017.03.002 PMID: 28263786
  88. Liang, T.; Zhang, Y.; Wu, S.; Chen, Q.; Wang, L. The role of NLRP3 inflammasome in Alzheimer’s disease and potential therapeutic targets. Front. Pharmacol., 2022, 13, 845185. doi: 10.3389/fphar.2022.845185 PMID: 35250595
  89. Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678. doi: 10.1038/nature11729 PMID: 23254930
  90. Saresella, M.; La Rosa, F.; Piancone, F.; Zoppis, M.; Marventano, I.; Calabrese, E.; Rainone, V.; Nemni, R.; Mancuso, R.; Clerici, M. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol. Neurodegener., 2016, 11(1), 23. doi: 10.1186/s13024-016-0088-1 PMID: 26939933
  91. Ahmed, M.E.; Iyer, S.; Thangavel, R.; Kempuraj, D.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.; Zaheer, A. Co-Localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer’s disease brain. J. Alzheimers Dis., 2017, 60(3), 1143-1160. doi: 10.3233/JAD-170634 PMID: 28984607
  92. Milner, M.T.; Maddugoda, M.; Götz, J.; Burgener, S.S.; Schroder, K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr. Opin. Immunol., 2021, 68, 116-124. doi: 10.1016/j.coi.2020.10.011 PMID: 33181351
  93. Feng, Y.S.; Tan, Z.X.; Wu, L.Y.; Dong, F.; Zhang, F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res. Rev., 2020, 64, 101192. doi: 10.1016/j.arr.2020.101192 PMID: 33059089
  94. Ding, S.; Xu, S.; Ma, Y.; Liu, G.; Jang, H.; Fang, J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules, 2019, 9(12), 850. doi: 10.3390/biom9120850 PMID: 31835423
  95. Esser, N.; L’homme, L.; De Roover, A.; Kohnen, L.; Scheen, A.J.; Moutschen, M.; Piette, J.; Legrand-Poels, S.; Paquot, N. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia, 2013, 56(11), 2487-2497. doi: 10.1007/s00125-013-3023-9
  96. Gora, I.M.; Ciechanowska, A.; Ladyzynski, P. NLRP3 inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes. Cells, 2021, 10(2), 314. doi: 10.3390/cells10020314 PMID: 33546399
  97. Lamkanfi, M.; Mueller, J.L.; Vitari, A.C.; Misaghi, S.; Fedorova, A.; Deshayes, K.; Lee, W.P.; Hoffman, H.M.; Dixit, V.M. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol., 2009, 187(1), 61-70. doi: 10.1083/jcb.200903124 PMID: 19805629
  98. Carvalho, A.M.; Novais, F.O.; Paixão, C.S.; de Oliveira, C.I.; Machado, P.R.L.; Carvalho, L.P.; Scott, P.; Carvalho, E.M. Glyburide, a NLRP3 inhibitor, decreases inflammatory response and is a candidate to reduce pathology in leishmania Braziliensis infection. J. Invest. Dermatol., 2020, 140(1), 246-249.e2. doi: 10.1016/j.jid.2019.05.025 PMID: 31252034
  99. Zhang, G.; Lin, X.; Zhang, S.; Xiu, H.; Pan, C.; Cui, W. A protective role of glibenclamide in inflammation-associated injury. Mediat. Inflamm., 2017, 3578702.
  100. Marchetti, C.; Chojnacki, J.; Toldo, S.; Mezzaroma, E.; Tranchida, N.; Rose, S.W.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol., 2014, 63(4), 316-322. doi: 10.1097/FJC.0000000000000053 PMID: 24336017
  101. Marchetti, C.; Toldo, S.; Chojnacki, J.; Mezzaroma, E.; Liu, K.; Salloum, F.N.; Nordio, A.; Carbone, S.; Mauro, A.G.; Das, A.; Zalavadia, A.A.; Halquist, M.S.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J. Cardiovasc. Pharmacol., 2015, 66(1), 1-8. doi: 10.1097/FJC.0000000000000247 PMID: 25915511
  102. Guo, C.; Fulp, J.W.; Jiang, Y.; Li, X.; Chojnacki, J.E.; Wu, J.; Wang, X.Y.; Zhang, S. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-2-(4-hydroxysulfamoyl-phenyl)-ethyl-2-methoxy-benzamide, as a novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci., 2017, 8(10), 2194-2201. doi: 10.1021/acschemneuro.7b00124 PMID: 28653829
  103. Yin, J.; Zhao, F.; Chojnacki, J.E.; Fulp, J.; Klein, W.L.; Zhang, S.; Zhu, X. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2018, 55(3), 1977-1987. doi: 10.1007/s12035-017-0467-9 PMID: 28255908
  104. Kuwar, R.; Rolfe, A.; Di, L.; Xu, H.; He, L.; Jiang, Y.; Zhang, S.; Sun, D. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J. Neuroinflammation, 2019, 16(1), 81. doi: 10.1186/s12974-019-1471-y PMID: 30975164
  105. Fulp, J.; He, L.; Toldo, S.; Jiang, Y.; Boice, A.; Guo, C.; Li, X.; Rolfe, A.; Sun, D.; Abbate, A.; Wang, X.Y.; Zhang, S. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: Design, synthesis, and biological characterization. J. Med. Chem., 2018, 61(12), 5412-5423. doi: 10.1021/acs.jmedchem.8b00733 PMID: 29877709
  106. Jiang, Y.; He, L.; Green, J.; Blevins, H.; Guo, C.; Patel, S.H.; Halquist, M.S.; McRae, M.; Venitz, J.; Wang, X.Y.; Zhang, S. Discovery of second-generation NLRP3 inflammasome inhibitors: Design, synthesis, and biological characterization. J. Med. Chem., 2019, 62(21), 9718-9731. doi: 10.1021/acs.jmedchem.9b01155 PMID: 31626545
  107. Xu, Y.; Xu, Y.; Blevins, H.; Guo, C.; Biby, S.; Wang, X.Y.; Wang, C.; Zhang, S. Development of sulfonamide-based NLRP3 inhibitors: Further modifications and optimization through structure-activity relationship studies. Eur. J. Med. Chem., 2022, 238, 114468. doi: 10.1016/j.ejmech.2022.114468 PMID: 35635948
  108. Perregaux, D.G.; McNiff, P.; Laliberte, R.; Hawryluk, N.; Peurano, H.; Stam, E.; Eggler, J.; Griffiths, R.; Dombroski, M.A.; Gabel, C.A. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther., 2001, 299(1), 187-197. PMID: 11561079
  109. Laliberte, R.E.; Perregaux, D.G.; Hoth, L.R.; Rosner, P.J.; Jordan, C.K.; Peese, K.M.; Eggler, J.F.; Dombroski, M.A.; Geoghegan, K.F.; Gabel, C.A. Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β posttranslational processing. J. Biol. Chem., 2003, 278(19), 16567-16578. doi: 10.1074/jbc.M211596200 PMID: 12624100
  110. Coll, R.C.; O’Neill, L.A.J.; Butler, M.; Cooper, M.; O’Neill, L.A. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One, 2011, 6(12), e29539. doi: 10.1371/journal.pone.0029539 PMID: 22216309
  111. Tapia-Abellán, A.; Angosto-Bazarra, D.; Martínez-Banaclocha, H.; de Torre-Minguela, C.; Cerón-Carrasco, J.P.; Pérez-Sánchez, H.; Arostegui, J.I.; Pelegrin, P. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat. Chem. Biol., 2019, 15(6), 560-564. doi: 10.1038/s41589-019-0278-6 PMID: 31086329
  112. Coll, R.C.; Hill, J.R.; Day, C.J.; Zamoshnikova, A.; Boucher, D.; Massey, N.L.; Chitty, J.L.; Fraser, J.A.; Jennings, M.P.; Robertson, A.A.B.; Schroder, K. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol., 2019, 15(6), 556-559. doi: 10.1038/s41589-019-0277-7 PMID: 31086327
  113. Corcoran, S.E.; Halai, R.; Cooper, M.A. Pharmacological inhibition of the Nod-Like receptor family pyrin domain containing 3 inflammasome with MCC950. Pharmacol. Rev., 2021, 73(3), 968-1000. doi: 10.1124/pharmrev.120.000171 PMID: 34117094
  114. Salla, M.; Butler, M.S.; Pelingon, R.; Kaeslin, G.; Croker, D.E.; Reid, J.C.; Baek, J.M.; Bernhardt, P.V.; Gillam, E.M.J.; Cooper, M.A.; Robertson, A.A.B. Identification, synthesis, and biological evaluation of the major human metabolite of NLRP3 inflammasome inhibitor MCC950. ACS Med. Chem. Lett., 2016, 7(12), 1034-1038. doi: 10.1021/acsmedchemlett.6b00198 PMID: 27994733
  115. Li, H.; Guan, Y.; Liang, B.; Ding, P.; Hou, X.; Wei, W.; Ma, Y. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur. J. Pharmacol., 2022, 928, 175091. doi: 10.1016/j.ejphar.2022.175091 PMID: 35714692
  116. Hill, J.R.; Coll, R.C.; Sue, N.; Reid, J.C.; Dou, J.; Holley, C.L.; Pelingon, R.; Dickinson, J.B.; Biden, T.J.; Schroder, K.; Cooper, M.A.; Robertson, A.A.B. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem, 2017, 12(17), 1449-1457. doi: 10.1002/cmdc.201700270 PMID: 28703484
  117. Agarwal, S.; Pethani, J.P.; Shah, H.A.; Vyas, V.; Sasane, S.; Bhavsar, H.; Bandyopadhyay, D.; Giri, P.; Viswanathan, K.; Jain, M.R.; Sharma, R. Identification of a novel orally bioavailable NLRP3 inflammasome inhibitor. Bioorg. Med. Chem. Lett., 2020, 30(21), 127571. doi: 10.1016/j.bmcl.2020.127571 PMID: 32980515
  118. McBride, C.; Trzoss, L.; Povero, D.; Lazic, M.; Ambrus-Aikelin, G.; Santini, A.; Pranadinata, R.; Bain, G.; Stansfield, R.; Stafford, J.A.; Veal, J.; Takahashi, R.; Ly, J.; Chen, S.; Liu, L.; Nespi, M.; Blake, R.; Katewa, A.; Kleinheinz, T.; Sujatha-Bhaskar, S.; Ramamoorthi, N.; Sims, J.; McKenzie, B.; Chen, M.; Ultsch, M.; Johnson, M.; Murray, J.; Ciferri, C.; Staben, S.T.; Townsend, M.J.; Stivala, C.E. Overcoming Preclinical Safety Obstacles to Discover (S)- N -((1,2,3,5,6,7-Hexahydro- s -indacen-4-yl)carbamoyl)-6-(methylamino)-6,7-dihydro-5 H -pyrazolo5,1- b1,3oxazine-3-sulfonamide (GDC-2394): A Potent and Selective NLRP3 Inhibitor. J. Med. Chem., 2022, 65(21), 14721-14739. doi: 10.1021/acs.jmedchem.2c01250 PMID: 36279149
  119. Agarwal, S.; Sasane, S.; Shah, H.A.; Pethani, J.P.; Deshmukh, P.; Vyas, V.; Iyer, P.; Bhavsar, H.; Viswanathan, K.; Bandyopadhyay, D.; Giri, P.; Mahapatra, J.; Chatterjee, A.; Jain, M.R.; Sharma, R. Discovery of N-cyano-sulfoximineurea derivatives as potent and orally bioavailable NLRP3 inflammasome inhibitors. ACS Med. Chem. Lett., 2020, 11(4), 414-418. doi: 10.1021/acsmedchemlett.9b00433 PMID: 32292543
  120. Harrison, D.; Boutard, N.; Brzozka, K.; Bugaj, M.; Chmielewski, S.; Cierpich, A.; Doedens, J.R.; Fabritius, C.H.R.Y.; Gabel, C.A.; Galezowski, M.; Kowalczyk, P.; Levenets, O.; Mroczkowska, M.; Palica, K.; Porter, R.A.; Schultz, D.; Sowinska, M.; Topolnicki, G.; Urbanski, P.; Woyciechowski, J.; Watt, A.P. Discovery of a series of ester-substituted NLRP3 inflammasome inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(23), 127560. doi: 10.1016/j.bmcl.2020.127560 PMID: 32956781
  121. Albanese, V.; Missiroli, S.; Perrone, M.; Fabbri, M.; Boncompagni, C.; Pacifico, S.; De Ventura, T.; Ciancetta, A.; Dondio, G.; Kricek, F.; Pinton, P.; Guerrini, R.; Preti, D.; Giorgi, C. Novel aryl sulfonamide derivatives as NLRP3 inflammasome inhibitors for the potential treatment of cancer. J. Med. Chem., 2023, 66(7), 5223-5241. doi: 10.1021/acs.jmedchem.3c00175 PMID: 36972104
  122. Li, W.; Cao, Z.; Cheng, J.; Chen, F.; Li, S.; Huang, Y.; Zheng, L.T.; Ye, N. Discovery of N-phenyl-1-(phenylsulfonamido)cyclopropane-1-carboxamide analogs as NLRP3 inflammasome inhibitors. Med. Chem. Res., 2021, 30(6), 1294-1308. doi: 10.1007/s00044-021-02740-7
  123. Narros-Fernández, P.; Chioua, M.; Petcu, S.A.; Diez-Iriepa, D.; Cerrada-Gálvez, L.; Decouty-Pérez, C.; Palomino-Antolín, A.; Ramos, E.; Farré-Alins, V.; López-Rodríguez, A.B.; Romero, A.; Marco-Contelles, J.; Egea, J. Synthesis and pharmacological evaluation of new N-sulfonylureas as NLRP3 inflammasome inhibitors: Identification of a hit compound to treat gout. J. Med. Chem., 2022, 65(8), 6250-6260. doi: 10.1021/acs.jmedchem.2c00149 PMID: 35403430
  124. Harrison, D.; Bock, M.G.; Doedens, J.R.; Gabel, C.A.; Holloway, M.K.; Lewis, A.; Scanlon, J.; Sharpe, A.; Simpson, I.D.; Smolak, P.; Wishart, G.; Watt, A.P. Discovery and optimization of triazolopyrimidinone derivatives as selective NLRP3 inflammasome inhibitors. ACS Med. Chem. Lett., 2022, 13(8), 1321-1328. doi: 10.1021/acsmedchemlett.2c00242 PMID: 35978696
  125. Ma, T.; Thiagarajah, J.R.; Yang, H.; Sonawane, N.D.; Folli, C.; Galietta, L.J.V.; Verkman, A.S. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin–induced intestinal fluid secretion. J. Clin. Invest., 2002, 110(11), 1651-1658. doi: 10.1172/JCI0216112 PMID: 12464670
  126. Jiang, H.; He, H.; Chen, Y.; Huang, W.; Cheng, J.; Ye, J.; Wang, A.; Tao, J.; Wang, C.; Liu, Q.; Jin, T.; Jiang, W.; Deng, X.; Zhou, R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med., 2017, 214(11), 3219-3238. doi: 10.1084/jem.20171419 PMID: 29021150
  127. Chen, Y.; He, H.; Jiang, H.; Li, L.; Hu, Z.; Huang, H.; Xu, Q.; Zhou, R.; Deng, X. Discovery and optimization of 4-oxo-2-thioxo-thiazolidinones as NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(7), 127021. doi: 10.1016/j.bmcl.2020.127021 PMID: 32057583
  128. Zuo, D.; Do, N.; Hwang, I.; Ann, J.; Yu, J.W.; Lee, J. Design and synthesis of an N-benzyl 5-(4-sulfamoylbenzylidene-2-thioxothiazolidin-4-one scaffold as a novel NLRP3 inflammasome inhibitor. Bioorg. Med. Chem. Lett., 2022, 65, 128693. doi: 10.1016/j.bmcl.2022.128693 PMID: 35314328
  129. Liu, W.; Guo, W.; Wu, J.; Luo, Q.; Tao, F.; Gu, Y.; Shen, Y.; Li, J.; Tan, R.; Xu, Q.; Sun, Y. A novel benzodimidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem. Pharmacol., 2013, 85(10), 1504-1512. doi: 10.1016/j.bcp.2013.03.008 PMID: 23506741
  130. Pan, L.; Hang, N.; Zhang, C.; Chen, Y.; Li, S.; Sun, Y.; Li, Z.; Meng, X. Synthesis and biological evaluation of novel benzimidazole derivatives and analogs targeting the NLRP3 inflammasome. Molecules, 2017, 22(2), 213. doi: 10.3390/molecules22020213 PMID: 28146092
  131. Chen, H.; Chen, X.; Sun, P.; Wu, D.; Yue, H.; Pan, J.; Li, X.; Zhang, C.; Wu, X.; Hua, L.; Hu, W.; Yang, Z. Discovery of dronedarone and its analogues as NLRP3 inflammasome inhibitors with potent anti-inflammation activity. Bioorg. Med. Chem. Lett., 2021, 46, 128160. doi: 10.1016/j.bmcl.2021.128160 PMID: 34062252
  132. Huang, Y.; Jiang, H.; Chen, Y.; Wang, X.; Yang, Y.; Tao, J.; Deng, X.; Liang, G.; Zhang, H.; Jiang, W.; Zhou, R. Tranilast directly targets NLRP 3 to treat inflammasome-driven diseases. EMBO Mol. Med., 2018, 10(4), e8689. doi: 10.15252/emmm.201708689 PMID: 29531021
  133. Zhuang, T.; Li, S.; Yi, X.; Guo, S.; Wang, Y.; Chen, J.; Liu, L.; Jian, Z.; Gao, T.; Kang, P.; Li, C. Tranilast directly targets NLRP3 to protect melanocytes from keratinocyte-derived IL-1β under oxidative stress. Front. Cell Dev. Biol., 2020, 8, 588. doi: 10.3389/fcell.2020.00588 PMID: 32754591
  134. Abdullaha, M.; Ali, M.; Kour, D.; Kumar, A.; Bharate, S.B. Discovery of benzocdindol-2-one and benzylidene-thiazolidine-2,4-dione as new classes of NLRP3 inflammasome inhibitors via ER-β structure based virtual screening. Bioorg. Chem., 2020, 95, 103500. doi: 10.1016/j.bioorg.2019.103500 PMID: 31869665
  135. Abdullaha, M.; Ali, M.; Kour, D.; Mudududdla, R.; Khajuria, P.; Kumar, A.; Bharate, S.B. Tetramethoxystilbene inhibits NLRP3 inflammasome assembly via blocking the oligomerization of apoptosis-associated speck-like protein containing caspase recruitment domain: In vitro and in vivo evaluation. ACS Pharmacol. Transl. Sci., 2021, 4(4), 1437-1448. doi: 10.1021/acsptsci.1c00126 PMID: 34423275
  136. Sebastian-Valverde, M.; Wu, H.; Al Rahim, M.; Sanchez, R.; Kumar, K.; De Vita, R.J.; Pasinetti, G.M. Discovery and characterization of small-molecule inhibitors of NLRP3 and NLRC4 inflammasomes. J. Biol. Chem., 2021, 296, 100597. doi: 10.1016/j.jbc.2021.100597 PMID: 33781745
  137. Dai, Z.; Chen, X.; An, L.; Li, C.; Zhao, N.; Yang, F.; You, S.; Hou, C.; Li, K.; Jiang, C.; You, Q.; Di, B.; Xu, L. Development of novel tetrahydroquinoline inhibitors of NLRP3 inflammasome for potential treatment of DSS-induced mouse colitis. J. Med. Chem., 2021, 64(1), 871-889. doi: 10.1021/acs.jmedchem.0c01924 PMID: 33332136
  138. Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5. doi: 10.1016/j.chembiol.2017.08.011 PMID: 28943355
  139. Jiao, Y.; Nan, J.; Mu, B.; Zhang, Y.; Zhou, N.; Yang, S.; Zhang, S.; Lin, W.; Wang, F.; Xia, A.; Cao, Z.; Chen, P.; Pan, Z.; Lin, G.; Pan, S.; Bin, H.; Li, L.; Yang, S. Discovery of a novel and potent inhibitor with differential species-specific effects against NLRP3 and AIM2 inflammasome-dependent pyroptosis. Eur. J. Med. Chem., 2022, 232, 114194. doi: 10.1016/j.ejmech.2022.114194 PMID: 35183871
  140. Abdullaha, M.; Mohammed, S.; Ali, M.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Discovery of quinazolin-4(3H)-ones as NLRP3 inflammasome inhibitors: Computational design, metal-free synthesis, and in vitro biological evaluation. J. Org. Chem., 2019, 84(9), 5129-5140. doi: 10.1021/acs.joc.9b00138 PMID: 30896160
  141. Liao, K.C.; Sandall, C.F.; Carlson, D.A.; Ulke-Lemée, A.; Platnich, J.M.; Hughes, P.F.; Muruve, D.A.; Haystead, T.A.J.; MacDonald, J.A. Application of immobilized ATP to the study of NLRP inflammasomes. Arch. Biochem. Biophys., 2019, 670, 104-115. doi: 10.1016/j.abb.2018.12.031 PMID: 30641048
  142. Gastaldi, S.; Boscaro, V.; Gianquinto, E.; Sandall, C.F.; Giorgis, M.; Marini, E.; Blua, F.; Gallicchio, M.; Spyrakis, F.; MacDonald, J.A.; Bertinaria, M. Chemical modulation of the 1-(piperidin-4-yl)-1,3-dihydro-2H-benzod imidazole-2-one scaffold as a novel NLRP3 inhibitor. Molecules, 2021, 26(13), 3975. doi: 10.3390/molecules26133975 PMID: 34209843
  143. Haseeb, M.; Javaid, N.; Yasmeen, F.; Jeong, U.; Han, J.H.; Yoon, J.; Seo, J.Y.; Heo, J.K.; Shin, H.C.; Kim, M.S.; Kim, W.; Choi, S. Novel small-molecule inhibitor of NLRP3 inflammasome reverses cognitive impairment in an Alzheimer’s disease model. ACS Chem. Neurosci., 2022, 13(6), 818-833. doi: 10.1021/acschemneuro.1c00831 PMID: 35196855
  144. Cocco, M.; Garella, D.; Di Stilo, A.; Borretto, E.; Stevanato, L.; Giorgis, M.; Marini, E.; Fantozzi, R.; Miglio, G.; Bertinaria, M. Electrophilic warhead-based design of compounds preventing NLRP3 inflammasome-dependent pyroptosis. J. Med. Chem., 2014, 57(24), 10366-10382. doi: 10.1021/jm501072b PMID: 25418070
  145. Cocco, M.; Miglio, G.; Giorgis, M.; Garella, D.; Marini, E.; Costale, A.; Regazzoni, L.; Vistoli, G.; Orioli, M.; Massulaha-Ahmed, R.; Détraz-Durieux, I.; Groslambert, M.; Py, B.F.; Bertinaria, M. Design, synthesis, and evaluation of acrylamide derivatives as direct NLRP3 inflammasome inhibitors. ChemMedChem, 2016, 11(16), 1790-1803. doi: 10.1002/cmdc.201600055 PMID: 26990578
  146. Cocco, M.; Pellegrini, C.; Martínez-Banaclocha, H.; Giorgis, M.; Marini, E.; Costale, A.; Miglio, G.; Fornai, M.; Antonioli, L.; López-Castejón, G.; Tapia-Abellán, A.; Angosto, D.; Hafner-Bratkovič, I.; Regazzoni, L.; Blandizzi, C.; Pelegrín, P.; Bertinaria, M. Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J. Med. Chem., 2017, 60(9), 3656-3671. doi: 10.1021/acs.jmedchem.6b01624 PMID: 28410442
  147. Juliana, C.; Fernandes-Alnemri, T.; Wu, J.; Datta, P.; Solorzano, L.; Yu, J.W.; Meng, R.; Quong, A.A.; Latz, E.; Scott, C.P.; Alnemri, E.S. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem., 2010, 285(13), 9792-9802. doi: 10.1074/jbc.M109.082305 PMID: 20093358
  148. Zhang, X.; Xu, A.; Ran, Y.; Wei, C.; Xie, F.; Wu, J. Design, synthesis and biological evaluation of phenyl vinyl sulfone based NLRP3 inflammasome inhibitors. Bioorg. Chem., 2022, 128, 106010. doi: 10.1016/j.bioorg.2022.106010 PMID: 35914391
  149. Marchetti, C.; Swartzwelter, B.; Gamboni, F.; Neff, C.P.; Richter, K.; Azam, T.; Carta, S.; Tengesdal, I.; Nemkov, T.; D’Alessandro, A.; Henry, C.; Jones, G.S.; Goodrich, S.A.; St Laurent, J.P.; Jones, T.M.; Scribner, C.L.; Barrow, R.B.; Altman, R.D.; Skouras, D.B.; Gattorno, M.; Grau, V.; Janciauskiene, S.; Rubartelli, A.; Joosten, L.A.B.; Dinarello, C.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl. Acad. Sci., 2018, 115(7), E1530-E1539. doi: 10.1073/pnas.1716095115 PMID: 29378952
  150. Lunding, L.P.; Skouras, D.B.; Vock, C.; Dinarello, C.A.; Wegmann, M. The NLRP3 inflammasome inhibitor, OLT1177®, ameliorates experimental allergic asthma in mice. Allergy, 2022, 77(3), 1035-1038. doi: 10.1111/all.15164 PMID: 34716997
  151. Marchetti, C.; Swartzwelter, B.; Koenders, M.I.; Azam, T.; Tengesdal, I.W.; Powers, N.; de Graaf, D.M.; Dinarello, C.A.; Joosten, L.A.B. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res. Ther., 2018, 20(1), 169. doi: 10.1186/s13075-018-1664-2 PMID: 30075804
  152. Lonnemann, N.; Hosseini, S.; Marchetti, C.; Skouras, D.B.; Stefanoni, D.; D’Alessandro, A.; Dinarello, C.A.; Korte, M. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci., 2020, 117(50), 32145-32154. doi: 10.1073/pnas.2009680117 PMID: 33257576
  153. He, Y.; Varadarajan, S.; Muñoz-Planillo, R.; Burberry, A.; Nakamura, Y.; Núñez, G. 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J. Biol. Chem., 2014, 289(2), 1142-1150. doi: 10.1074/jbc.M113.515080 PMID: 24265316
  154. Xiao, M.; Li, L.; Li, C.; Liu, L.; Yu, Y.; Ma, L. 3,4-Methylenedioxy-β-Nitrostyrene ameliorates experimental burn wound progression by inhibiting the NLRP3 inflammasome activation. Plast. Reconstr. Surg., 2016, 137(3), 566e-575e. doi: 10.1097/01.prs.0000479972.06934.83 PMID: 26910701
  155. Chen, Y.; He, H.; Lin, B.; Chen, Y.; Deng, X.; Jiang, W.; Zhou, R. RRx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3 inhibitor. Cell. Mol. Immunol., 2021, 18(6), 1425-1436. doi: 10.1038/s41423-021-00683-y PMID: 33972740
  156. Jayabalan, N.; Oronsky, B.; Cabrales, P.; Reid, T.; Caroen, S.; Johnson, A.M.; Birch, N.A.; O’Sullivan, J.D.; Gordon, R. A review of RRx-001: A late-stage multi-indication inhibitor of NLRP3 activation and chronic inflammation. Drugs, 2023, 83(5), 389-402. doi: 10.1007/s40265-023-01838-z PMID: 36920652
  157. Shim, D.W.; Shin, W.Y.; Yu, S.H.; Kim, B.H.; Ye, S.K.; Koppula, S.; Won, H.S.; Kang, T.B.; Lee, K.H. BOT-4-one attenuates NLRP3 inflammasome activation: NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination. Sci. Rep., 2017, 7(1), 15020. doi: 10.1038/s41598-017-15314-8 PMID: 29118366
  158. Ou, Y.; Sun, P.; Wu, N.; Chen, H.; Wu, D.; Hu, W.; Yang, Z. Synthesis and biological evaluation of parthenolide derivatives with reduced toxicity as potential inhibitors of the NLRP3 inflammasome. Bioorg. Med. Chem. Lett., 2020, 30(17), 127399. doi: 10.1016/j.bmcl.2020.127399 PMID: 32738997
  159. Chen, L.Z.; Zhang, X.X.; Liu, M.M.; Wu, J.; Ma, D.; Diao, L.Z.; Li, Q.; Huang, Y.S.; Zhang, R.; Ruan, B.F.; Liu, X.H. Discovery of novel pterostilbene-based derivatives as potent and orally active NLRP3 inflammasome inhibitors with inflammatory activity for colitis. J. Med. Chem., 2021, 64(18), 13633-13657. doi: 10.1021/acs.jmedchem.1c01007 PMID: 34506712
  160. Zhang, X.X.; Diao, L.Z.; Chen, L.Z.; Ma, D.; Wang, Y.M.; Jiang, H.; Ruan, B.F.; Liu, X.H. Discovery of 4-((E)-3,5-dimethoxy-2-((E)-2-nitrovinyl)styryl)aniline derivatives as potent and orally active NLRP3 inflammasome inhibitors for colitis. Eur. J. Med. Chem., 2022, 236, 114357. doi: 10.1016/j.ejmech.2022.114357 PMID: 35428012
  161. Ruan, B.; Rong, M.; Ming, Z.; Wang, K.; Liu, X.; Deng, L.; Zhang, X.; Xu, K.; Shi, C.; Gao, T.; Liu, X.; Chen, L. Discovery of pterostilbene analogs as novel NLRP3 inflammasome inhibitors for potential treatment of DSS-induced colitis in mice. Bioorg. Chem., 2023, 133, 106429. doi: 10.1016/j.bioorg.2023.106429 PMID: 36841048
  162. Zeng, Q.; Deng, H.; Li, Y.; Fan, T.; Liu, Y.; Tang, S.; Wei, W.; Liu, X.; Guo, X.; Jiang, J.; Wang, Y.; Song, D. Berberine directly targets the NEK7 protein to block the NEK7–NLRP3 interaction and exert anti-inflammatory activity. J. Med. Chem., 2021, 64(1), 768-781. doi: 10.1021/acs.jmedchem.0c01743 PMID: 33440945
  163. Li, J.; Sheng, H.; Wang, Y.; Lai, Z.; Wang, Y.; Cui, S. Scaffold hybrid of the natural product tanshinone I with piperidine for the discovery of a potent NLRP3 inflammasome inhibitor. J. Med. Chem., 2023, 66(4), 2946-2963. doi: 10.1021/acs.jmedchem.2c01967 PMID: 36786612
  164. He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550. doi: 10.1038/s41467-018-04947-6 PMID: 29959312
  165. Pang, L.; Liu, H.; Quan, H.; Sui, H.; Jia, Y. Development of novel oridonin analogs as specifically targeted NLRP3 inflammasome inhibitors for the treatment of dextran sulfate sodium-induced colitis. Eur. J. Med. Chem., 2023, 245(Pt 2), 114919. doi: 10.1016/j.ejmech.2022.114919 PMID: 36399877
  166. Thapa, P.; Upadhyay, S.P.; Singh, V.; Boinpelly, V.C.; Zhou, J.; Johnson, D.K.; Gurung, P.; Lee, E.S.; Sharma, R.; Sharma, M. Chalcone: A potential scaffold for NLRP3 inflammasome inhibitors. Europ. J. Med. Chem. Rep., 2023, 7, 100100. doi: 10.1016/j.ejmcr.2022.100100 PMID: 37033416
  167. Wang, K.; Lv, Q.; Miao, Y.; Qiao, S.; Dai, Y.; Wei, Z. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochem. Pharmacol., 2018, 155, 494-509. doi: 10.1016/j.bcp.2018.07.039 PMID: 30071202
  168. Leu, W.J.; Chu, J.C.; Hsu, J.L.; Du, C.M.; Jiang, Y.H.; Hsu, L.C.; Huang, W.J.; Guh, J.H. Chalcones display anti-NLRP3 inflammasome activity in macrophages through inhibition of both priming and activation Steps-structure-activity-relationship and mechanism studies. Molecules, 2020, 25(24), 5960. doi: 10.3390/molecules25245960 PMID: 33339319
  169. Tang, Y.L.; Zheng, X.; Qi, Y.; Pu, X.J.; Liu, B.; Zhang, X.; Li, X.S.; Xiao, W.L.; Wan, C.P.; Mao, Z.W. Synthesis and anti-inflammatory evaluation of new chalcone derivatives bearing bispiperazine linker as IL-1β inhibitors. Bioorg. Chem., 2020, 98, 103748. doi: 10.1016/j.bioorg.2020.103748 PMID: 32179281
  170. Zhang, C.; Yue, H.; Sun, P.; Hua, L.; Liang, S.; Ou, Y.; Wu, D.; Wu, X.; Chen, H.; Hao, Y.; Hu, W.; Yang, Z. Discovery of chalcone analogues as novel NLRP3 inflammasome inhibitors with potent anti-inflammation activities. Eur. J. Med. Chem., 2021, 219, 113417. doi: 10.1016/j.ejmech.2021.113417 PMID: 33845232
  171. Ma, X.; Zhao, M.; Tang, M.H.; Xue, L.L.; Zhang, R.J.; Liu, L.; Ni, H.F.; Cai, X.Y.; Kuang, S.; Hong, F.; Wang, L.; Chen, K.; Tang, H.; Li, Y.; Peng, A.H.; Yang, J.H.; Pei, H.Y.; Ye, H.Y.; Chen, L.J. Flavonoids with inhibitory effects on NLRP3 inflammasome activation from millettia velutina. J. Nat. Prod., 2020, 83(10), 2950-2959. doi: 10.1021/acs.jnatprod.0c00478 PMID: 32989985
  172. Zhang, R.; Hong, F.; Zhao, M.; Cai, X.; Jiang, X.; Ye, N.; Su, K.; Li, N.; Tang, M.; Ma, X.; Ni, H.; Wang, L.; Wan, L.; Chen, L.; Wu, W.; Ye, H. New highly potent NLRP3 inhibitors: Furanochalcone velutone F analogues. ACS Med. Chem. Lett., 2022, 13(4), 560-569. doi: 10.1021/acsmedchemlett.1c00597 PMID: 35450356
  173. Li, Q.; Feng, H.; Wang, H.; Wang, Y.; Mou, W.; Xu, G.; Zhang, P.; Li, R.; Shi, W.; Wang, Z.; Fang, Z.; Ren, L.; Wang, Y.; Lin, L.; Hou, X.; Dai, W.; Li, Z.; Wei, Z.; Liu, T.; Wang, J.; Guo, Y.; Li, P.; Zhao, X.; Zhan, X.; Xiao, X.; Bai, Z. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7-NLRP3 interaction. EMBO Rep., 2022, 23(2), e53499. doi: 10.15252/embr.202153499 PMID: 34882936
  174. Gong, Z.; Zhao, S.; Zhou, J.; Yan, J.; Wang, L.; Du, X.; Li, H.; Chen, Y.; Cai, W.; Wu, J. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol. Immunol., 2018, 104, 11-19. doi: 10.1016/j.molimm.2018.09.004 PMID: 30396035
  175. Zhang, X.; Hu, L.; Xu, S.; Ye, C.; Chen, A. Erianin: A direct NLRP3 inhibitor with remarkable anti-Inflammatory activity. Front. Immunol., 2021, 12, 739953. doi: 10.3389/fimmu.2021.739953 PMID: 34745110
  176. Wang, H.; Lin, X.; Huang, G.; Zhou, R.; Lei, S.; Ren, J.; Zhang, K.; Feng, C.; Wu, Y.; Tang, W. Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacol. Sin., 2023, 44(8), 1687-1700. doi: 10.1038/s41401-023-01054-1 PMID: 36964308
  177. Xu, H.; Chen, J.; Chen, P.; Li, W.; Shao, J.; Hong, S.; Wang, Y.; Chen, L.; Luo, W.; Liang, G. Costunolide covalently targets NACHT domain of NLRP3 to inhibit inflammasome activation and alleviate NLRP3-driven inflammatory diseases. Acta Pharm. Sin. B, 2023, 13(2), 678-693. doi: 10.1016/j.apsb.2022.09.014 PMID: 36873170
  178. Xu, H.; Li, W.; Hong, S.; Shao, J.; Chen, J.; Chattipakorn, N.; Wu, D.; Luo, W.; Liang, G. Tabersonine, a natural NLRP3 inhibitor, suppresses inflammasome activation in macrophages and attenuate NLRP3-driven diseases in mice. Acta Pharmacol. Sin., 2022, 0, 1-10. PMID: 36627344
  179. Li, W.; Xu, H.; Shao, J.; Chen, J.; Lin, Y.; Zheng, Z.; Wang, Y.; Luo, W.; Liang, G. Discovery of alantolactone as a naturally occurring NLRP3 inhibitor to alleviate NLRP3‐driven inflammatory diseases in mice. Br. J. Pharmacol., 2023, 180(12), 1634-1647. doi: 10.1111/bph.16036 PMID: 36668704
  180. Zhang, A.H.; Liu, W.; Jiang, N.; Xu, Q.; Tan, R.X. Spirodalesol, an NLRP3 inflammasome activation inhibitor. Org. Lett., 2016, 18(24), 6496-6499. doi: 10.1021/acs.orglett.6b03435 PMID: 27978645
  181. Liu, W.; Yang, J.; Fang, S.; Jiao, C.; Gao, J.; Zhang, A.; Wu, T.; Tan, R.; Xu, Q.; Guo, W. Spirodalesol analog 8A inhibits NLRP3 inflammasome activation and attenuates inflammatory disease by directly targeting adaptor protein ASC. J. Biol. Chem., 2022, 298(12), 102696. doi: 10.1016/j.jbc.2022.102696 PMID: 36379253
  182. Cui, W.; Chen, S.; Chi, Z.; Guo, X.; Zhang, X.; Zhong, Y.; Han, H.; Yao, K. Screening-based identification of xanthone as a novel NLRP3 inflammasome inhibitor via metabolic reprogramming. Clin. Transl. Med., 2021, 11(7), e496. doi: 10.1002/ctm2.496 PMID: 34323410
  183. Ahmed, S.; Kwatra, M.; Ranjan Panda, S.; Murty, U.S.N.; Naidu, V.G.M. Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav. Immun., 2021, 91, 142-158. doi: 10.1016/j.bbi.2020.09.017 PMID: 32971182
  184. González-Cofrade, L.; Oramas-Royo, S.; Cuadrado, I.; Amesty, Á.; Hortelano, S.; Estevez-Braun, A.; de las Heras, B. Dehydrohispanolone derivatives attenuate the inflammatory response through the modulation of inflammasome activation. J. Nat. Prod., 2020, 83(7), 2155-2164. doi: 10.1021/acs.jnatprod.0c00200 PMID: 32584575
  185. Bi, D.W.; Xiong, F.; Cheng, B.; Zhou, Y.L.; Zeb, M.A.; Tang, P.; Pang, W.H.; Zhang, R.H.; Li, X.L.; Zhang, X.J.; Xiao, W.L. Callintegers A and B, unusual tricyclo 4.4.0.09,10tetradecane clerodane diterpenoids from callicarpa integerrima with inhibitory effects on NLRP3 inflammasome activation. J. Nat. Prod., 2022, 85(11), 2675-2681. doi: 10.1021/acs.jnatprod.2c00568 PMID: 36286259
  186. Pu, D.B.; Zhang, X.J.; Bi, D.W.; Gao, J.B.; Yang, Y.; Li, X.L.; Lin, J.; Li, X.N.; Zhang, R.H.; Xiao, W.L. Callicarpins, Two classes of rearranged ent-clerodane diterpenoids from callicarpa plants blocking NLRP3 inflammasome-induced pyroptosis. J. Nat. Prod., 2020, 83(7), 2191-2199. doi: 10.1021/acs.jnatprod.0c00288 PMID: 32628479
  187. González-Cofrade, L.; P Green, J.; Cuadrado, I.; Amesty, Á.; Oramas-Royo, S.; David, Brough; Estévez-Braun, A.; Hortelano, S.; de Las Heras, B. Phenolic and quinone methide nor-triterpenes as selective NLRP3 inflammasome inhibitors. Bioorg. Chem., 2023, 132, 106362. doi: 10.1016/j.bioorg.2023.106362 PMID: 36657273
  188. Chen, C.; Liu, X.; Gong, L.; Zhu, T.; Zhou, W.; Kong, L.; Luo, J. Identification of Tubocapsanolide A as a novel NLRP3 inhibitor for potential treatment of colitis. Biochem. Pharmacol., 2021, 190, 114645. doi: 10.1016/j.bcp.2021.114645 PMID: 34090877
  189. Lin, G.; Li, N.; Li, D.; Chen, L.; Deng, H.; Wang, S.; Tang, J.; Ouyang, W. Carnosic acid inhibits NLRP3 inflammasome activation by targeting both priming and assembly steps. Int. Immunopharmacol., 2023, 116, 109819. doi: 10.1016/j.intimp.2023.109819 PMID: 36738671
  190. Shi, J.; Xia, Y.; Wang, H.; Yi, Z.; Zhang, R.; Zhang, X. Piperlongumine is an NLRP3 inhibitor with anti-inflammatory activity. Front. Pharmacol., 2022, 12, 818326. doi: 10.3389/fphar.2021.818326 PMID: 35095532

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024