Multiple Natural Polymers in Drug and Gene Delivery Systems


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Natural polymers are organic compounds produced by living organisms. In nature, they exist in three main forms, including proteins, polysaccharides, and nucleic acids. In recent years, with the continuous research on drug and gene delivery systems, scholars have found that natural polymers have promising applications in drug and gene delivery systems due to their excellent properties such as biocompatibility, biodegradability, low immunogenicity, and easy modification. However, since the structure, physicochemical properties, pharmacological properties and biological characteristics of biopolymer molecules have not yet been entirely understood, further studies are required before large-scale clinical application. This review focuses on recent advances in the representative natural polymers such as proteins (albumin, collagen, elastin), polysaccharides (chitosan, alginate, cellulose) and nucleic acids. We introduce the characteristics of various types of natural polymers, and further outline the characterization methods and delivery forms of these natural polymers. Finally, we discuss possible challenges for natural polymers in subsequent experimental studies and clinical applications. It provides an important strategy for the clinical application of natural polymers in drug and gene delivery systems.

Авторлар туралы

Zhengfa Jiang

Department of Orthopedics, First Affiliated Hospital of Zhengzhou University

Email: info@benthamscience.net

Zongmian Song

Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University

Email: info@benthamscience.net

Chen Cao

Department of Orthopedics, Zhengzhou University People’s Hospital

Email: info@benthamscience.net

Miaoheng Yan

Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University

Email: info@benthamscience.net

Zhendong Liu

Department of Orthopedics, Zhengzhou University People’s Hospital

Email: info@benthamscience.net

Xingbo Cheng

Department of Orthopedics, Zhengzhou University People’s Hospital

Email: info@benthamscience.net

Hongbo Wang

Department of Orthopedics, Zhengzhou University People’s Hospital

Email: info@benthamscience.net

Qingnan Wang

Department of Orthopedics, Zhengzhou University People’s Hospital

Email: info@benthamscience.net

Hongjian Liu

Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Songfeng Chen

Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Jo, Y. K.; Lee, D. Biopolymer microparticles prepared by microfluidics for biomedical applications. Small (Weinheim an der Bergstrasse, Germany), 2020, 16(9), e1903736.
  2. Gobi, R.; Ravichandiran, P.; Babu, R.S.; Yoo, D.J. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: A review. Polymers, 2021, 13(12), 1962. doi: 10.3390/polym13121962 PMID: 34199209
  3. Pattanashetti, N.A.; Heggannavar, G.B.; Kariduraganavar, M.Y. In smart biopolymers and their biomedical applications. International Conference on Sustainable and Intelligent Manufacturing (RESIM), Leiria, PORTUGAL Dec 14-17, 2016, pp. 263-279.
  4. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  5. Gopinath, V.; Kamath, S. M.; Priyadarshini, S.; Chik, Z.; Alarfaj, A. A.; Hirad, A. H. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed. Pharmacother., 2022, 146, 112492.
  6. Nitta, S.; Numata, K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci., 2013, 14(1), 1629-1654. doi: 10.3390/ijms14011629 PMID: 23344060
  7. Chambre, L.; Martín-Moldes, Z.; Parker, R.N.; Kaplan, D.L. Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv. Drug Deliv. Rev., 2020, 160, 186-198. doi: 10.1016/j.addr.2020.10.008 PMID: 33080258
  8. Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv., 2016, 13(11), 1609-1623. doi: 10.1080/17425247.2016.1193149 PMID: 27216915
  9. Quinlan, G.J.; Martin, G.S.; Evans, T.W. Albumin: Biochemical properties and therapeutic potential. Hepatology, 2005, 41(6), 1211-1219. doi: 10.1002/hep.20720 PMID: 15915465
  10. Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-83.
  11. Yu, L.; Hua, Z.; Luo, X.; Zhao, T.; Liu, Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(1), 188655. doi: 10.1016/j.bbcan.2021.188655 PMID: 34780933
  12. De Simone, G.; di Masi, A.; Ascenzi, P. Serum albumin: A multifaced enzyme. Int. J. Mol. Sci., 2021, 22(18), 10086. doi: 10.3390/ijms221810086 PMID: 34576249
  13. Wang, Z.; Ho, J.X.; Ruble, J.R.; Rose, J.; Rüker, F.; Ellenburg, M.; Murphy, R.; Click, J.; Soistman, E.; Wilkerson, L.; Carter, D.C. Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(12), 5356-5374. doi: 10.1016/j.bbagen.2013.06.032 PMID: 23838380
  14. Zeeshan, F.; Madheswaran, T.; Panneerselvam, J.; Taliyan, R.; Kesharwani, P. Human serum albumin as multifunctional nanocarrier for cancer therapy. J. Pharm. Sci., 2021, 110(9), 3111-3117. doi: 10.1016/j.xphs.2021.05.001 PMID: 33989679
  15. Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm., 2021, 18(5), 1862-1894. doi: 10.1021/acs.molpharmaceut.1c00046 PMID: 33787270
  16. Tao, H.; Wang, R.; Sheng, W.; Zhen, Y. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int. J. Biol. Macromol., 2021, 187, 24-34. doi: 10.1016/j.ijbiomac.2021.07.080 PMID: 34284054
  17. Liu, Z.; Chen, X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev., 2016, 45(5), 1432-1456. doi: 10.1039/C5CS00158G PMID: 26771036
  18. Xu, R.; Fisher, M.; Juliano, R.L. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug. Chem., 2011, 22(5), 870-878. doi: 10.1021/bc1002295 PMID: 21452893
  19. Al-Hajeili, M.; Azmi, A.S.; Choi, M. Nab-paclitaxel: potential for the treatment of advanced pancreatic cancer. OncoTargets Ther., 2014, 7, 187-192. PMID: 24523592
  20. Wiedenmann, N.; Valdecanas, D.; Hunter, N.; Hyde, S.; Buchholz, T.A.; Milas, L.; Mason, K.A. 130-nm albumin-bound paclitaxel enhances tumor radiocurability and therapeutic gain. Clin. Cancer Res., 2007, 13(6), 1868-1874. doi: 10.1158/1078-0432.CCR-06-2534 PMID: 17363543
  21. Hu, H.; Quintana, J.; Weissleder, R.; Parangi, S.; Miller, M. Deciphering albumin-directed drug delivery by imaging. Adv. Drug Deliv. Rev., 2022, 185, 114237. doi: 10.1016/j.addr.2022.114237 PMID: 35364124
  22. Du, J.; Zhao, X.; Li, B.; Mou, Y.; Wang, Y. DNA-loaded microbubbles with crosslinked bovine serum albumin shells for ultrasound-promoted gene delivery and transfection. Colloids Surf. B Biointerfaces, 2018, 161, 279-287. doi: 10.1016/j.colsurfb.2017.10.036 PMID: 29096372
  23. Miyakawa, N.; Nishikawa, M.; Takahashi, Y.; Ando, M.; Misaka, M.; Watanabe, Y.; Takakura, Y. Gene delivery of albumin binding peptide-interferon-gamma fusion protein with improved pharmacokinetic properties and sustained biological activity. J. Pharm. Sci., 2013, 102(9), 3110-3118. doi: 10.1002/jps.23493 PMID: 23463584
  24. Wang, Y.; Chen, S.; Yang, X.; Zhang, S.; Cui, C. Preparation optimization of bovine serum albumin nanoparticles and its application for siRNA delivery. Drug Des. Devel. Ther., 2021, 15, 1531-1547. doi: 10.2147/DDDT.S299479 PMID: 33883877
  25. Lei, C.; Liu, X. R.; Chen, Q. B.; Li, Y.; Zhou, J. L.; Zhou, L. Y.; Zou, T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release, 2021, 331, 416-433.
  26. Wang, M.; Zhang, L.; Cai, Y.; Yang, Y.; Qiu, L.; Shen, Y.; Jin, J.; Zhou, J.; Chen, J. Bioengineered human serum albumin fusion protein as Target/Enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano, 2020, 14(12), 17405-17418. doi: 10.1021/acsnano.0c07610 PMID: 33202141
  27. Lamichhane, S.; Lee, S. Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res., 2020, 43(1), 118-133. doi: 10.1007/s12272-020-01204-7 PMID: 31916145
  28. Müller, W.E.G. The origin of metazoan complexity: porifera as integrated animals. Integr. Comp. Biol., 2003, 43(1), 3-10. doi: 10.1093/icb/43.1.3 PMID: 21680404
  29. Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem., 2009, 78(1), 929-958. doi: 10.1146/annurev.biochem.77.032207.120833 PMID: 19344236
  30. Xu, N.; Peng, X.L.; Li, H.R.; Liu, J.X.; Cheng, J.S.Y.; Qi, X.Y.; Ye, S.J.; Gong, H.L.; Zhao, X.H.; Yu, J.; Xu, G.; Wei, D.X. Marine-derived collagen as biomaterials for human health. Front. Nutr., 2021, 8, 702108. doi: 10.3389/fnut.2021.702108 PMID: 34504861
  31. Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; Zeugolis, D.I. The Collagen Suprafamily: From biosynthesis to advanced biomaterial development. Adv. Mater., 2019, 31(1), 1801651. doi: 10.1002/adma.201801651 PMID: 30126066
  32. Sarrigiannidis, S.O.; Rey, J.M.; Dobre, O.; González-García, C.; Dalby, M.J.; Salmeron-Sanchez, M. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio, 2021, 10, 100098. doi: 10.1016/j.mtbio.2021.100098 PMID: 33763641
  33. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004978. doi: 10.1101/cshperspect.a004978 PMID: 21421911
  34. Fujioka, K.; Takada, Y.; Sato, S.; Miyata, T. Novel delivery system for proteins using collagen as a carrier material: the minipellet. J. Control. Release, 1995, 33(2), 307-315. doi: 10.1016/0168-3659(94)00107-6
  35. Higaki, M.; Azechi, Y.; Takase, T.; Igarashi, R.; Nagahara, S.; Sano, A.; Fujioka, K.; Nakagawa, N.; Aizawa, C.; Mizushima, Y. Collagen minipellet as a controlled release delivery system for tetanus and diphtheria toxoid. Vaccine, 2001, 19(23-24), 3091-3096. doi: 10.1016/S0264-410X(01)00039-1 PMID: 11312003
  36. Gu, L.; Shan, T.; Ma, Y.; Tay, F.R.; Niu, L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol., 2019, 37(5), 464-491. doi: 10.1016/j.tibtech.2018.10.007 PMID: 30447877
  37. Adamiak, K.; Sionkowska, A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol., 2020, 161, 550-560. doi: 10.1016/j.ijbiomac.2020.06.075 PMID: 32534089
  38. Wang, Z.; Liu, H.; Luo, W.; Cai, T.; Li, Z.; Liu, Y.; Gao, W.; Wan, Q.; Wang, X.; Wang, J.; Wang, Y.; Yang, X. Regeneration of skeletal system with genipin crosslinked biomaterials. J. Tissue Eng., 2020, 11, 2041731420974861. doi: 10.1177/2041731420974861 PMID: 33294154
  39. Persadmehr, A.; Torneck, C.D.; Cvitkovitch, D.G.; Pinto, V.; Talior, I.; Kazembe, M.; Shrestha, S.; McCulloch, C.A.; Kishen, A. Bioactive chitosan nanoparticles and photodynamic therapy inhibit collagen degradation in vitro. J. Endod., 2014, 40(5), 703-709. doi: 10.1016/j.joen.2013.11.004 PMID: 24767568
  40. Li, Y.; He, Q.; Hu, X.; Liu, Y.; Cheng, X.; Li, X.; Deng, F. Improved performance of collagen scaffolds crosslinked by Traut’s reagent and Sulfo-SMCC. J. Biomater. Sci. Polym. Ed., 2017, 28(7), 629-647. doi: 10.1080/09205063.2017.1291296 PMID: 28277011
  41. Milczek, E.M. Commercial applications for enzyme-mediated protein conjugation: New developments in enzymatic processes to deliver functionalized proteins on the commercial scale. Chem. Rev., 2018, 118(1), 119-141. doi: 10.1021/acs.chemrev.6b00832 PMID: 28627171
  42. Eekhoff, J.D.; Fang, F.; Lake, S.P. Multiscale mechanical effects of native collagen cross-linking in tendon. Connect. Tissue Res., 2018, 59(5), 410-422. doi: 10.1080/03008207.2018.1449837 PMID: 29873266
  43. Stachel, I.; Schwarzenbolz, U.; Henle, T.; Meyer, M. Cross-linking of type I collagen with microbial transglutaminase: Identification of cross-linking sites. Biomacromolecules, 2010, 11(3), 698-705. doi: 10.1021/bm901284x PMID: 20131754
  44. Davison-Kotler, E.; Marshall, W.S.; García-Gareta, E. Sources of collagen for biomaterials in skin wound healing. Bioengineering, 2019, 6(3), 56. doi: 10.3390/bioengineering6030056 PMID: 31261996
  45. Bhattacharjee, P.; Ahearne, M. Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering. Pharmaceutics, 2021, 13(3), 319. doi: 10.3390/pharmaceutics13030319 PMID: 33671011
  46. Seong, Y.J.; Song, E.H.; Park, C.; Lee, H.; Kang, I.G.; Kim, H.E.; Jeong, S.H. Porous calcium phosphate–collagen composite microspheres for effective growth factor delivery and bone tissue regeneration. Mater. Sci. Eng. C, 2020, 109, 110480. doi: 10.1016/j.msec.2019.110480 PMID: 32228926
  47. Paradowska-Stolarz, A.; Wieckiewicz, M.; Owczarek, A.; Wezgowiec, J. Natural polymers for the maintenance of oral health: review of recent advances and perspectives. Int. J. Mol. Sci., 2021, 22(19), 10337. doi: 10.3390/ijms221910337 PMID: 34638678
  48. Vindin, H.; Mithieux, S. M.; Weiss, A. S. Elastin architecture. Matrix Biol., 2019, 84, 4-16.
  49. Hedtke, T.; Schräder, C.U.; Heinz, A.; Hoehenwarter, W.; Brinckmann, J.; Groth, T.; Schmelzer, C.E.H. A comprehensive map of human elastin cross-linking during elastogenesis. FEBS J., 2019, 286(18), 3594-3610. doi: 10.1111/febs.14929 PMID: 31102572
  50. Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent progress in biopolymer-based hydrogel materials for biomedical applications. Int. J. Mol. Sci., 2022, 23(3), 1415. doi: 10.3390/ijms23031415 PMID: 35163339
  51. Saxena, R.; Nanjan, M.J. Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv., 2015, 22(2), 156-167. doi: 10.3109/10717544.2013.853210 PMID: 24215207
  52. Jao, D.; Xue, Y.; Medina, J.; Hu, X. Protein-based drug-delivery materials. Materials, 2017, 10(5), 517.
  53. DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein polymer-based nanoparticles: fabrication and medical applications. Int. J. Mol. Sci., 2018, 19(6), 1717. doi: 10.3390/ijms19061717 PMID: 29890756
  54. Liu, W.; Dreher, M. R.; Furgeson, D. Y.; Peixoto, K. V.; Yuan, H.; Zalutsky, M. R.; Chilkoti, A. Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J. Control. Release, 2006, 116(2), 170-8.
  55. Meyer, D.E.; Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules, 2002, 3(2), 357-367. doi: 10.1021/bm015630n PMID: 11888323
  56. Fletcher, E.E.; Yan, D.; Kosiba, A.A.; Zhou, Y.; Shi, H. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr. Purif., 2019, 153, 114-120. doi: 10.1016/j.pep.2018.09.006 PMID: 30217600
  57. Chilkoti, A.; Dreher, M.R.; Meyer, D.E.; Raucher, D. Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev., 2002, 54(5), 613-630. doi: 10.1016/S0169-409X(02)00041-8 PMID: 12204595
  58. Massodi, I.; Raucher, D. A thermally responsive Tat-elastin-like polypeptide fusion protein induces membrane leakage, apoptosis, and cell death in human breast cancer cells. J. Drug Target., 2007, 15(9), 611-622. doi: 10.1080/10611860701502780 PMID: 17968715
  59. Kelly, G.; Milligan, J. J.; Mastria, E. M.; Kim, S.; Zelenetz, S. R.; Dobbins, J.; Cai, L. Y.; Li, X.; Nair, S. K.; Chilkoti, A. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J. Control. Release, 2022, 343, 267-276.
  60. Kang, H. J.; Kumar, S.; D'Elia, A.; Dash, B.; Nanda, V.; Hsia, H. C.; Yarmush, M. L.; Berthiaume, F. Self-assembled elastin-like polypeptide fusion protein coacervates as competitive inhibitors of advanced glycation end-products enhance diabetic wound healing. J. Control. Release, 2021, 333, 176-187.
  61. Rodríguez-Cabello, J.C.; González de Torre, I.; Ibañez- Fonseca, A.; Alonso, M. Bioactive scaffolds based on elastin-like materials for wound healing. Adv. Drug Deliv. Rev., 2018, 129, 118-133. doi: 10.1016/j.addr.2018.03.003 PMID: 29551651
  62. Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev., 2008, 60(15), 1650-1662. doi: 10.1016/j.addr.2008.09.001 PMID: 18848591
  63. Nosrati, H.; Khodaei, M.; Alizadeh, Z.; Banitalebi-Dehkordi, M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int. J. Biol. Macromol., 2021, 192, 298-322. doi: 10.1016/j.ijbiomac.2021.10.013 PMID: 34634326
  64. Lee, J.W.; Park, J.H.; Robinson, J.R. Bioadhesive-based dosage forms: The next generation. J. Pharm. Sci., 2000, 89(7), 850-866. doi: 10.1002/1520-6017(200007)89:73.0.CO;2-G PMID: 10861586
  65. Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. Lebensm. Wiss. Technol., 2010, 43(6), 837-842. doi: 10.1016/j.lwt.2010.01.021
  66. Narain, R. Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels; John Wiley & Sons, 2011. doi: 10.1002/9780470944349
  67. Roldo, M.; Hornof, M.; Caliceti, P.; Bernkop-Schnürch, A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm., 2004, 57(1), 115-21.
  68. Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2004, 12(1), 41-57. doi: 10.1080/10717540590889781 PMID: 15801720
  69. Zhang, L.; Zhang, N. Advances of chitosan and its derivatives in drug delivery systems. Chin. J. New Drugs Clin. Remedies, 2014, 33(1), 9-14.
  70. Strand, S.P.; Lelu, S.; Reitan, N.K.; de Lange Davies, C.; Artursson, P.; Vårum, K.M. Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials, 2010, 31(5), 975-987. doi: 10.1016/j.biomaterials.2009.09.102 PMID: 19857892
  71. Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci., 2019, 263, 131-194. doi: 10.1016/j.cis.2018.11.008 PMID: 30530176
  72. Maleki Dana, P.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M.A.; Yousefi, B. Chitosan applications in studying and managing osteosarcoma. Int. J. Biol. Macromol., 2021, 169, 321-329. doi: 10.1016/j.ijbiomac.2020.12.058 PMID: 33310094
  73. Shahid-ul-Islam; Butola, B.S. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol., 2019, 121, 905-912. doi: 10.1016/j.ijbiomac.2018.10.102 PMID: 30342136
  74. Chang, S.H.; Wu, C.H.; Tsai, G.J. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym., 2018, 181, 1026-1032. doi: 10.1016/j.carbpol.2017.11.047 PMID: 29253927
  75. Mohammadi, Z.; Eini, M.; Rastegari, A.; Tehrani, M.R. Chitosan as a machine for biomolecule delivery: A review. Carbohydr. Polym., 2021, 256, 117414. doi: 10.1016/j.carbpol.2020.117414 PMID: 33483009
  76. Deineka, V.; Sulaieva, O.; Pernakov, N.; Radwan-Pragłowska, J.; Janus, L.; Korniienko, V.; Husak, Y.; Yanovska, A.; Liubchak, I.; Yusupova, A.; Piątkowski, M.; Zlatska, A.; Pogorielov, M. Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Mater. Sci. Eng. C, 2021, 120, 111740. doi: 10.1016/j.msec.2020.111740 PMID: 33545883
  77. Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686. doi: 10.1111/jcmm.13110 PMID: 28244656
  78. Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev., 2010, 62(1), 59-82. doi: 10.1016/j.addr.2009.11.009 PMID: 19925837
  79. Kim, K.; Kim, K.; Ryu, J.H.; Lee, H. Chitosan-catechol: A polymer with long-lasting mucoadhesive properties. Biomaterials, 2015, 52, 161-170. doi: 10.1016/j.biomaterials.2015.02.010 PMID: 25818422
  80. Xiao, B.; Wang, X.; Qiu, Z.; Ma, J.; Zhou, L.; Wan, Y.; Zhang, S. A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery. J. Biomed. Mater. Res. A, 2013, 101A(7), 1888-1897. doi: 10.1002/jbm.a.34493 PMID: 23203540
  81. Rastogi, P.; Kandasubramanian, B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 2019, 11(4), 042001. doi: 10.1088/1758-5090/ab331e PMID: 31315105
  82. Sanchez-Ballester, N.M.; Bataille, B.; Soulairol, I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydr. Polym., 2021, 270, 118399. doi: 10.1016/j.carbpol.2021.118399 PMID: 34364633
  83. Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 2012, 33(11), 3279-3305. doi: 10.1016/j.biomaterials.2012.01.007 PMID: 22281421
  84. Cardoso, M.; Costa, R.; Mano, J. Marine origin polysaccharides in drug delivery systems. Mar. Drugs, 2016, 14(2), 34. doi: 10.3390/md14020034 PMID: 26861358
  85. Mano, J.F. Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater., 2008, 10(6), 515-527. doi: 10.1002/adem.200700355
  86. Kim, S.; Jung, S. Biocompatible and self-recoverable succinoglycan dialdehyde-crosslinked alginate hydrogels for pH-controlled drug delivery. Carbohydr. Polym., 2020, 250, 116934. doi: 10.1016/j.carbpol.2020.116934 PMID: 33049846
  87. Zhao, D.; Zhuo, R.X.; Cheng, S.X. Alginate modified nanostructured calcium carbonate with enhanced delivery efficiency for gene and drug delivery. Mol. Biosyst., 2012, 8(3), 753-759. doi: 10.1039/C1MB05337J PMID: 22159070
  88. Zhao, D.; Liu, C.J.; Zhuo, R.X.; Cheng, S.X. Alginate/CaCO3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Mol. Pharm., 2012, 9(10), 2887-2893. doi: 10.1021/mp3002123 PMID: 22894610
  89. Deng, Y.; Shavandi, A.; Okoro, O.V.; Nie, L. Alginate modification via click chemistry for biomedical applications. Carbohydr. Polym., 2021, 270, 118360. doi: 10.1016/j.carbpol.2021.118360 PMID: 34364605
  90. Mali, P.; Sherje, A.P. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr. Polym., 2022, 275, 118668. doi: 10.1016/j.carbpol.2021.118668 PMID: 34742407
  91. Yang, J.; Li, J. Self-assembled cellulose materials for biomedicine: A review. Carbohydr. Polym., 2018, 181, 264-274. doi: 10.1016/j.carbpol.2017.10.067 PMID: 29253971
  92. George, J.; Sabapathi, S.N. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45-54. doi: 10.2147/NSA.S64386 PMID: 26604715
  93. Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 2005, 44(22), 3358-3393. doi: 10.1002/anie.200460587 PMID: 15861454
  94. Zhong, L.L.; Gao, Y.; Wu, Y.R.; Zhang, L.P. Preparation of amphiphilic cellulose carrier and study of its drug release performance. Mater. Res. Innov., 2013, 17(sup1), 79-82. doi: 10.1179/1432891713Z.000000000186
  95. Sampath Udeni Gunathilake, T.M.; Ching, Y.C.; Chuah, C.H.; Rahman, N.A.; Liou, N.S. Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int. J. Biol. Macromol., 2020, 158, 670-688. doi: 10.1016/j.ijbiomac.2020.05.010 PMID: 32389655
  96. Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500. doi: 10.1021/cr900339w PMID: 20201500
  97. Leonel, A.G.; Mansur, H.S.; Mansur, A.A.P.; Caires, A.; Carvalho, S.M.; Krambrock, K.; Outon, L.E.F.; Ardisson, J.D. Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. Int. J. Biol. Macromol., 2019, 132, 677-691. doi: 10.1016/j.ijbiomac.2019.04.006 PMID: 30951776
  98. Chatterjee, S.; Chi-leung HUI, P. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules, 2019, 24(14), 2547. doi: 10.3390/molecules24142547 PMID: 31336916
  99. Hatakeyama, H. Recent advances in endogenous and exogenous stimuli-responsive nanocarriers for drug delivery and therapeutics. Chem. Pharm. Bull., 2017, 65(7), 612-617. doi: 10.1248/cpb.c17-00068 PMID: 28674332
  100. Deng, X.; Shao, Z.; Zhao, Y. Development of porphyrin and titanium dioxide sonosensitizers for sonodynamic cancer therapy. Biomat. Transl., 2021, 2(1), 72-85. PMID: 35837259
  101. Park, S.H.; Shin, H.S.; Park, S.N. A novel pH-responsive hydrogel based on carboxymethyl cellulose/2-hydroxyethyl acrylate for transdermal delivery of naringenin. Carbohydr. Polym., 2018, 200, 341-352. doi: 10.1016/j.carbpol.2018.08.011 PMID: 30177174
  102. Khan, S.; Anwar, N. Gelatin/carboxymethyl cellulose based stimuli-responsive hydrogels for controlled delivery of 5-fluorouracil, development, in vitro characterization, in vivo safety and bioavailability evaluation. Carbohydr. Polym., 2021, 257, 117617. doi: 10.1016/j.carbpol.2021.117617 PMID: 33541645
  103. Wen, Y.; Oh, J.K. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf. B Biointerfaces, 2015, 133, 246-253. doi: 10.1016/j.colsurfb.2015.06.017 PMID: 26119370
  104. Rahimian, K.; Wen, Y.; Oh, J.K. Redox-responsive cellulose-based thermoresponsive grafted copolymers and in- situ disulfide crosslinked nanogels. Polymer (Guildf.), 2015, 72, 387-394. doi: 10.1016/j.polymer.2015.01.024
  105. Li, S.; Jasim, A.; Zhao, W.; Fu, L.; Ullah, M.W.; Shi, Z.; Yang, G. Fabrication of pH-electroactive Bacterial Cellulose/Polyaniline Hydrogel for the Development of a Controlled Drug Release System; ES Materials & Manufacturing, 2018. doi: 10.30919/esmm5f120
  106. Su, C.; Liu, J.; Yang, Z.; Jiang, L.; Liu, X.; Shao, W. UV- mediated synthesis of carboxymethyl cellulose/poly-N-isopropylacrylamide composite hydrogels with triple stimuli-responsive swelling performances. Int. J. Biol. Macromol., 2020, 161, 1140-1148. doi: 10.1016/j.ijbiomac.2020.06.094 PMID: 32553960
  107. Pandey, A. Pharmaceutical and biomedical applications of cellulose nanofibers: a review. Environ. Chem. Lett., 2021, 19(3), 2043-2055. doi: 10.1007/s10311-021-01182-2
  108. Li, M.; Yin, F.; Song, L.; Mao, X.; Li, F.; Fan, C.; Zuo, X.; Xia, Q. Nucleic acid tests for clinical translation. Chem. Rev., 2021, 121(17), 10469-10558. doi: 10.1021/acs.chemrev.1c00241 PMID: 34254782
  109. Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res., 2016, 44(14), 6518-6548. doi: 10.1093/nar/gkw236 PMID: 27084936
  110. Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167. doi: 10.1016/j.cell.2020.02.001 PMID: 32243788
  111. Chen, K.; Zhang, Y.; Zhu, L.; Chu, H.; Shao, X.; Asakiya, C.; Huang, K.; Xu, W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J. Control. Release, 2022, 341, 869-891.
  112. Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z.G.; Zou, G.; Liang, X.; Yan, H.; Ding, B. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc., 2012, 134(32), 13396-13403. doi: 10.1021/ja304263n PMID: 22803823
  113. Mela, I.; Vallejo-Ramirez, P.P.; Makarchuk, S.; Christie, G.; Bailey, D.; Henderson, R.M.; Sugiyama, H.; Endo, M.; Kaminski, C.F. DNA nanostructures for targeted antimicrobial delivery. Angew. Chem. Int. Ed., 2020, 59(31), 12698-12702. doi: 10.1002/anie.202002740 PMID: 32297692
  114. Wang, Z.; Song, L.; Liu, Q.; Tian, R.; Shang, Y.; Liu, F.; Liu, S.; Zhao, S.; Han, Z.; Sun, J.; Jiang, Q.; Ding, B. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem. Int. Ed., 2021, 60(5), 2594-2598. doi: 10.1002/anie.202009842 PMID: 33089613
  115. Mikkilä, J.; Eskelinen, A.P.; Niemelä, E.H.; Linko, V.; Frilander, M.J.; Törmä, P.; Kostiainen, M.A. Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Lett., 2014, 14(4), 2196-2200. doi: 10.1021/nl500677j PMID: 24627955
  116. Du, Y.; Jiang, Q.; Beziere, N.; Song, L.; Zhang, Q.; Peng, D.; Chi, C.; Yang, X.; Guo, H.; Diot, G.; Ntziachristos, V.; Ding, B.; Tian, J. DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater., 2016, 28(45), 10000-10007. doi: 10.1002/adma.201601710 PMID: 27679425
  117. Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822. doi: 10.1038/346818a0 PMID: 1697402
  118. Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510. doi: 10.1126/science.2200121 PMID: 2200121
  119. Krissanaprasit, A.; Key, C.M.; Pontula, S.; LaBean, T.H. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem. Rev., 2021, 121(22), 13797-13868. doi: 10.1021/acs.chemrev.0c01332 PMID: 34157230
  120. Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater., 2010, 11(1), 014104. doi: 10.1088/1468-6996/11/1/014104 PMID: 27877319
  121. Jurczak, E.; Mazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M.; Zielińska-Pisklak, M. Pharmaceutical hydrates analysis-overview of methods and recent advances. Pharmaceutics, 2020, 12(10), 959. doi: 10.3390/pharmaceutics12100959 PMID: 33050621
  122. Rodríguez, I.; Gautam, R.; Tinoco, A.D. Using X-ray diffraction techniques for biomimetic drug development, formulation, and polymorphic characterization. Biomimetics, 2020, 6(1), 1. doi: 10.3390/biomimetics6010001 PMID: 33396786
  123. Samrot, A. V.; Sean, T. C.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E.; Abubakar, A.; Ali, H. H.; Angalene, J. L. A.; Suresh Kumar, S. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int. J. Biol. Macromol., 2020, 165(Pt B), 3088-3105. doi: 10.1016/j.ijbiomac.2020.10.104
  124. Tian, L.; Singh, A.; Singh, A.V. Synthesis and characterization of pectin-chitosan conjugate for biomedical application. Int. J. Biol. Macromol., 2020, 153, 533-538. doi: 10.1016/j.ijbiomac.2020.02.313 PMID: 32114170
  125. Lilo, T.; Morais, C.L.M.; Shenton, C.; Ray, A.; Gurusinghe, N. Revising Fourier-transform infrared (FT-IR) and Raman spectroscopy towards brain cancer detection. Photodiagn. Photodyn. Ther., 2022, 38, 102785. doi: 10.1016/j.pdpdt.2022.102785 PMID: 35231616
  126. Zhang, S.; Kang, L.; Hu, S.; Hu, J.; Fu, Y.; Hu, Y.; Yang, X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int. J. Biol. Macromol., 2021, 167, 1598-1612. doi: 10.1016/j.ijbiomac.2020.11.117 PMID: 33220374
  127. Yang, S.; Zhang, Q.; Yang, H.; Shi, H.; Dong, A.; Wang, L.; Yu, S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int. J. Biol. Macromol., 2022, 206, 175-187. doi: 10.1016/j.ijbiomac.2022.02.104 PMID: 35217087
  128. Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 2014, 32(4), 711-726. doi: 10.1016/j.biotechadv.2013.11.006 PMID: 24252561
  129. Paradowska, K.; Wawer, I. Solid-state NMR in the analysis of drugs and naturally occurring materials. J. Pharm. Biomed. Anal., 2014, 93, 27-42. doi: 10.1016/j.jpba.2013.09.032 PMID: 24173236
  130. Wang, P.; Lv, X.; Zhang, B.; Wang, T.; Wang, C.; Sun, J.; Zhang, K.; Wu, Y.; Zhao, J.; Zhang, Y. Simultaneous determination of molar degree of substitution and its distribution fraction, degree of acetylation in hydroxypropyl chitosan by 1H NMR spectroscopy. Carbohydr. Polym., 2021, 263, 117950. doi: 10.1016/j.carbpol.2021.117950 PMID: 33858567
  131. Wen, J.L.; Sun, S.L.; Xue, B.L.; Sun, R.C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 2013, 6(1), 359-391. doi: 10.3390/ma6010359 PMID: 28809313
  132. Xia, Z.; Akim, L.G.; Argyropoulos, D.S. Quantitative (13)C NMR analysis of lignins with internal standards. J. Agric. Food Chem., 2001, 49(8), 3573-3578. doi: 10.1021/jf010333v PMID: 11513630
  133. Inbasekar, C.; Fathima, N.N. Collagen stabilization using ionic liquid functionalised cerium oxide nanoparticle. Int. J. Biol. Macromol., 2020, 147, 24-28. doi: 10.1016/j.ijbiomac.2019.12.271 PMID: 31904464
  134. Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934. doi: 10.1039/C8NR02278J PMID: 29926865
  135. Rozo, A.J.; Cox, M.H.; Devitt, A.; Rothnie, A.J.; Goddard, A.D. Biophysical analysis of lipidic nanoparticles. Methods, 2020, 180, 45-55. doi: 10.1016/j.ymeth.2020.05.001 PMID: 32387313
  136. Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res., 2010, 27(5), 796-810. doi: 10.1007/s11095-010-0073-2 PMID: 20204471
  137. Maguire, C.M.; Rösslein, M.; Wick, P.; Prina-Mello, A. Characterisation of particles in solution-a perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater., 2018, 19(1), 732-745. doi: 10.1080/14686996.2018.1517587 PMID: 30369998
  138. Verma, M.L.; Dhanya, B.S.; Sukriti; Rani, V.; Thakur, M.; Jeslin, J.; Kushwaha, R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int. J. Biol. Macromol., 2020, 154, 390-412. doi: 10.1016/j.ijbiomac.2020.03.105 PMID: 32194126
  139. Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539. doi: 10.1080/21691401.2018.1561457 PMID: 30784319
  140. Gericke, M.; Schulze, P.; Heinze, T. Nanoparticles based on hydrophobic polysaccharide derivatives-formation principles, characterization techniques, and biomedical applications. Macromol. Biosci., 2020, 20(4), 1900415. doi: 10.1002/mabi.201900415 PMID: 32090505
  141. Berbel Manaia, E.; Paiva Abuçafy, M.; Chiari-Andréo, B.G.; Lallo Silva, B.; Oshiro-Júnior, J.A.; Chiavacci, L. Physicochemical characterization of drug nanocarriers. Int. J. Nanomed., 2017, 12, 4991-5011. doi: 10.2147/IJN.S133832 PMID: 28761340
  142. Melo, M.N.; Pereira, F.M.; Rocha, M.A.; Ribeiro, J.G.; Junges, A.; Monteiro, W.F.; Diz, F.M.; Ligabue, R.A.; Morrone, F.B.; Severino, P.; Fricks, A.T. Chitosan and chitosan/PEG nanoparticles loaded with indole-3-carbinol: Characterization, computational study and potential effect on human bladder cancer cells. Mater. Sci. Eng. C, 2021, 124, 112089. doi: 10.1016/j.msec.2021.112089 PMID: 33947529
  143. Song, Y.; Cong, Y.; Wang, B.; Zhang, N. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin. Drug Deliv., 2020, 17(4), 551-571. doi: 10.1080/17425247.2020.1737671 PMID: 32116058
  144. Taylor, E.A.; Donnelly, E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone, 2020, 139, 115490. doi: 10.1016/j.bone.2020.115490 PMID: 32569874
  145. Kumar, C.S. Raman spectroscopy for nanomaterials characterization; Springer Verlag, 2012. doi: 10.1007/978-3-642-20620-7
  146. Begum, R.; Farooqi, Z.H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.; Irfan, A. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Crit. Rev. Anal. Chem., 2018, 48(6), 503-516. doi: 10.1080/10408347.2018.1451299 PMID: 29601210
  147. Jing, Y.; Li, J.; Zhang, Y.; Zhang, R.; Zheng, Y.; Hu, B.; Wu, L.; Zhang, D. Structural characterization and biological activities of a novel polysaccharide from Glehnia littoralis and its application in preparation of nano-silver. Int. J. Biol. Macromol., 2021, 183, 1317-1326. doi: 10.1016/j.ijbiomac.2021.04.178 PMID: 33933541
  148. Mahnaj, T.; Ahmed, S.U.; Plakogiannis, F.M. Characterization of ethyl cellulose polymer. Pharm. Dev. Technol., 2013, 18(5), 982-989. doi: 10.3109/10837450.2011.604781 PMID: 21861778
  149. Thakral, S.; Terban, M.W.; Thakral, N.K.; Suryanarayanan, R. Recent advances in the characterization of amorphous pharmaceuticals by X-ray diffractometry. Adv. Drug Deliv. Rev., 2016, 100, 183-193. doi: 10.1016/j.addr.2015.12.013 PMID: 26712710
  150. Panchal, J.; Kotarek, J.; Marszal, E.; Topp, E.M. Analyzing subvisible particles in protein drug products: A comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). AAPS J., 2014, 16(3), 440-451. doi: 10.1208/s12248-014-9579-6 PMID: 24570341
  151. Ding, Z.; Mo, M.; Zhang, K.; Bi, Y.; Kong, F. Preparation, characterization and biological activity of proanthocyanidin-chitosan nanoparticles. Int. J. Biol. Macromol., 2021, 188, 43-51. doi: 10.1016/j.ijbiomac.2021.08.010 PMID: 34364936
  152. Birk, S.E.; Boisen, A.; Nielsen, L.H. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv. Drug Deliv. Rev., 2021, 174, 30-52. doi: 10.1016/j.addr.2021.04.005 PMID: 33845040
  153. Li, Y.; Thambi, T.; Lee, D.S. Co-delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Adv. Healthc. Mater., 2018, 7(1), 1700886. doi: 10.1002/adhm.201700886 PMID: 28941203
  154. Hu, Y.; Sun, Y.; Wan, C.; Dai, X.; Wu, S.; Lo, P.C.; Huang, J.; Lovell, J.F.; Jin, H.; Yang, K. Microparticles: Biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. J. Nanobiotechnology, 2022, 20(1), 189. doi: 10.1186/s12951-022-01358-0 PMID: 35418077
  155. Pinelli, F.; Sacchetti, A.; Perale, G.; Rossi, F. Is nanoparticle functionalization a versatile approach to meet the challenges of drug and gene delivery? Ther. Deliv., 2020, 11(7), 401-404. doi: 10.4155/tde-2020-0030 PMID: 32372721
  156. Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano, 2016, 10(11), 9999-10012. doi: 10.1021/acsnano.6b04268 PMID: 27934069
  157. Morachis, J.M.; Mahmoud, E.A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev., 2012, 64(3), 505-519. doi: 10.1124/pr.111.005363 PMID: 22544864
  158. Yoo, J.; Kim, K.; Kim, S.; Park, H.H.; Shin, H.; Joo, J. Tailored polyethylene glycol grafting on porous nanoparticles for enhanced targeting and intracellular siRNA delivery. Nanoscale, 2022, 14(39), 14482-14490. doi: 10.1039/D2NR02995B PMID: 36134732
  159. Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm., 2004, 280(1-2), 241-251. doi: 10.1016/j.ijpharm.2004.05.016 PMID: 15265563
  160. Weber, C.; Coester, C.; Kreuter, J.; Langer, K. Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm., 2000, 194(1), 91-102. doi: 10.1016/S0378-5173(99)00370-1 PMID: 10601688
  161. Pawar, A.; Thakkar, S.; Misra, M. A bird's eye view of nanoparticles prepared by electrospraying: Advancements in drug delivery field. J. Control. Release, 2018, 286, 179-200.
  162. Hedayati, R.; Jahanshahi, M.; Attar, H. Fabrication and characterization of albumin-acacia nanoparticles based on complex coacervation as potent nanocarrier. J. Chem. Technol. Biotechnol., 2012, 87(10), 1401-1408. doi: 10.1002/jctb.3758
  163. Guo, J.; Lin, Y. One-dimensional micro/nanomotors for biomedicine: delivery, sensing and surgery. Biomat. Transl., 2020, 1(1), 18-32. PMID: 35837656
  164. Li, Q.; Ning, Z.; Ren, J.; Liao, W. Structural design and physicochemical foundations of hydrogels for biomedical applications. Curr. Med. Chem., 2018, 25(8), 963-981. doi: 10.2174/0929867324666170818111630 PMID: 28820072
  165. Garg, T.; Singh, S.; Goyal, A.K. Stimuli-sensitive hydrogels: An excellent carrier for drug and cell delivery. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(5), 369-409. doi: 10.1615/CritRevTherDrugCarrierSyst.2013007259 PMID: 24099326
  166. Gao, Q.; He, Y.; Fu, J.; Liu, A.; Ma, L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, 61, 203-215. doi: 10.1016/j.biomaterials.2015.05.031 PMID: 26004235
  167. Nguyen, Q.V.; Huynh, D.P.; Park, J.H.; Lee, D.S. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur. Polym. J., 2015, 72, 602-619. doi: 10.1016/j.eurpolymj.2015.03.016
  168. Hu, C.; Zhang, F.; Long, L.; Kong, Q.; Luo, R.; Wang, Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J. Control. Release, 2020, 324, 204-217.
  169. Lan, B.; Zhang, L.; Yang, L.; Wu, J.; Li, N.; Pan, C.; Wang, X.; Zeng, L.; Yan, L.; Yang, C.; Ren, M. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J. Nanobiotechnol., 2021, 19(1), 130. doi: 10.1186/s12951-021-00869-6 PMID: 33952251
  170. Elbl, J.; Gajdziok, J.; Kolarczyk, J. 3D printing of multilayered orodispersible films with in-process drying. Int. J. Pharm., 2020, 575, 118883. doi: 10.1016/j.ijpharm.2019.118883 PMID: 31811925
  171. Bhagurkar, A.M.; Darji, M.; Lakhani, P.; Thipsay, P.; Bandari, S.; Repka, M.A. Effects of formulation composition on the characteristics of mucoadhesive films prepared by hot-melt extrusion technology. J. Pharm. Pharmacol., 2019, 71(3), 293-305. doi: 10.1111/jphp.13046 PMID: 30485903
  172. Zayed, G. M.; Rasoul, S. A.; Ibrahim, M. A.; Saddik, M. S.; Alshora, D. H. In vitro and in vivo characterization of domperidone-loaded fast dissolving buccal films. Saudi Pharm. J., 2020, 28(3), 266-273.
  173. Wang, P.; Li, Y.; Zhang, C.; Feng, F.; Zhang, H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem., 2020, 308, 125599. doi: 10.1016/j.foodchem.2019.125599 PMID: 31648098
  174. He, M.; Zhu, L.; Yang, N.; Li, H.; Yang, Q. Recent advances of oral film as platform for drug delivery. Int. J. Pharm., 2021, 604, 120759. doi: 10.1016/j.ijpharm.2021.120759 PMID: 34098053
  175. Stie, M. B.; Kalouta, K.; Vetri, V.; Foderà, V. Protein materials as sustainable non- and minimally invasive strategies for biomedical applications. J. Control. Release, 2022, 344, 12-25.
  176. Adnan, M.; Santhosh Kumar, K.; Sreejith, L. Micellar nanocomposites hydrogels films for pH sensitive controlled drug delivery. Mater. Lett., 2020, 277, 128286. doi: 10.1016/j.matlet.2020.128286
  177. Speth, M.T.; Repnik, U.; Griffiths, G. Layer-by-layer nanocoating of live Bacille-Calmette-Guérin mycobacteria with poly(I:C) and chitosan enhances pro-inflammatory activation and bactericidal capacity in murine macrophages. Biomaterials, 2016, 111, 1-12. doi: 10.1016/j.biomaterials.2016.09.027 PMID: 27716523
  178. Paris, A.L.; Caridade, S.; Colomb, E.; Bellina, M.; Boucard, E.; Verrier, B.; Monge, C. Sublingual protein delivery by a mucoadhesive patch made of natural polymers. Acta Biomater., 2021, 128, 222-235. doi: 10.1016/j.actbio.2021.04.024 PMID: 33878475
  179. Schwestka, J.; Stoger, E. Microparticles and nanoparticles from plants-the benefits of bioencapsulation. Vaccines, 2021, 9(4), 369. doi: 10.3390/vaccines9040369 PMID: 33920425
  180. Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med., 2019, 30(10), 115. doi: 10.1007/s10856-019-6318-7 PMID: 31599365
  181. Yao, Y.; Zhang, A.; Yuan, C.; Chen, X.; Liu, Y. Recent trends on burn wound care: Hydrogel dressings and scaffolds. Biomater. Sci., 2021, 9(13), 4523-4540. doi: 10.1039/D1BM00411E PMID: 34047308
  182. Seo, K.S.; Bajracharya, R.; Lee, S.H.; Han, H.K. Pharmaceutical application of tablet film coating. Pharmaceutics, 2020, 12(9), 853. doi: 10.3390/pharmaceutics12090853 PMID: 32911720
  183. Moniz, T.; Costa Lima, S.A.; Reis, S. Marine polymeric microneedles for transdermal drug delivery. Carbohydr. Polym., 2021, 266, 118098. doi: 10.1016/j.carbpol.2021.118098 PMID: 34044917
  184. Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym., 2020, 230, 115658. doi: 10.1016/j.carbpol.2019.115658 PMID: 31887899
  185. Mbese, Z.; Alven, S.; Aderibigbe, B.A. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers, 2021, 13(24), 4368. doi: 10.3390/polym13244368 PMID: 34960918
  186. Hong, H.; Wang, X.; Song, X.; Fawal, G.E.; Wang, K.; Jiang, D.; Pei, Y.; Wang, Z.; Wang, H. Transdermal delivery of interleukin-12 gene targeting dendritic cells enhances the anti-tumour effect of programmed cell death protein 1 monoclonal antibody. Biomaterials Translational, 2021, 2(2), 151-164. PMID: 35836967
  187. Gullapalli, R.P.; Mazzitelli, C.L. Gelatin and non-gelatin capsule dosage forms. J. Pharm. Sci., 2017, 106(6), 1453-1465. doi: 10.1016/j.xphs.2017.02.006 PMID: 28209365
  188. Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244. doi: 10.1016/j.ijpharm.2017.12.036 PMID: 29288095
  189. Abdelkader, H.; Fathalla, Z.; Seyfoddin, A.; Farahani, M.; Thrimawithana, T.; Allahham, A.; Alani, A.W.G.; Al-Kinani, A.A.; Alany, R.G. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv. Drug Deliv. Rev., 2021, 177, 113957. doi: 10.1016/j.addr.2021.113957 PMID: 34481032
  190. Kumar, S.S.D.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int. J. Biol. Macromol., 2018, 115, 165-175. doi: 10.1016/j.ijbiomac.2018.04.003 PMID: 29627463
  191. Huang, B.; Liu, X.; Li, Z.; Zheng, Y.; Wai Kwok Yeung, K.; Cui, Z.; Liang, Y.; Zhu, S.; Wu, S. Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds. Chem. Eng. J., 2021, 414, 128805. doi: 10.1016/j.cej.2021.128805
  192. Wang, S.; Gao, Z.; Liu, L.; Li, M.; Zuo, A.; Guo, J. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle. Eur. J. Pharm., 2022, 168, 106085. doi: 10.1016/j.ejps.2021.106085
  193. Chen, M.; Tan, H.; Xu, W.; Wang, Z.; Zhang, J.; Li, S.; Zhou, T.; li, J.; Niu, X. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Acta Biomater., 2022, 153, 159-177. doi: 10.1016/j.actbio.2022.09.036 PMID: 36152907
  194. Ishida, K.; Yamaguchi, M. Role of albumin in osteoblastic cells: Enhancement of cell proliferation and suppression of alkaline phosphatase activity. Int. J. Mol. Med., 2004, 14(6), 1077-1081. doi: 10.3892/ijmm.14.6.1077 PMID: 15547677
  195. Bharathi, R.; Ganesh, S. S.; Harini, G.; Vatsala, K.; Anushikaa, R.; Aravind, S.; Abinaya, S.; Selvamurugan, N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int. J. Biol. Macromol., 2022, 222(Pt A), 132-153. doi: 10.1016/j.ijbiomac.2022.09.058
  196. Ong, J.; Zhao, J.; Justin, A.W.; Markaki, A.E. Albumin-based hydrogels for regenerative engineering and cell transplantation. Biotechnol. Bioeng., 2019, 116(12), 3457-3468. doi: 10.1002/bit.27167 PMID: 31520415
  197. Mansouri, S.; Lavigne, P.; Corsi, K.; Benderdour, M.; Beaumont, E.; Fernandes, J. C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur. J. Pharma. Biopharm., 2004, 57(1), 1-8. doi: 10.1016/S0939-6411(03)00155-3
  198. Tian, J.; Yu, J.; Sun, X. Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Vet. Immunol. Immunopathol., 2008, 126(3-4), 220-229. doi: 10.1016/j.vetimm.2008.07.002 PMID: 18722672
  199. Yamamoto, A.; Kormann, M.; Rosenecker, J.; Rudolph, C. Current prospects for mRNA gene delivery. Eur. J. Pharma. Biopharm., 2009, 71(3), 484-9. doi: 10.1016/j.ejpb.2008.09.016
  200. Yalcin, E.; Kara, G.; Celik, E.; Pinarli, F.A.; Saylam, G.; Sucularli, C.; Ozturk, S.; Yilmaz, E.; Bayir, O.; Korkmaz, M.H.; Denkbas, E.B. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment. Prep. Biochem. Biotechnol., 2019, 49(7), 659-670. doi: 10.1080/10826068.2019.1599395 PMID: 31066619
  201. Leng, Q.; Chen, L.; Lv, Y. RNA-based scaffolds for bone regeneration: Application and mechanisms of mRNA, miRNA and siRNA. Theranostics, 2020, 10(7), 3190-3205. doi: 10.7150/thno.42640 PMID: 32194862
  202. Kaur, I.P.; Kakkar, S. Newer therapeutic vistas for antiglaucoma medicines. Crit. Rev. Ther. Drug Carrier Syst., 2011, 28(2), 165-202. doi: 10.1615/CritRevTherDrugCarrierSyst.v28.i2.20 PMID: 21663575
  203. Chuan, D.; Jin, T.; Fan, R.; Zhou, L.; Guo, G. Chitosan for gene delivery: Methods for improvement and applications. Adv. Colloid Interface Sci., 2019, 268, 25-38. doi: 10.1016/j.cis.2019.03.007 PMID: 30933750
  204. Song, P.; Lu, Z.; Jiang, T.; Han, W.; Chen, X.; Zhao, X. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor targeted co-delivery of doxorubicin and siPD-L1. Int. J. Biol. Macromol., 2022, 222(Pt A), 1078-1091.
  205. Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; Nel, A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2), 994-1005. doi: 10.1021/nn3044066 PMID: 23289892

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024