Role of LncRNA MIAT in Diabetic Complications
- Authors: Wang L.1, Wang H.1, Luo Y.1, Wu W.1, Gui Y.1, Zhao J.1, Xiong R.1, Li X.1, Yuan D.2, Yuan C.1
-
Affiliations:
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
- College of Medicine and Health Science, China Three Gorges University
- Issue: Vol 31, No 13 (2024)
- Pages: 1716-1725
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644294
- DOI: https://doi.org/10.2174/0929867331666230914091944
- ID: 644294
Cite item
Full Text
Abstract
Long non-coding RNA (LncRNA) refers to a large class of RNAs with over 200 nucleotides that do not have the function of encoding proteins. In recent years, more and more literature has revealed that lncRNA is involved in manipulating genes related to human health and disease, playing outstanding biological functions, which has attracted widespread attention from researchers. The newly discovered long-stranded non-coding RNA myocardial infarction-related transcript (LncRNA MIAT) is abnormally expressed in a variety of diseases, especially in diabetic complications, and has been proven to have a wide range of effects. This review article aimed to summarize the importance of LncRNA MIAT in diabetic complications, such as diabetic cardiomyopathy, diabetic nephropathy, and diabetic retinopathy, and highlight the latest findings on the pathway and mechanism of its participation in regulating diabetic complications, which may aid in finding new intervention targets for the treatment of diabetic complications. LncRNA MIAT competitively binds microRNAs to regulate gene expression as competitive endogenous RNAs. Thus, this review article has reviewed the biological function and pathogenesis of LncRNA MIAT in diabetic complications and described its role in diabetic complications. This paper will help in finding new therapeutic targets and intervention strategies for diabetes complications.
Keywords
About the authors
Lijun Wang
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Hailin Wang
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Yiyang Luo
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Wei Wu
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Yibei Gui
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Jiale Zhao
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Ruisi Xiong
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Xueqin Li
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Ding Yuan
College of Medicine and Health Science, China Three Gorges University
Author for correspondence.
Email: info@benthamscience.net
Chengfu Yuan
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Author for correspondence.
Email: info@benthamscience.net
References
- Kallapur, A.; Sallam, T. Endothelial cells LEENE on noncoding RNAs in diabetic vasculopathy. J. Clin. Invest., 2023, 133(3), e167047. doi: 10.1172/JCI167047 PMID: 36719373
- Da, C.; Gong, C.Y.; Nan, W.; Zhou, K.S.; Wu, Z.L.; Zhang, H.H. The role of long non-coding RNA MIAT in cancers. Biomed. Pharmacother., 2020, 129, 110359. doi: 10.1016/j.biopha.2020.110359 PMID: 32535389
- Ishii, N.; Ozaki, K.; Sato, H.; Mizuno, H.; Susumu Saito; Takahashi, A.; Miyamoto, Y.; Ikegawa, S.; Kamatani, N.; Hori, M.; Satoshi, S.; Nakamura, Y.; Tanaka, T. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet., 2006, 51(12), 1087-1099. doi: 10.1007/s10038-006-0070-9 PMID: 17066261
- Liao, J.; He, Q.; Li, M.; Chen, Y.; Liu, Y.; Wang, J. LncRNA MIAT: Myocardial infarction associated and more. Gene, 2016, 578(2), 158-161. doi: 10.1016/j.gene.2015.12.032 PMID: 26707210
- Galaviz, K.I.; Weber, M.B.; Straus, A.; Haw, J.S.; Narayan, K.M.V.; Ali, M.K. Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care, 2018, 41(7), 1526-1534. doi: 10.2337/dc17-2222 PMID: 29934481
- Alfaifi, M.; Ali Beg, M.M.; Alshahrani, M.Y.; Ahmad, I.; Alkhathami, A.G.; Joshi, P.C.; Alshehri, O.M.; Alamri, A.M.; Verma, A.K. Circulating long non-coding RNAs NKILA, NEAT1, MALAT1, and MIAT expression and their association in type 2 diabetes mellitus. BMJ Open Diabetes Res. Care, 2021, 9(1), e001821. doi: 10.1136/bmjdrc-2020-001821 PMID: 33436407
- Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long noncoding RNAs. J. Am. Coll. Cardiol., 2016, 67(10), 1214-1226. doi: 10.1016/j.jacc.2015.12.051 PMID: 26965544
- Li, Y.; Li, J.; Chen, L.; Xu, L. The roles of long non-coding RNA in osteoporosis. Curr. Stem Cell Res. Ther., 2020, 15(7), 639-645. doi: 10.2174/1574888X15666200501235735 PMID: 32357819
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; Gingeras, T.R.; Guttman, M.; Hirose, T.; Huarte, M.; Johnson, R.; Kanduri, C.; Kapranov, P.; Lawrence, J.B.; Lee, J.T.; Mendell, J.T.; Mercer, T.R.; Moore, K.J.; Nakagawa, S.; Rinn, J.L.; Spector, D.L.; Ulitsky, I.; Wan, Y.; Wilusz, J.E.; Wu, M. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol., 2023, 24(6), 430-447. doi: 10.1038/s41580-022-00566-8 PMID: 36596869
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Taheri, M.; Arefian, N. Regulatory role of non-coding RNAs on immune responses during sepsis. Front. Immunol., 2021, 12, 798713. doi: 10.3389/fimmu.2021.798713 PMID: 34956235
- Tofigh, R.; Hosseinpourfeizi, M.; Baradaran, B.; Teimourian, S.; Safaralizadeh, R. Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci., 2023, 315, 121367. doi: 10.1016/j.lfs.2023.121367 PMID: 36639050
- Kretz, M.; Siprashvili, Z.; Chu, C.; Webster, D.E.; Zehnder, A.; Qu, K.; Lee, C.S.; Flockhart, R.J.; Groff, A.F.; Chow, J.; Johnston, D.; Kim, G.E.; Spitale, R.C.; Flynn, R.A.; Zheng, G.X.Y.; Aiyer, S.; Raj, A.; Rinn, J.L.; Chang, H.Y.; Khavari, P.A. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature., 2013, 493(7431), 231-235. doi: 10.1038/nature11661 PMID: 23201690
- Vance, K.W.; Ponting, C.P. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet., 2014, 30(8), 348-355. doi: 10.1016/j.tig.2014.06.001 PMID: 24974018
- Yu, B.; Wang, S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics, 2018, 8(13), 3654-3675. doi: 10.7150/thno.26024 PMID: 30026873
- Ballantyne, M.D.; McDonald, R.A.; Baker, A.H. lncRNA/MicroRNA interactions in the vasculature. Clin. Pharmacol. Ther., 2016, 99(5), 494-501. doi: 10.1002/cpt.355 PMID: 26910520
- Cech, T.R.; Steitz, J.A. The noncoding RNA revolution- trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94. doi: 10.1016/j.cell.2014.03.008 PMID: 24679528
- Ahn, Y.H.; Kim, J.S. Long non-coding RNAs as regulators of interactions between cancer-associated fibroblasts and cancer cells in the tumor microenvironment. Int. J. Mol. Sci., 2020, 21(20), 7484. doi: 10.3390/ijms21207484 PMID: 33050576
- Paldino, G.; Fierabracci, A. Shedding new light on the role of ERAP1 in Type 1 diabetes: A perspective on disease management. Autoimmun. Rev., 2023, 22(4), 103291. doi: 10.1016/j.autrev.2023.103291 PMID: 36740089
- Kim, D.H.; Park, J.S.; Choi, H.I.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. The role of the farnesoid X receptor in kidney health and disease: A potential therapeutic target in kidney diseases. Exp. Mol. Med., 2023, 55(2), 304-312. doi: 10.1038/s12276-023-00932-2 PMID: 36737665
- Jiang, S.; Fang, J.; Li, W. Protein restriction for diabetic kidney disease. Cochrane Libr., 2023, 2023(1), CD014906. doi: 10.1002/14651858.CD014906.pub2 PMID: 36594428
- Lim, L.L.; Chow, E.; Chan, J.C.N. Cardiorenal diseases in type 2 diabetes mellitus: Clinical trials and real-world practice. Nat. Rev. Endocrinol., 2023, 19(3), 151-163. doi: 10.1038/s41574-022-00776-2 PMID: 36446898
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98. doi: 10.1038/nrendo.2017.151 PMID: 29219149
- Zhao, X.; Ling, F.; Zhang, G.; Yu, N.; Yang, J.; Xin, X. The correlation between MicroRNAs and diabetic retinopathy. Front. Immunol., 2022, 13, 941982. doi: 10.3389/fimmu.2022.941982 PMID: 35958584
- Zhu, J.; Han, J.; Liu, L.; Liu, Y.; Xu, W.; Li, X.; Yang, L.; Gu, Y.; Tang, W.; Shi, Y.; Ye, S.; Hua, F.; Xiang, G.; Liu, M.; Sun, Z.; Su, Q.; Li, X.; Li, Y.; Li, Y.; Li, H.; Li, Y.; Yang, T.; Yang, J.; Shi, L.; Yu, X.; Chen, L.; Shao, J.; Liang, J.; Han, X.; Xue, Y.; Ma, J.; Zhu, D.; Mu, Y. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2023, 197, 110568. doi: 10.1016/j.diabres.2023.110568 PMID: 36738836
- Dwivedi, K.K.; Lakhani, P.; Sihota, P.; Tikoo, K.; Kumar, S.; Kumar, N. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomater., 2022, 158, 324-346. doi: 10.1016/j.actbio.2022.12.037 PMID: 36565785
- Liu, M.; Peng, T.; Hu, L.; Wang, M.; Guo, D.; Qi, B.; Ren, G.; Wang, D.; Li, Y.; Song, L.; Hu, J.; Li, Y. N-glycosylation-mediated CD147 accumulation induces cardiac fibrosis in the diabetic heart through ALK5 activation. Int. J. Biol. Sci., 2023, 19(1), 137-155. doi: 10.7150/ijbs.77469 PMID: 36594096
- Zhou, X.; Zhang, W.; Jin, M.; Chen, J.; Xu, W.; Kong, X. lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis., 2017, 8(7), e2929. doi: 10.1038/cddis.2017.321 PMID: 28703801
- Pant, T.; Dhanasekaran, A.; Fang, J.; Bai, X.; Bosnjak, Z.J.; Liang, M.; Ge, Z.D. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc. Disord., 2018, 18(1), 197. doi: 10.1186/s12872-018-0939-5 PMID: 30342478
- Sohrabifar, N.; Ghaderian, S.M.H.; Alipour Parsa, S.; Ghaedi, H.; Jafari, H. Variation in the expression level of MALAT1, MIAT and XIST lncRNAs in coronary artery disease patients with and without type 2 diabetes mellitus. Arch. Physiol. Biochem., 2022, 128(5), 1308-1315. doi: 10.1080/13813455.2020.1768410 PMID: 32447981
- Yu, Y.; Dong, Y.; Deng, B.; Yang, T. IncRNA MIAT accelerates keloid formation by miR-411-5p/JAG1 axis. Crit. Rev. Eukaryot. Gene Expr., 2023, 33(2), 81-92. doi: 10.1615/CritRevEukaryotGeneExpr.2022044734 PMID: 36734859
- Qu, X.; Du, Y.; Shu, Y.; Gao, M.; Sun, F.; Luo, S.; Yang, T.; Zhan, L.; Yuan, Y.; Chu, W.; Pan, Z.; Wang, Z.; Yang, B.; Lu, Y. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci. Rep., 2017, 7(1), 42657. doi: 10.1038/srep42657 PMID: 28198439
- Yao, L.; Zhou, B.; You, L.; Hu, H.; Xie, R. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis. Mol. Biol. Rep., 2020, 47(4), 2605-2617. doi: 10.1007/s11033-020-05347-0 PMID: 32130618
- García-Padilla, C.; Domínguez, J.N.; Aránega, A.E.; Franco, D. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(10), 194435. doi: 10.1016/j.bbagrm.2019.194435 PMID: 31678627
- Xiao, W.; Zheng, D.; Chen, X.; Yu, B.; Deng, K.; Ma, J.; Wen, X.; Hu, Y.; Hou, J. Long non-coding RNA MIAT is involved in the regulation of pyroptosis in diabetic cardiomyopathy via targeting miR-214-3p. iScience, 2021, 24(12), 103518. doi: 10.1016/j.isci.2021.103518 PMID: 34950859
- Tao, P.; Ji, J.; Wang, Q.; Cui, M.; Cao, M.; Xu, Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front. Immunol., 2022, 13, 1080456. doi: 10.3389/fimmu.2022.1080456 PMID: 36601125
- Wang, X.; Zhao, J.; Li, Y.; Rao, J.; Xu, G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front. Immunol., 2022, 13, 1090989. doi: 10.3389/fimmu.2022.1090989 PMID: 36618403
- Rayego-Mateos, S.; Rodrigues-Diez, R.R.; Fernandez-Fernandez, B.; Mora-Fernández, C.; Marchant, V.; Donate- Correa, J.; Navarro-González, J.F.; Ortiz, A.; Ruiz-Ortega, M. Targeting inflammation to treat diabetic kidney disease: The road to 2030. Kidney Int., 2023, 103(2), 282-296. doi: 10.1016/j.kint.2022.10.030 PMID: 36470394
- Forst, T.; Mathieu, C.; Giorgino, F.; Wheeler, D.C.; Papanas, N.; Schmieder, R.E.; Halabi, A.; Schnell, O.; Streckbein, M.; Tuttle, K.R. New strategies to improve clinical outcomes for diabetic kidney disease. BMC Med., 2022, 20(1), 337. doi: 10.1186/s12916-022-02539-2 PMID: 36210442
- Akhtar, M.; Taha, N.M.; Nauman, A.; Mujeeb, I.B.; Al-Nabet, A.D.M.H. Diabetic kidney disease: Past and present. Adv. Anat. Pathol., 2020, 27(2), 87-97. doi: 10.1097/PAP.0000000000000257 PMID: 31876542
- Zhao, Y.; Yan, G.; Mi, J.; Wang, G.; Yu, M.; Jin, D.; Tong, X.; Wang, X. The impact of lncRNA on diabetic kidney disease: Systematic review and in silico analyses. Comput. Intell. Neurosci., 2022, 2022, 1-17. doi: 10.1155/2022/8400106 PMID: 35528328
- Ghafouri-Fard, S.; Abak, A.; Talebi, S.F.; Shoorei, H.; Branicki, W.; Taheri, M.; Akbari Dilmaghani, N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed. Pharmacother., 2021, 143, 112132. doi: 10.1016/j.biopha.2021.112132 PMID: 34481379
- Wang, Z.; Zhang, B.; Chen, Z.; He, Y.; Ru, F.; Liu, P.; Chen, X. The long noncoding RNA myocardial infarction-associated transcript modulates the epithelial-mesenchymal transition in renal interstitial fibrosis. Life Sci., 2020, 241, 117187. doi: 10.1016/j.lfs.2019.117187 PMID: 31863776
- Liu, Y.; Xu, Z.; Ma, F.; Jia, Y.; Wang, G. Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway. Biomed. Pharmacother., 2018, 107, 1393-1401. doi: 10.1016/j.biopha.2018.08.134 PMID: 30257355
- Zhang, M.; Zhao, S.; Xu, C.; Shen, Y.; Huang, J.; Shen, S.; Li, Y.; Chen, X. Ablation of lncRNA MIAT mitigates high glucose-stimulated inflammation and apoptosis of podocyte via miR-130a-3p/TLR4 signaling axis. Biochem. Biophys. Res. Commun., 2020, 533(3), 429-436. doi: 10.1016/j.bbrc.2020.09.034 PMID: 32972755
- Tan, T.E.; Wong, T.Y. Diabetic retinopathy: Looking forward to 2030. Front. Endocrinol., 2023, 13, 1077669. doi: 10.3389/fendo.2022.1077669 PMID: 36699020
- Teo, Z.L.; Tham, Y.C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; Wong, I.Y.; Ting, D.S.W.; Tan, G.S.W.; Jonas, J.B.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.Y. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology., 2021, 128(11), 1580-1591. doi: 10.1016/j.ophtha.2021.04.027 PMID: 33940045
- Cai, C.; Meng, C.; He, S.; Gu, C.; Lhamo, T.; Draga, D.; Luo, D.; Qiu, Q. DNA methylation in diabetic retinopathy: Pathogenetic role and potential therapeutic targets. Cell Biosci., 2022, 12(1), 186. doi: 10.1186/s13578-022-00927-y PMID: 36397159
- Elafros, M.A.; Callaghan, B.C.; Skolarus, L.E.; Vileikyte, L.; Lawrenson, J.G.; Feldman, E.L. Patient and health care provider knowledge of diabetes and diabetic microvascular complications: A comprehensive literature review. Rev. Endocr. Metab. Disord., 2022, 24(2), 221-239. doi: 10.1007/s11154-022-09754-5 PMID: 36322296
- Yue, T.; Shi, Y.; Luo, S.; Weng, J.; Wu, Y.; Zheng, X. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Front. Immunol., 2022, 13, 1055087. doi: 10.3389/fimmu.2022.1055087 PMID: 36582230
- Kaur, P.; Kotru, S.; Singh, S.; Munshi, A. Role of miRNAs in diabetic neuropathy: Mechanisms and possible interventions. Mol. Neurobiol., 2022, 59(3), 1836-1849. doi: 10.1007/s12035-021-02662-w PMID: 35023058
- Alves, C.H.; Fernandes, R.; Santiago, A.R.; Ambrósio, A.F. Microglia contribution to the regulation of the retinal and choroidal vasculature in age-related macular degeneration. Cells., 2020, 9(5), 1217. doi: 10.3390/cells9051217 PMID: 32423062
- Zhang, J.; Chen, M.; Chen, J.; Lin, S.; Cai, D.; Chen, C.; Chen, Z. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci. Rep., 2017, 37(2), BSR20170036. doi: 10.1042/BSR20170036 PMID: 28246353
- Yan, B.; Yao, J.; Liu, J.Y.; Li, X.M.; Wang, X.Q.; Li, Y.J.; Tao, Z.F.; Song, Y.C.; Chen, Q.; Jiang, Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res., 2015, 116(7), 1143-1156. doi: 10.1161/CIRCRESAHA.116.305510 PMID: 25587098
- Yu, X.; Ma, X.; Lin, W.; Xu, Q.; Zhou, H.; Kuang, H. Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-3423p targeting of CASP1 in diabetic retinopathy. Exp. Eye Res., 2021, 202, 108300. doi: 10.1016/j.exer.2020.108300 PMID: 33065089
- Biswas, S.; Coyle, A.; Chen, S.; Gostimir, M.; Gonder, J.; Chakrabarti, S. Expressions of serum lncRNAs in diabetic retinopathy a potential diagnostic tool. Front. Endocrinol., 2022, 13, 851967. doi: 10.3389/fendo.2022.851967 PMID: 35464068
- Cao, W.; Zhang, N.; He, X.; Xing, Y.; Yang, N. Long non- coding RNAs in retinal neovascularization: current research and future directions. Graefes Arch. Clin. Exp. Ophthalmol., 2022. doi: 10.1007/s00417-022-05843-y PMID: 36171459
- Zhu, X.; Li, Q.; George, V.; Spanoudis, C.; Gilkes, C.; Shrestha, N.; Liu, B.; Kong, L.; You, L.; Echeverri, C.; Li, L.; Wang, Z.; Chaturvedi, P.; Muniz, G.J.; Egan, J.O.; Rhode, P.R.; Wong, H.C. A novel interleukin-2-based fusion molecule, HCW9302, differentially promotes regulatory T cell expansion to treat atherosclerosis in mice. Front. Immunol., 2023, 14, 1114802. doi: 10.3389/fimmu.2023.1114802 PMID: 36761778
- Xu, S.; Pelisek, J.; Jin, Z.G. Atherosclerosis is an epigenetic disease. Trends Endocrinol. Metab., 2018, 29(11), 739-742. doi: 10.1016/j.tem.2018.04.007 PMID: 29753613
- Fasolo, F.; Jin, H.; Winski, G.; Chernogubova, E.; Pauli, J.; Winter, H.; Li, D.Y.; Glukha, N.; Bauer, S.; Metschl, S.; Wu, Z.; Koschinsky, M.L.; Reilly, M.; Pelisek, J.; Kempf, W.; Eckstein, H.H.; Soehnlein, O.; Matic, L.; Hedin, U.; Bäcklund, A.; Bergmark, C.; Paloschi, V.; Maegdefessel, L. Long noncoding RNA MIAT controls advanced atherosclerotic lesion formation and plaque destabilization. Circulation., 2021, 144(19), 1567-1583. doi: 10.1161/CIRCULATIONAHA.120.052023 PMID: 34647815
- Wu, L.; Pei, Y.; Zhu, Y.; Jiang, M.; Wang, C.; Cui, W.; Zhang, D. Association of N6-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarction-associated transcripts. Cell Death Dis., 2019, 10(12), 909. doi: 10.1038/s41419-019-2152-6 PMID: 31797919
- Sun, G.; Li, Y.; Ji, Z. Up-regulation of MIAT aggravates the atherosclerotic damage in atherosclerosis mice through the activation of PI3K/Akt signaling pathway. Drug Deliv., 2019, 26(1), 641-649. doi: 10.1080/10717544.2019.1628116 PMID: 31237148
- Zhou, Y.; Ma, W.; Bian, H.; Chen, Y.; Li, T.; Shang, D.; Sun, H. Long non-coding RNA MIAT/miR-148b/PAPPA axis modifies cell proliferation and migration in ox-LDL-induced human aorta vascular smooth muscle cells. Life Sci., 2020, 256, 117852. doi: 10.1016/j.lfs.2020.117852 PMID: 32470448
- Han, X.; Cai, L.; Shi, Y.; Hua, Z.; Lu, Y.; Li, D.; Yang, J. Integrated analysis of long non-coding RNA-mRNA profile and validation in diabetic cataract. Curr. Eye Res., 2022, 47(3), 382-390. doi: 10.1080/02713683.2021.1984536 PMID: 35068271
- Meydan, C.; Üçeyler, N.; Soreq, H. Non-coding RNA regulators of diabetic polyneuropathy. Neurosci. Lett., 2020, 731, 135058. doi: 10.1016/j.neulet.2020.135058 PMID: 32454150
- Meydan, C.; Bekenstein, U.; Soreq, H. Molecular regulatory pathways link sepsis with metabolic syndrome: Non- coding RNA elements underlying the sepsis/metabolic cross-talk. Front. Mol. Neurosci., 2018, 11, 189. doi: 10.3389/fnmol.2018.00189 PMID: 29922126
- Huo, W.; Hou, Y.; Li, Y.; Li, H. Downregulated lncRNA-MIAT confers protection against erectile dysfunction by downregulating lipoprotein lipase via activation of miR-328a-5p in diabetic rats. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1226-1240. doi: 10.1016/j.bbadis.2019.01.018 PMID: 30660685
Supplementary files
