Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine


如何引用文章

全文:

详细

The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.

作者简介

Daljeet Dhanjal

School of Bioengineering and Biosciences, Lovely Professional University

Email: info@benthamscience.net

Reena Singh

School of Bioengineering and Biosciences, Lovely Professional University

Email: info@benthamscience.net

Varun Sharma

Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd

Email: info@benthamscience.net

Eugenie Nepovimova

Department of Chemistry, Faculty of Science, University of Hradec Kralove

Email: info@benthamscience.net

Vojtech Adam

Department of Chemistry and Biochemistry,, Mendel University in Brno

编辑信件的主要联系方式.
Email: info@benthamscience.net

Kamil Kuca

Department of Chemistry, Faculty of Science, University of Hradec Králové

编辑信件的主要联系方式.
Email: info@benthamscience.net

Chirag Chopra

School of Bioengineering and Biosciences,, Lovely Professional University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Ryall, J.G.; Cliff, T.; Dalton, S.; Sartorelli, V. Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell, 2015, 17(6), 651-662. doi: 10.1016/j.stem.2015.11.012 PMID: 26637942
  2. Mall, M.; Wernig, M. The novel tool of cell reprogramming for applications in molecular medicine. J. Mol. Med., 2017, 95(7), 695-703. doi: 10.1007/s00109-017-1550-4 PMID: 28597071
  3. Spemann, H.; Mangold, H. Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int. J. Dev. Biol., 2001, 45(1), 13-38. PMID: 11291841
  4. Hemmi, J.J.; Mishra, A.; Hornsby, P.J. Overcoming barriers to reprogramming and differentiation in nonhuman primate induced pluripotent stem cells. Primate Biol., 2017, 4(2), 153-162. doi: 10.5194/pb-4-153-2017 PMID: 32110703
  5. Nizzardo, M.; Simone, C.; Falcone, M.; Riboldi, G.; Comi, G.P.; Bresolin, N.; Corti, S. Direct reprogramming of adult somatic cells into other lineages: past evidence and future perspectives. Cell Transplant., 2013, 22(6), 921-944. doi: 10.3727/096368912X657477 PMID: 23044010
  6. Ilic, D.; Polak, J.M. Stem cells in regenerative medicine: introduction. Br. Med. Bull., 2011, 98(1), 117-126. doi: 10.1093/bmb/ldr012 PMID: 21565803
  7. Santos, A.R.; Nascimento, V.A.; Genari, S.C.; Lombello, C.B. Mechanisms of Cell Regeneration - From Differentiation to Maintenance of Cell Phenotype. In: Cells and Biomaterials in Regenerative Medicine, 2014.
  8. Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep., 2015, 35(2), e00191. doi: 10.1042/BSR20150025 PMID: 25797907
  9. Sisakhtnezhad, S.; Matin, M.M. Transdifferentiation: A cell and molecular reprogramming process. Cell Tissue Res., 2012, 348(3), 379-396. doi: 10.1007/s00441-012-1403-y PMID: 22526624
  10. Le Magnen, C.; Shen, M.M.; Abate-Shen, C. Lineage plasticity in cancer progression and treatment. Annu. Rev. Cancer Biol., 2018, 2(1), 271-289. doi: 10.1146/annurev-cancerbio-030617-050224 PMID: 29756093
  11. Nakagawa, H.; Whelan, K.; Lynch, J.P. Mechanisms of Barrett’s oesophagus: Intestinal differentiation, stem cells, and tissue models. Best Pract. Res. Clin. Gastroenterol., 2015, 29(1), 3-16. doi: 10.1016/j.bpg.2014.11.001 PMID: 25743452
  12. Ye, L.; Robertson, M.A.; Mastracci, T.L.; Anderson, R.M. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration. Dev. Biol., 2016, 409(2), 354-369. doi: 10.1016/j.ydbio.2015.12.003 PMID: 26658317
  13. Yamamizu, K.; Piao, Y.; Sharov, A.A.; Zsiros, V.; Yu, H.; Nakazawa, K.; Schlessinger, D.; Ko, M.S.H. Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports, 2013, 1(6), 545-559. doi: 10.1016/j.stemcr.2013.10.006 PMID: 24371809
  14. Palomo, A.; Lucas, M.; Dilley, R.; McLenachan, S.; Chen, F.; Requena, J.; Sal, M.; Lucas, A.; Alvarez, I.; Jaraquemada, D.; Edel, M. The power and the promise of cell reprogramming: Personalized autologous body organ and cell transplantation. J. Clin. Med., 2014, 3(2), 373-387. doi: 10.3390/jcm3020373 PMID: 26237380
  15. Bhartiya, D.; Hinduja, I.; Patel, H.; Bhilawadikar, R. Making gametes from pluripotent stem cells – a promising role for very small embryonic-like stem cells. Reprod. Biol. Endocrinol., 2014, 12(1), 114. doi: 10.1186/1477-7827-12-114 PMID: 25421462
  16. Son, M.Y.; Lee, M.O.; Jeon, H.; Seol, B.; Kim, J.H.; Chang, J.S.; Cho, Y.S. Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp. Mol. Med., 2016, 48(5), e232. doi: 10.1038/emm.2016.27 PMID: 27174201
  17. Li, M.; Cascino, P.; Ummarino, S.; Di Ruscio, A. Application of induced pluripotent stem cell technology to the study of hematological diseases. Cells, 2017, 6(1), 7. doi: 10.3390/cells6010007 PMID: 28282903
  18. Halley-Stott, R.P.; Pasque, V.; Gurdon, J.B. Nuclear reprogramming. Development, 2013, 140(12), 2468-2471. doi: 10.1242/dev.092049 PMID: 23715540
  19. Tahmasebi, S.; Jafarnejad, S.M.; Tam, I.S.; Gonatopoulos-Pournatzis, T.; Matta-Camacho, E.; Tsukumo, Y.; Yanagiya, A.; Li, W.; Atlasi, Y.; Caron, M.; Braunschweig, U.; Pearl, D.; Khoutorsky, A.; Gkogkas, C.G.; Nadon, R.; Bourque, G.; Yang, X.J.; Tian, B.; Stunnenberg, H.G.; Yamanaka, Y.; Blencowe, B.J.; Giguère, V.; Sonenberg, N. Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc. Natl. Acad. Sci., 2016, 113(44), 12360-12367. doi: 10.1073/pnas.1615540113 PMID: 27791185
  20. Singh, V.K.; Saini, A.; Kalsan, M.; Kumar, N.; Chandra, R. Describing the stem cell potency: The various methods of functional assessment and in silico diagnostics. Front. Cell Dev. Biol., 2016, 4, 134. doi: 10.3389/fcell.2016.00134 PMID: 27921030
  21. Xiao, J.; Yang, R.; Biswas, S.; Qin, X.; Zhang, M.; Deng, W. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis. Int. J. Mol. Sci., 2015, 16(12), 9283-9302. doi: 10.3390/ijms16059283 PMID: 25918935
  22. Földes, A.; Kádár, K.; Kerémi, B.; Zsembery, Á.; Gyires, K.; S Zádori, Z.; Varga, G. Mesenchymal stem cells of dental origin-their potential for antiinflammatory and regenerative actions in brain and gut damage. Curr. Neuropharmacol., 2016, 14(8), 914-934. doi: 10.2174/1570159X14666160121115210 PMID: 26791480
  23. Alvarez, C.V.; Garcia-Lavandeira, M.; Garcia-Rendueles, M.E.R.; Diaz-Rodriguez, E.; Garcia-Rendueles, A.R.; Perez-Romero, S.; Vila, T.V.; Rodrigues, J.S.; Lear, P.V.; Bravo, S.B. Defining stem cell types: Understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J. Mol. Endocrinol., 2012, 49(2), R89-R111. doi: 10.1530/JME-12-0072 PMID: 22822049
  24. Ravasio, R.; Ceccacci, E.; Minucci, S. Self-renewal of tumor cells: Epigenetic determinants of the cancer stem cell phenotype. Curr. Opin. Genet. Dev., 2016, 36, 92-99. doi: 10.1016/j.gde.2016.04.002 PMID: 27153353
  25. Hossini, A.M.; Quast, A.S.; Plötz, M.; Grauel, K.; Exner, T.; Küchler, J.; Stachelscheid, H.; Eberle, J.; Rabien, A.; Makrantonaki, E.; Zouboulis, C.C. PI3K/AKT signaling pathway is essential for survival of induced pluripotent stem cells. PLoS One, 2016, 11(5), e0154770. doi: 10.1371/journal.pone.0154770 PMID: 27138223
  26. Pekovic, V.; Hutchison, C.J. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J. Anat., 2008, 213(1), 5-25. doi: 10.1111/j.1469-7580.2008.00928.x PMID: 18638067
  27. Marques-Mari, A.I.; Lacham-Kaplan, O.; Medrano, J.V.; Pellicer, A.; Simón, C. Differentiation of germ cells and gametes from stem cells. Hum. Reprod. Update, 2009, 15(3), 379-390. doi: 10.1093/humupd/dmp001 PMID: 19179344
  28. NIH Types of Stem Cell ⋅ Stem Cells ⋅ University of Nebraska Medical Center. Available from: https://www.unmc.edu/stemcells/educational-resources/types.html (Accessed on: Mar 29, 2021).
  29. Stoltz, J.F.; de Isla, N.; Li, Y.P.; Bensoussan, D.; Zhang, L.; Huselstein, C.; Chen, Y.; Decot, V.; Magdalou, J.; Li, N.; Reppel, L.; He, Y. Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells Int., 2015, 2015, 1-19. doi: 10.1155/2015/734731 PMID: 26300923
  30. Bhattacharyya, S.; Kumar, A.; Lal Khanduja, K. The voyage of stem cell toward terminal differentiation: A brief overview. Acta Biochim. Biophys. Sin., 2012, 44(6), 463-475. doi: 10.1093/abbs/gms027 PMID: 22562866
  31. Crane, G.M.; Jeffery, E.; Morrison, S.J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol., 2017, 17(9), 573-590. doi: 10.1038/nri.2017.53 PMID: 28604734
  32. Bao, B.; Ahmad, A.; Azmi, A.S.; Ali, S.; Sarkar, F.H. Overview of Cancer Stem Cells (CSCS) and mechanisms of their regulation: Implications for cancer therapy. Curr. Protoc. Pharmacol., 2013, 14, 14-25.
  33. Li, S.; Li, Q. Cancer stem cells and tumor metastasis. Int. J. Oncol., 2014, 44(6), 1806-1812. doi: 10.3892/ijo.2014.2362 PMID: 24691919
  34. Eun, K.; Ham, S.W.; Kim, H. Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep., 2017, 50(3), 117-125. doi: 10.5483/BMBRep.2017.50.3.222 PMID: 27998397
  35. Conley, S.J.; Gheordunescu, E.; Kakarala, P.; Newman, B.; Korkaya, H.; Heath, A.N.; Clouthier, S.G.; Wicha, M.S. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl. Acad. Sci., 2012, 109(8), 2784-2789. doi: 10.1073/pnas.1018866109 PMID: 22308314
  36. Deng, S.; Yang, X.; Lassus, H.; Liang, S.; Kaur, S.; Ye, Q.; Li, C.; Wang, L.P.; Roby, K.F.; Orsulic, S.; Connolly, D.C.; Zhang, Y.; Montone, K.; Bützow, R.; Coukos, G.; Zhang, L. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One, 2010, 5(4), e10277. doi: 10.1371/journal.pone.0010277 PMID: 20422001
  37. Jaworska, D.; Król, W.; Szliszka, E. Prostate cancer stem cells: Research advances. Int. J. Mol. Sci., 2015, 16(11), 27433-27449. doi: 10.3390/ijms161126036 PMID: 26593898
  38. Chen, K.; Huang, Y.; Chen, J. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol. Sin., 2013, 34(6), 732-740. doi: 10.1038/aps.2013.27 PMID: 23685952
  39. Wang, Q.E. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J. Biol. Chem., 2015, 6(3), 57-64. doi: 10.4331/wjbc.v6.i3.57 PMID: 26322164
  40. Kasai, T.; Chen, L.; Mizutani, A.; Kudoh, T.; Murakami, H.; Fu, L.; Seno, M. Cancer stem cells converted from pluripotent stem cells and the cancerous niche. J. Stem Cells Regen. Med., 2014, 10(1), 2-7. doi: 10.46582/jsrm.1001002 PMID: 25075155
  41. Chagastelles, P.C.; Nardi, N.B. Biology of stem cells: An overview. Kidney Int. Suppl., 2011, 1(3), 63-67. doi: 10.1038/kisup.2011.15 PMID: 25028627
  42. Mummery, C.L.; Zhang, J.; Ng, E.S.; Elliott, D.A.; Elefanty, A.G.; Kamp, T.J. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ. Res., 2012, 111(3), 344-358. doi: 10.1161/CIRCRESAHA.110.227512 PMID: 22821908
  43. Ohnuki, M.; Takahashi, K. Present and future challenges of induced pluripotent stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1680), 20140367. doi: 10.1098/rstb.2014.0367 PMID: 26416678
  44. Martello, G.; Smith, A. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 647-675. doi: 10.1146/annurev-cellbio-100913-013116 PMID: 25288119
  45. Yee, J. Turning somatic cells into pluripotent stem cells. New Educator, 2010, 3, 25.
  46. Tucak, A.; Vrabac, D.; Smajić, A.; Sažić, A. Future trends and possibilities of using induced pluripotent stem cells (iPSC) in regenerative medicine. IFMBE Proc., 2017, 62, 459-464. doi: 10.1007/978-981-10-4166-2_71
  47. Han, J.W.; Yoon, Y. Induced pluripotent stem cells: Emerging techniques for nuclear reprogramming. Antioxid. Redox Signal., 2011, 15(7), 1799-1820. doi: 10.1089/ars.2010.3814 PMID: 21194386
  48. Wong, W.T.; Sayed, N.; Cooke, J.P. Induced pluripotent stem cells: How they will change the practice of cardiovascular medicine. Methodist DeBakey Cardiovasc. J., 2013, 9(4), 206-209. doi: 10.14797/mdcj-9-4-206 PMID: 24298311
  49. Yamanaka, S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 2012, 10(6), 678-684. doi: 10.1016/j.stem.2012.05.005 PMID: 22704507
  50. Avior, Y.; Sagi, I.; Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol., 2016, 17(3), 170-182. doi: 10.1038/nrm.2015.27 PMID: 26818440
  51. Roberts, R.M.; Fisher, S.J. Trophoblast stem cells. Biol. Reprod., 2011, 84(3), 412-421. doi: 10.1095/biolreprod.110.088724 PMID: 21106963
  52. Vićovac, L.; Aplin, J.D. Epithelial-mesenchymal transition during trophoblast differentiation. Cells Tissues Organs, 1996, 156(3), 202-216. doi: 10.1159/000147847 PMID: 9124037
  53. Telugu, B.P.; Adachi, K.; Schlitt, J.M.; Ezashi, T.; Schust, D.J.; Roberts, R.M.; Schulz, L.C. Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas. Placenta, 2013, 34(7), 536-543. doi: 10.1016/j.placenta.2013.03.016 PMID: 23631809
  54. Velicky, P.; Knöfler, M.; Pollheimer, J. Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control. Cell Adhes. Migr., 2016, 10(1-2), 154-162. doi: 10.1080/19336918.2015.1089376 PMID: 26418186
  55. Horii, M.; Li, Y.; Wakeland, A.K.; Pizzo, D.P.; Nelson, K.K.; Sabatini, K.; Laurent, L.C.; Liu, Y.; Parast, M.M. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc. Natl. Acad. Sci. USA, 2016, 113(27), E3882-E3891. doi: 10.1073/pnas.1604747113 PMID: 27325764
  56. Erlebacher, A.; Price, K.A.; Glimcher, L.H. Maintenance of mouse trophoblast stem cell proliferation by TGF-β/activin. Dev. Biol., 2004, 275(1), 158-169. doi: 10.1016/j.ydbio.2004.07.032 PMID: 15464579
  57. Rielland, M.; Hue, I.; Renard, J.P.; Alice, J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: New tools to study trophoblast growth and differentiation. Dev. Biol., 2008, 322(1), 1-10. doi: 10.1016/j.ydbio.2008.07.017 PMID: 18680738
  58. M, M.; P, Z.; K, P.; i, K.; S, L.; L, Y.; R, M.; K, Z.; M, M. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy. J. Cancer Res. Ther., 2014, 2(1), 22-33. doi: 10.14312/2052-4994.2014-4
  59. Daley, G.Q. Stem cells and the evolving notion of cellular identity. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1680), 20140376. doi: 10.1098/rstb.2014.0376 PMID: 26416685
  60. Yamanaka, S.; Blau, H.M. Nuclear reprogramming to a pluripotent state by three approaches. Nature, 2010, 465(7299), 704-712. doi: 10.1038/nature09229 PMID: 20535199
  61. Kim, S.H.; Moon, H.H.; Kim, H.A.; Hwang, K.C.; Lee, M.; Choi, D. Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Mol. Ther., 2011, 19(4), 741-750. doi: 10.1038/mt.2010.301 PMID: 21245851
  62. Kim, J.S.; Choi, H.W.; Choi, S.; Do, J.T. Reprogrammed pluripotent stem cells from somatic cells. Int. J. Stem Cells, 2011, 4(1), 1-8. doi: 10.15283/ijsc.2011.4.1.1 PMID: 24298328
  63. Jalali Tehrani, H.; Parivar, K.; Ai, J.; Kajbafzadeh, A.; Rahbarghazi, R.; Hashemi, M.; Sadeghizadeh, M. Effect of dexamethasone, insulin and EGF on the myogenic potential on human endometrial stem cell. Iran. J. Pharm. Res., 2014, 13(2), 659-664. PMID: 25237362
  64. Műzes, G.; Sipos, F. Heterogeneity of stem cells: A brief overview. Methods Mol. Biol., 2016, 1516, 1-12. doi: 10.1007/7651_2016_345 PMID: 27044045
  65. Lluis, F.; Cosma, M.P. Cell-fusion-mediated somatic-cell reprogramming: A mechanism for tissue regeneration. J. Cell. Physiol., 2010, 223(1), 6-13. PMID: 20049847
  66. Serov, O.L.; Matveeva, N.M.; Khabarova, A.A. Reprogramming mediated by cell fusion technology. Int. Rev. Cell Mol. Biol., 2011, 291, 155-190. doi: 10.1016/B978-0-12-386035-4.00005-7 PMID: 22017976
  67. Pomerantz, J.; Blau, H.M. Nuclear reprogramming: A key to stem cell function in regenerative medicine. Nat. Cell Biol., 2004, 6(9), 810-816. doi: 10.1038/ncb0904-810 PMID: 15340448
  68. Colman, A. Profile of John Gurdon and Shinya Yamanaka, 2012 nobel laureates in medicine or physiology. Proc. Natl. Acad. Sci., 2013, 110(15), 5740-5741. doi: 10.1073/pnas.1221823110 PMID: 23538305
  69. Blau, H.M. Sir John Gurdon: Father of nuclear reprogramming. Differentiation, 2014, 88(1), 10-12. doi: 10.1016/j.diff.2014.05.002 PMID: 24954777
  70. Plath, K.; Lowry, W.E. Progress in understanding reprogramming to the induced pluripotent state. Nat. Rev. Genet., 2011, 12(4), 253-265. doi: 10.1038/nrg2955 PMID: 21415849
  71. Sampogna, G.; Guraya, S.Y.; Forgione, A. Regenerative medicine: Historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct., 2015, 3(3), 101-107. doi: 10.1016/j.jmau.2015.05.002 PMID: 30023189
  72. Dey, D.; Evans, G.R.D. Generation of Induced Pluripotent Stem (iPS) cells by nuclear reprogramming. Stem Cells Int., 2011, 2011, 1-11. doi: 10.4061/2011/619583 PMID: 22007240
  73. Halley-Stott, R.P.; Gurdon, J.B. Epigenetic memory in the context of nuclear reprogramming and cancer. Brief. Funct. Genomics, 2013, 12(3), 164-173. doi: 10.1093/bfgp/elt011 PMID: 23585580
  74. Loi, P.; Iuso, D.; Toschi, P.; Palazzese, L.; Czernik, M. Alternative strategies for nuclear reprogramming in Somatic Cell Nuclear transfer (SCNT). Anim. Reprod., 2017, 14(2), 377-382. doi: 10.21451/1984-3143-AR915
  75. Matoba, S.; Liu, Y.; Lu, F.; Iwabuchi, K.A.; Shen, L.; Inoue, A.; Zhang, Y. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 2014, 159(4), 884-895. doi: 10.1016/j.cell.2014.09.055 PMID: 25417163
  76. Chung, Y.G.; Matoba, S.; Liu, Y.; Eum, J.H.; Lu, F.; Jiang, W.; Lee, J.E.; Sepilian, V.; Cha, K.Y.; Lee, D.R.; Zhang, Y. Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell, 2015, 17(6), 758-766. doi: 10.1016/j.stem.2015.10.001 PMID: 26526725
  77. Liu, D.; Li, J.; Zhu, K.; Wang, C. 1432 Direct in-situ GMT lentivirus-induced cell reprogramming for cardiac repair by ultrasound-targeted microbubble destruction. Eur. Heart J., 2018, 39(S1), 39. doi: 10.1093/eurheartj/ehy565.1432
  78. Federation, A.J.; Bradner, J.E.; Meissner, A. The use of small molecules in somatic-cell reprogramming. Trends Cell Biol., 2014, 24(3), 179-187. doi: 10.1016/j.tcb.2013.09.011 PMID: 24183602
  79. Soufi, A.; Donahue, G.; Zaret, K.S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell, 2012, 151(5), 994-1004. doi: 10.1016/j.cell.2012.09.045 PMID: 23159369
  80. Taberlay, P.C.; Kelly, T.K.; Liu, C.C.; You, J.S.; De Carvalho, D.D.; Miranda, T.B.; Zhou, X.J.; Liang, G.; Jones, P.A. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell, 2011, 147(6), 1283-1294. doi: 10.1016/j.cell.2011.10.040 PMID: 22153073
  81. Vierbuchen, T.; Wernig, M. Molecular roadblocks for cellular reprogramming. Mol. Cell, 2012, 47(6), 827-838. doi: 10.1016/j.molcel.2012.09.008 PMID: 23020854
  82. Li, R.; Liang, J.; Ni, S.; Zhou, T.; Qing, X.; Li, H.; He, W.; Chen, J.; Li, F.; Zhuang, Q.; Qin, B.; Xu, J.; Li, W.; Yang, J.; Gan, Y.; Qin, D.; Feng, S.; Song, H.; Yang, D.; Zhang, B.; Zeng, L.; Lai, L.; Esteban, M.A.; Pei, D. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 2010, 7(1), 51-63. doi: 10.1016/j.stem.2010.04.014 PMID: 20621050
  83. Buganim, Y.; Faddah, D.A.; Cheng, A.W.; Itskovich, E.; Markoulaki, S.; Ganz, K.; Klemm, S.L.; van Oudenaarden, A.; Jaenisch, R. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 2012, 150(6), 1209-1222. doi: 10.1016/j.cell.2012.08.023 PMID: 22980981
  84. Polo, J.M.; Anderssen, E.; Walsh, R.M.; Schwarz, B.A.; Nefzger, C.M.; Lim, S.M.; Borkent, M.; Apostolou, E.; Alaei, S.; Cloutier, J.; Bar-Nur, O.; Cheloufi, S.; Stadtfeld, M.; Figueroa, M.E.; Robinton, D.; Natesan, S.; Melnick, A.; Zhu, J.; Ramaswamy, S.; Hochedlinger, K. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell, 2012, 151(7), 1617-1632. doi: 10.1016/j.cell.2012.11.039 PMID: 23260147
  85. Cantone, I.; Fisher, A.G. Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol., 2013, 20(3), 282-289. doi: 10.1038/nsmb.2489 PMID: 23463313
  86. Radzisheuskaya, A.; Silva, J.C.R. Do all roads lead to Oct4? The emerging concepts of induced pluripotency. Trends Cell Biol., 2014, 24(5), 275-284. doi: 10.1016/j.tcb.2013.11.010 PMID: 24370212
  87. Kelaini, S.; Cochrane, A.; Margariti, A. Direct reprogramming of adult cells: Avoiding the pluripotent state. Stem Cells Cloning, 2014, 7, 19-29. PMID: 24627642
  88. Cai, Y.; Dai, X.; Zhang, Q.; Dai, Z. Gene expression of OCT4, SOX2, KLF4 and MYC (OSKM) induced pluripotent stem cells: Identification for potential mechanisms. Diagn. Pathol., 2015, 10(1), 35. doi: 10.1186/s13000-015-0263-7 PMID: 25907774
  89. Wong, R.C.B.; Smith, E.L.; Donovan, P.J. New Techniques in the Generation of Induced Pluripotent Stem Cells. In: Embryonic Stem Cells - Differentiation and Pluripotent Alternatives, 2011.
  90. González, F.; Huangfu, D. Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip. Rev. Dev. Biol., 2016, 5(1), 39-65. doi: 10.1002/wdev.206 PMID: 26383234
  91. Anokye-Danso, F.; Snitow, M.; Morrisey, E.E. How microRNAs facilitate reprogramming to pluripotency. J. Cell Sci., 2012, 125(Pt 18), 4179-4187. PMID: 23077173
  92. Tan, G.C.; Dibb, N.J. MicroRNA-induced pluripotent stem cells. Malays. J. Pathol., 2012, 34(2), 167-168. PMID: 23424782
  93. Miyoshi, N.; Ishii, H.; Nagano, H.; Haraguchi, N.; Dewi, D.L.; Kano, Y.; Nishikawa, S.; Tanemura, M.; Mimori, K.; Tanaka, F.; Saito, T.; Nishimura, J.; Takemasa, I.; Mizushima, T.; Ikeda, M.; Yamamoto, H.; Sekimoto, M.; Doki, Y.; Mori, M. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 2011, 8(6), 633-638. doi: 10.1016/j.stem.2011.05.001 PMID: 21620789
  94. Lin, C.; Yu, C.; Ding, S. Toward directed reprogramming through exogenous factors. Curr. Opin. Genet. Dev., 2013, 23(5), 519-525. doi: 10.1016/j.gde.2013.06.002 PMID: 23932127
  95. Liao, Q.; Wang, B.; Li, X.; Jiang, G. miRNAs in acute myeloid leukemia. Oncotarget, 2017, 8(2), 3666-3682. doi: 10.18632/oncotarget.12343 PMID: 27705921
  96. Rupaimoole, R.; Calin, G.A.; Lopez-Berestein, G.; Sood, A.K. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov., 2016, 6(3), 235-246. doi: 10.1158/2159-8290.CD-15-0893 PMID: 26865249
  97. Hatziapostolou, M.; Polytarchou, C.; Iliopoulos, D. miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol. Metab., 2013, 24(7), 361-373. doi: 10.1016/j.tem.2013.03.002 PMID: 23602813
  98. Muraoka, N.; Yamakawa, H.; Miyamoto, K.; Sadahiro, T.; Umei, T.; Isomi, M.; Nakashima, H.; Akiyama, M.; Wada, R.; Inagawa, K.; Nishiyama, T.; Kaneda, R.; Fukuda, T.; Takeda, S.; Tohyama, S.; Hashimoto, H.; Kawamura, Y.; Goshima, N.; Aeba, R.; Yamagishi, H.; Fukuda, K.; Ieda, M. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J., 2014, 33(14), 1565-1581. doi: 10.15252/embj.201387605 PMID: 24920580
  99. Wang, M.; Gao, Y.; Qu, P.; Qing, S.; Qiao, F.; Zhang, Y.; Mager, J.; Wang, Y. Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci. Rep., 2017, 7(1), 13403. doi: 10.1038/s41598-017-13899-8 PMID: 29042680
  100. Zhang, J.; Qu, P.; Zhou, C.; Liu, X.; Ma, X.; Wang, M.; Wang, Y.; Su, J.; Liu, J.; Zhang, Y. MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. J. Biol. Chem., 2017, 292(38), 15916-15926. doi: 10.1074/jbc.M117.796771 PMID: 28794155
  101. Bernal, J.A. RNA-based tools for nuclear reprogramming and lineage-conversion: Towards clinical applications. J. Cardiovasc. Transl. Res., 2013, 6(6), 956-968. doi: 10.1007/s12265-013-9494-8 PMID: 23852582
  102. Moutsatsos, I.K.; Turgeman, G.; Zhou, S.; Kurkalli, B.G.; Pelled, G.; Tzur, L.; Kelley, P.; Stumm, N.; Mi, S.; Müller, R.; Zilberman, Y.; Gazit, D. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol. Ther., 2001, 3(4), 449-461. doi: 10.1006/mthe.2001.0291 PMID: 11319905
  103. Hoffmann, A.; Czichos, S.; Kaps, C.; Bächner, D.; Mayer, H.; Zilberman, Y.; Turgeman, G.; Pelled, G.; Gross, G.; Gazit, D.; Gazit, D. The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J. Cell Sci., 2002, 115(4), 769-781. doi: 10.1242/jcs.115.4.769 PMID: 11865033
  104. Martinek, V.; Latterman, C.; Usas, A.; Abramowitch, S.; Woo, S.L.Y.; Fu, F.H.; Huard, J. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J. Bone Joint Surg. Am., 2002, 84(7), 1123-1131. doi: 10.2106/00004623-200207000-00005 PMID: 12107310
  105. Choy, L.; Derynck, R. Transforming growth factor-β inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J. Biol. Chem., 2003, 278(11), 9609-9619. doi: 10.1074/jbc.M212259200 PMID: 12524424
  106. Tiraby, C.; Tavernier, G.; Lefort, C.; Larrouy, D.; Bouillaud, F.; Ricquier, D.; Langin, D. Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem., 2003, 278(35), 33370-33376. doi: 10.1074/jbc.M305235200 PMID: 12807871
  107. Braudeau, C.; Bouchet, D.; Tesson, L.; Iyer, S.; Rémy, S.; Buelow, R.; Anegon, I.; Chauveau, C. Induction of long-term cardiac allograft survival by heme oxygenase-1 gene transfer. Gene Ther., 2004, 11(8), 701-710. doi: 10.1038/sj.gt.3302208 PMID: 14973545
  108. Peng, H.; Usas, A.; Olshanski, A.; Ho, A.M.; Gearhart, B.; Cooper, G.M.; Huard, J. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J. Bone Miner. Res., 2005, 20(11), 2017-2027. doi: 10.1359/JBMR.050708 PMID: 16234975
  109. Sugiyama, O.; Sung An, D.; Kung, S.P.K.; Feeley, B.T.; Gamradt, S.; Liu, N.Q.; Chen, I.S.Y.; Lieberman, J.R. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol. Ther., 2005, 11(3), 390-398. doi: 10.1016/j.ymthe.2004.10.019 PMID: 15727935
  110. Hasharoni, A.; Zilberman, Y.; Turgeman, G.; Helm, G.A.; Liebergall, M.; Gazit, D. Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J. Neurosurg. Spine, 2005, 3(1), 47-52. doi: 10.3171/spi.2005.3.1.0047 PMID: 16122022
  111. Zhang, X.; Xie, C.; Lin, A.S.P.; Ito, H.; Awad, H.; Lieberman, J.R.; Rubery, P.T.; Schwarz, E.M.; O’Keefe, R.J.; Guldberg, R.E. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: Implications for functional tissue engineering. J. Bone Miner. Res., 2005, 20(12), 2124-2137. doi: 10.1359/JBMR.050806 PMID: 16294266
  112. Chen, Z.; Torrens, J.I.; Anand, A.; Spiegelman, B.M.; Friedman, J.M. Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms. Cell Metab., 2005, 1(2), 93-106. doi: 10.1016/j.cmet.2004.12.009 PMID: 16054051
  113. Hu, Y.; Leaver, S.G.; Plant, G.W.; Hendriks, W.T.J.; Niclou, S.P.; Verhaagen, J.; Harvey, A.R.; Cui, Q. Lentiviral- mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol. Ther., 2005, 11(6), 906-915. doi: 10.1016/j.ymthe.2005.01.016 PMID: 15922961
  114. Kuwaki, K.; Tseng, Y.L.; Dor, F.J.M.F.; Shimizu, A.; Houser, S.L.; Sanderson, T.M.; Lancos, C.J.; Prabharasuth, D.D.; Cheng, J.; Moran, K.; Hisashi, Y.; Mueller, N.; Yamada, K.; Greenstein, J.L.; Hawley, R.J.; Patience, C.; Awwad, M.; Fishman, J.A.; Robson, S.C.; Schuurman, H.J.; Sachs, D.H.; Cooper, D.K.C. Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: Initial experience. Nat. Med., 2005, 11(1), 29-31. doi: 10.1038/nm1171 PMID: 15619628
  115. Furukawa, H.; Oshima, K.; Tung, T.; Cui, G.; Laks, H.; Sen, L. Liposome-mediated combinatorial cytokine gene therapy induces localized synergistic immunosuppression and promotes long-term survival of cardiac allografts. J. Immunol., 2005, 174(11), 6983-6992. doi: 10.4049/jimmunol.174.11.6983 PMID: 15905541
  116. Aslan, H.; Zilberman, Y.; Arbeli, V.; Sheyn, D.; Matan, Y.; Liebergall, M.; Li, J.Z.; Helm, G.A.; Gazit, D.; Gazit, Z. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng., 2006, 12(4), 877-889. doi: 10.1089/ten.2006.12.877 PMID: 16674300
  117. Aslan, H.; Zilberman, Y.; Kandel, L.; Liebergall, M.; Oskouian, R.J.; Gazit, D.; Gazit, Z. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells, 2006, 24(7), 1728-1737. doi: 10.1634/stemcells.2005-0546 PMID: 16601078
  118. Hoffmann, A.; Pelled, G.; Turgeman, G.; Eberle, P.; Zilberman, Y.; Shinar, H.; Keinan-Adamsky, K.; Winkel, A.; Shahab, S.; Navon, G.; Gross, G.; Gazit, D. Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J. Clin. Invest., 2006, 116(4), 940-952. doi: 10.1172/JCI22689 PMID: 16585960
  119. Kamochi, H.; Kurokawa, M.S.; Yoshikawa, H.; Ueda, Y.; Masuda, C.; Takada, E.; Watanabe, K.; Sakakibara, M.; Natuki, Y.; Kimura, K.; Beppu, M.; Aoki, H.; Suzuki, N. Transplantation of myocyte precursors derived from embryonic stem cells transfected with IGFII gene in a mouse model of muscle injury. Transplantation, 2006, 82(4), 516-526. doi: 10.1097/01.tp.0000229388.97549.55 PMID: 16926596
  120. Mathe, Z.; Dupraz, P.; Rinsch, C.; Thorens, B.; Bosco, D.; Zbinden, M.; Morel, P.; Berney, T.; Pepper, M.S. Tetracycline-regulated expression of VEGF-A in beta cells induces angiogenesis: Improvement of engraftment following transplantation. Cell Transplant., 2006, 15(7), 621-636. doi: 10.3727/000000006783981675 PMID: 17176614
  121. Park, K.I.; Himes, B.T.; Stieg, P.E.; Tessler, A.; Fischer, I.; Snyder, E.Y. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic–ischemic brain injury. Exp. Neurol., 2006, 199(1), 179-190. doi: 10.1016/j.expneurol.2006.03.016 PMID: 16714016
  122. Vassalli, G.; Simeoni, E.; Li, J.P.; Fleury, S. Lentiviral gene transfer of the chemokine antagonist RANTES 9-68 prolongs heart graft survival. Transplantation, 2006, 81(2), 240-246. doi: 10.1097/01.tp.0000194859.98504.9e PMID: 16436968
  123. Capito, R.M.; Spector, M. Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther., 2007, 14(9), 721-732. doi: 10.1038/sj.gt.3302918 PMID: 17315042
  124. Chuang, C-K.; Sung, L-Y.; Hwang, S-M.; Lo, W-H.; Chen, H-C.; Hu, Y-C. Baculovirus as a new gene delivery vector for stem cell engineering and bone tissue engineering. Gene Ther., 2007, 14(19), 1417-1424. doi: 10.1038/sj.gt.3302996 PMID: 17637796
  125. Luu, H.H.; Song, W.X.; Luo, X.; Manning, D.; Luo, J.; Deng, Z.L.; Sharff, K.A.; Montag, A.G.; Haydon, R.C.; He, T.C. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J. Orthop. Res., 2007, 25(5), 665-677. doi: 10.1002/jor.20359 PMID: 17290432
  126. Pagnotto, M.R.; Wang, Z.; Karpie, J.C.; Ferretti, M.; Xiao, X.; Chu, C.R. Adeno-associated viral gene transfer of transforming growth factor-β1 to human mesenchymal stem cells improves cartilage repair. Gene Ther., 2007, 14(10), 804-813. doi: 10.1038/sj.gt.3302938 PMID: 17344902
  127. Yokoi, T.; Saito, M.; Kiyono, T.; Iseki, S.; Kosaka, K.; Nishida, E.; Tsubakimoto, T.; Harada, H.; Eto, K.; Noguchi, T.; Teranaka, T. Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res., 2006, 327(2), 301-311. doi: 10.1007/s00441-006-0257-6 PMID: 17013589
  128. Li, Y.; Li, J.; Zhu, J.; Sun, B.; Branca, M.; Tang, Y.; Foster, W.; Xiao, X.; Huard, J. Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol. Ther., 2007, 15(9), 1616-1622. doi: 10.1038/sj.mt.6300250 PMID: 17609657
  129. Qin, R.; Mao, T.; Gu, X.; Hu, K.; Liu, Y.; Chen, J.; Nie, X. Regulation of skeletal muscle differentiation in fibroblasts by exogenous MyoD gene in vitro and in vivo. Mol. Cell. Biochem., 2007, 302(1-2), 233-239. doi: 10.1007/s11010-007-9446-1 PMID: 17415623
  130. Benchaouir, R.; Meregalli, M.; Farini, A.; D’Antona, G.; Belicchi, M.; Goyenvalle, A.; Battistelli, M.; Bresolin, N.; Bottinelli, R.; Garcia, L.; Torrente, Y. Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell, 2007, 1(6), 646-657. doi: 10.1016/j.stem.2007.09.016 PMID: 18371406
  131. Quenneville, S.P.; Chapdelaine, P.; Skuk, D.; Paradis, M.; Goulet, M.; Rousseau, J.; Xiao, X.; Garcia, L.; Tremblay, J.P. Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: Human cells and primate models. Mol. Ther., 2007, 15(2), 431-438. doi: 10.1038/sj.mt.6300047 PMID: 17235323
  132. Jo, J.; Nagaya, N.; Miyahara, Y.; Kataoka, M.; Harada-Shiba, M.; Kangawa, K.; Tabata, Y. Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Eng., 2007, 13(2), 313-322. doi: 10.1089/ten.2006.0133 PMID: 17518565
  133. Li, W.; Ma, N.; Ong, L.L.; Nesselmann, C.; Klopsch, C.; Ladilov, Y.; Furlani, D.; Piechaczek, C.; Moebius, J.M.; Lützow, K.; Lendlein, A.; Stamm, C.; Li, R.K.; Steinhoff, G. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 2007, 25(8), 2118-2127. doi: 10.1634/stemcells.2006-0771 PMID: 17478584
  134. Elmadbouh, I.; Haider, H.K.; Jiang, S.; Idris, N.M.; Lu, G.; Ashraf, M. Ex vivo delivered stromal cell-derived factor-1α promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol., 2007, 42(4), 792-803. doi: 10.1016/j.yjmcc.2007.02.001 PMID: 17350033
  135. Kameda, M.; Shingo, T.; Takahashi, K.; Muraoka, K.; Kurozumi, K.; Yasuhara, T.; Maruo, T.; Tsuboi, T.; Uozumi, T.; Matsui, T.; Miyoshi, Y.; Hamada, H.; Date, I. Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur. J. Neurosci., 2007, 26(6), 1462-1478. doi: 10.1111/j.1460-9568.2007.05776.x PMID: 17880388
  136. Karnieli, O.; Izhar-Prato, Y.; Bulvik, S.; Efrat, S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 2007, 25(11), 2837-2844. doi: 10.1634/stemcells.2007-0164 PMID: 17615265
  137. Muniappan, L.; Özcan, S. Induction of insulin secretion in engineered liver cells by nitric oxide. BMC Physiol., 2007, 7(1), 11. doi: 10.1186/1472-6793-7-11 PMID: 17941991
  138. Tian, C.; Ansari, M.J.I.; Paez-Cortez, J.; Bagley, J.; Godwin, J.; Donnarumma, M.; Sayegh, M.H.; Iacomini, J. Induction of robust diabetes resistance and prevention of recurrent type 1 diabetes following islet transplantation by gene therapy. J. Immunol., 2007, 179(10), 6762-6769. doi: 10.4049/jimmunol.179.10.6762 PMID: 17982066
  139. Tatake, R.J.; O’Neill, M.M.; Kennedy, C.A.; Reale, V.D.; Runyan, J.D.; Monaco, K.A.D.; Yu, K.; Osborne, W.R.; Barton, R.W.; Schneiderman, R.D. Glucose-regulated insulin production from genetically engineered human non- beta cells. Life Sci., 2007, 81(17-18), 1346-1354. doi: 10.1016/j.lfs.2007.08.032 PMID: 17920636
  140. Papeta, N.; Chen, T.; Vianello, F.; Gererty, L.; Malik, A.; Mok, Y.T.; Tharp, W.G.; Bagley, J.; Zhao, G.; Stevceva, L.; Yoon, V.; Sykes, M.; Sachs, D.; Iacomini, J.; Poznansky, M.C. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation, 2007, 83(2), 174-183. doi: 10.1097/01.tp.0000250658.00925.c8 PMID: 17264814
  141. Dudler, J.; Simeoni, E.; Fleury, S.; Li, J.; Pagnotta, M.; Pascual, M.; von Segesser, L.K.; Vassalli, G. Gene transfer of interleukin-18-binding protein attenuates cardiac allograft rejection. Transpl. Int., 2007, 20(5), 460-466. doi: 10.1111/j.1432-2277.2007.00457.x PMID: 17313449
  142. Babister, J.C.; Tare, R.S.; Green, D.W.; Inglis, S.; Mann, S.; Oreffo, R.O.C. Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using "bead-in-bead" polysaccharide capsules. Biomaterials, 2008, 29(1), 58-65. doi: 10.1016/j.biomaterials.2007.09.006 PMID: 17897711
  143. Chen, Y-L.; Chen, P.K-T.; Jeng, L-B.; Huang, C-S.; Yang, L-C.; Chung, H-Y.; Chang, S.C-N. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: An alternative to alveolaplasty. Gene Ther., 2008, 15(22), 1469-1477. doi: 10.1038/gt.2008.131 PMID: 18701911
  144. Sheyn, D.; Pelled, G.; Zilberman, Y.; Talasazan, F.; Frank, J.M.; Gazit, D.; Gazit, Z. Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells, 2008, 26(4), 1056-1064. doi: 10.1634/stemcells.2007-0858 PMID: 18218819
  145. Steinhardt, Y.; Aslan, H.; Regev, E.; Zilberman, Y.; Kallai, I.; Gazit, D.; Gazit, Z. Maxillofacial-derived stem cells regenerate critical mandibular bone defect. Tissue Eng. Part A, 2008, 14(11), 1763-1773. doi: 10.1089/ten.tea.2008.0007 PMID: 18636943
  146. Steinert, A.; Weber, M.; Kunz, M.; Palmer, G.; Nöth, U.; Evans, C.; Murray, M. In situ IGF-1 gene delivery to cells emerging from the injured anterior cruciate ligament. Biomaterials, 2008, 29(7), 904-916. doi: 10.1016/j.biomaterials.2007.10.054 PMID: 18045683
  147. Steinert, A.F.; Palmer, G.D.; Pilapil, C.; Nöth, U.; Evans, C.H.; Ghivizzani, S.C. Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Tissue Eng. Part A, 2009, 15(5), 1127-1139. doi: 10.1089/ten.tea.2007.0252 PMID: 18826340
  148. Majewski, M.; Betz, O.; Ochsner, P.E.; Liu, F.; Porter, R.M.; Evans, C.H. Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Ther., 2008, 15(16), 1139-1146. doi: 10.1038/gt.2008.48 PMID: 18432278
  149. Xie, G.H.; Wang, S.J.; Wang, Y.; Zhang, Y.; Zhang, H.Z.; Jin, S.; Wang, Q.F.; Liu, Z.C.; Ge, H.L. Fas Ligand gene transfer enhances the survival of tissue-engineered chondrocyte allografts in mini-pigs. Transpl. Immunol., 2008, 19(2), 145-151. doi: 10.1016/j.trim.2008.02.001 PMID: 18503890
  150. Gonçalves, M.A.F.V.; Swildens, J.; Holkers, M.; Narain, A.; van Nierop, G.P.; van de Watering, M.J.M.; Knaän-Shanzer, S.; de Vries, A.A.F. Genetic complementation of human muscle cells via directed stem cell fusion. Mol. Ther., 2008, 16(4), 741-748. doi: 10.1038/mt.2008.16 PMID: 18334989
  151. Laumonier, T.; Yang, S.; Konig, S.; Chauveau, C.; Anegon, I.; Hoffmeyer, P.; Menetrey, J. Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig. Mol. Ther., 2008, 16(2), 404-410. doi: 10.1038/sj.mt.6300354 PMID: 18026170
  152. Kimura, E.; Han, J.J.; Li, S.; Fall, B.; Ra, J.; Haraguchi, M.; Tapscott, S.J.; Chamberlain, J.S. Cell-lineage regulated myogenesis for dystrophin replacement: A novel therapeutic approach for treatment of muscular dystrophy. Hum. Mol. Genet., 2008, 17(16), 2507-2517. doi: 10.1093/hmg/ddn151 PMID: 18511457
  153. Tseng, Y.H.; Kokkotou, E.; Schulz, T.J.; Huang, T.L.; Winnay, J.N.; Taniguchi, C.M.; Tran, T.T.; Suzuki, R.; Espinoza, D.O.; Yamamoto, Y.; Ahrens, M.J.; Dudley, A.T.; Norris, A.W.; Kulkarni, R.N.; Kahn, C.R. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 2008, 454(7207), 1000-1004. doi: 10.1038/nature07221 PMID: 18719589
  154. Copland, I.B.; Jolicoeur, E.M.; Gillis, M.A.; Cuerquis, J.; Eliopoulos, N.; Annabi, B.; Calderone, A.; Tanguay, J.F.; Ducharme, A.; Galipeau, J. Coupling erythropoietin secretion to mesenchymal stromal cells enhances their regenerative properties. Cardiovasc. Res., 2008, 79(3), 405-415. doi: 10.1093/cvr/cvn090 PMID: 18397963
  155. Zhang, D.; Fan, G.C.; Zhou, X.; Zhao, T.; Pasha, Z.; Xu, M.; Zhu, Y.; Ashraf, M.; Wang, Y. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol., 2008, 44(2), 281-292. doi: 10.1016/j.yjmcc.2007.11.010 PMID: 18201717
  156. Haider, H.K.; Jiang, S.; Idris, N.M.; Ashraf, M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ. Res., 2008, 103(11), 1300-1308. doi: 10.1161/CIRCRESAHA.108.186742 PMID: 18948617
  157. Cheng, Z.; Ou, L.; Zhou, X.; Li, F.; Jia, X.; Zhang, Y.; Liu, X.; Li, Y.; Ward, C.A.; Melo, L.G.; Kong, D. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol. Ther., 2008, 16(3), 571-579. doi: 10.1038/sj.mt.6300374 PMID: 18253156
  158. Chen, N.K.F.; Wong, J.S.; Kee, I.H.C.; Lai, S.H.; Thng, C.H.; Ng, W.H.; Ng, R.T.H.; Tan, S.Y.; Lee, S.Y.; Tan, M.E.H.; Sivalingam, J.; Chow, P.K.H.; Kon, O.L. Nonvirally modified autologous primary hepatocytes correct diabetes and prevent target organ injury in a large preclinical model. PLoS One, 2008, 3(3), e1734. doi: 10.1371/journal.pone.0001734 PMID: 18320053
  159. Kim, Y.H.; Lim, D.G.; Wee, Y.M.; Kim, J.H.; Yun, C.O.; Choi, M.Y.; Park, Y.H.; Kim, S.C.; Han, D.J. Viral IL-10 gene transfer prolongs rat islet allograft survival. Cell Transplant., 2008, 17(6), 609-618. doi: 10.3727/096368908786092694 PMID: 18819249
  160. May, F.; Matiasek, K.; Vroemen, M.; Caspers, C.; Mrva, T.; Arndt, C.; Schlenker, B.; Gais, P.; Brill, T.; Buchner, A.; Blesch, A.; Hartung, R.; Stief, C.; Gansbacher, B.; Weidner, N. GDNF-transduced Schwann cell grafts enhance regeneration of erectile nerves. Eur. Urol., 2008, 54(5), 1179-1187. doi: 10.1016/j.eururo.2008.02.003 PMID: 18313832
  161. Planchamp, V.; Bermel, C.; Tönges, L.; Ostendorf, T.; Kügler, S.; Reed, J.C.; Kermer, P.; Bähr, M.; Lingor, P. BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity. Brain, 2008, 131(10), 2606-2619. doi: 10.1093/brain/awn196 PMID: 18757464
  162. Matsumoto, T.; Cooper, G.M.; Gharaibeh, B.; Meszaros, L.B.; Li, G.; Usas, A.; Fu, F.H.; Huard, J. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble flt-1. Arthritis Rheum., 2009, 60(5), 1390-1405. doi: 10.1002/art.24443 PMID: 19404941
  163. Kang, Q.; Song, W.X.; Luo, Q.; Tang, N.; Luo, J.; Luo, X.; Chen, J.; Bi, Y.; He, B.C.; Park, J.K.; Jiang, W.; Tang, Y.; Huang, J.; Su, Y.; Zhu, G.H.; He, Y.; Yin, H.; Hu, Z.; Wang, Y.; Chen, L.; Zuo, G.W.; Pan, X.; Shen, J.; Vokes, T.; Reid, R.R.; Haydon, R.C.; Luu, H.H.; He, T.C. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev., 2009, 18(4), 545-558. doi: 10.1089/scd.2008.0130 PMID: 18616389
  164. Salzmann, G.M.; Nuernberger, B.; Schmitz, P.; Anton, M.; Stoddart, M.J.; Grad, S.; Milz, S.; Tischer, T.; Vogt, S.; Gansbacher, B.; Imhoff, A.B.; Alini, M. Physicobiochemical synergism through gene therapy and functional tissue engineering for in vitro chondrogenesis. Tissue Eng. Part A, 2009, 15(9), 2513-2524. doi: 10.1089/ten.tea.2008.0479 PMID: 19292668
  165. Xia, W.; Jin, Y.Q.; Kretlow, J.D.; Liu, W.; Ding, W.; Sun, H.; Zhou, G.; Zhang, W.; Cao, Y. Adenoviral transduction of hTGF-β1 enhances the chondrogenesis of bone marrow derived stromal cells. Biotechnol. Lett., 2009, 31(5), 639-646. doi: 10.1007/s10529-009-9930-7 PMID: 19169885
  166. Chen, H.C.; Chang, Y.H.; Chuang, C.K.; Lin, C.Y.; Sung, L.Y.; Wang, Y.H.; Hu, Y.C. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials, 2009, 30(4), 674-681. doi: 10.1016/j.biomaterials.2008.10.017 PMID: 19012961
  167. Goudenege, S.; Pisani, D.F.; Wdziekonski, B.; Di Santo, J.P.; Bagnis, C.; Dani, C.; Dechesne, C.A. Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol. Ther., 2009, 17(6), 1064-1072. doi: 10.1038/mt.2009.67 PMID: 19352326
  168. Kajimura, S.; Seale, P.; Kubota, K.; Lunsford, E.; Frangioni, J.V.; Gygi, S.P.; Spiegelman, B.M. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature, 2009, 460(7259), 1154-1158. doi: 10.1038/nature08262 PMID: 19641492
  169. Xiao, Q.; Luo, Z.; Pepe, A.E.; Margariti, A.; Zeng, L.; Xu, Q. Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am. J. Physiol. Cell Physiol., 2009, 296(4), C711-C723. doi: 10.1152/ajpcell.00442.2008 PMID: 19036941
  170. Ravassard, P.; Emilie Bricout-Neveu; Hazhouz, Y.; Pechberty, S.; Mallet, J.; Czernichow, P.; Scharfmann, R. A new strategy to generate functional insulin-producing cell lines by somatic gene transfer into pancreatic progenitors. PLoS One, 2009, 4(3), e4731. doi: 10.1371/journal.pone.0004731 PMID: 19266046
  171. Kim, H.M.; Hwang, D.H.; Lee, J.E.; Kim, S.U.; Kim, B.G. Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One, 2009, 4(3), e4987. doi: 10.1371/journal.pone.0004987 PMID: 19319198
  172. Liu, H.; Liu, L.; Liu, K.; Bizargity, P.; Hancock, W.W.; Visner, G.A. Reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J. Immunol., 2009, 183(2), 1022-1031. doi: 10.4049/jimmunol.0900408 PMID: 19564344
  173. Kojaoghlanian, T.; Joseph, A.; Follenzi, A.; Zheng, J.H.; Leiser, M.; Fleischer, N.; Horwitz, M.S.; DiLorenzo, T.P.; Goldstein, H. Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic β-cells to correct diabetes in allogeneic mice. Gene Ther., 2009, 16(3), 340-348. doi: 10.1038/gt.2008.172 PMID: 19112449
  174. Kajiyama, H.; Hamazaki, T.S.; Tokuhara, M.; Masui, S.; Okabayashi, K.; Ohnuma, K.; Yabe, S.; Yasuda, K.; Ishiura, S.; Okochi, H.; Asashima, M. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol., 2010, 54(4), 699-705. doi: 10.1387/ijdb.092953hk PMID: 19757377
  175. Krebs, M.D.; Salter, E.; Chen, E.; Sutter, K.A.; Alsberg, E. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J. Biomed. Mater. Res. A, 2010, 92(3), 1131-1138. PMID: 19322877
  176. Yang, F.; Cho, S.W.; Son, S.M.; Bogatyrev, S.R.; Singh, D.; Green, J.J.; Mei, Y.; Park, S.; Bhang, S.H.; Kim, B.S.; Langer, R.; Anderson, D.G. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci., 2010, 107(8), 3317-3322. doi: 10.1073/pnas.0905432106 PMID: 19805054
  177. Cheng, F.C.; Tai, M.H.; Sheu, M.L.; Chen, C.J.; Yang, D.Y.; Su, H.L.; Ho, S.P.; Lai, S.Z.; Pan, H.C. Enhancement of regeneration with glia cell line–derived neurotrophic factor–transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury RETRACTED. J. Neurosurg., 2010, 112(4), 868-879. doi: 10.3171/2009.8.JNS09850 PMID: 19817545
  178. Lee, S.J.; Kang, S.W.; Do, H.J.; Han, I.; Shin, D.A.; Kim, J.H.; Lee, S.H. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials, 2010, 31(21), 5652-5659. doi: 10.1016/j.biomaterials.2010.03.019 PMID: 20413153
  179. Luther, G.; Wagner, E.R.; Zhu, G.; Kang, Q.; Luo, Q.; Lamplot, J.; Bi, Y.; Luo, X.; Luo, J.; Teven, C.; Shi, Q.; Kim, S.H.; Gao, J.L.; Huang, E.; Yang, K.; Rames, R.; Liu, X.; Li, M.; Hu, N.; Liu, H.; Su, Y.; Chen, L.; He, B.C.; Zuo, G.W.; Deng, Z.L.; Reid, R.R.; Luu, H.H.; Haydon, R.C.; He, T.C. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: Molecular mechanism and therapeutic potential. Curr. Gene Ther., 2011, 11(3), 229-240. doi: 10.2174/156652311795684777 PMID: 21453282
  180. Xiong, N.; Zhang, Z.; Huang, J.; Chen, C.; Zhang, Z.; Jia, M.; Xiong, J.; Liu, X.; Wang, F.; Cao, X.; Liang, Z.; Sun, S.; Lin, Z.; Wang, T. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson’s disease. Gene Ther., 2011, 18(4), 394-402. doi: 10.1038/gt.2010.152 PMID: 21107440
  181. Zhang, S.; Chen, S.; Li, W.; Guo, X.; Zhao, P.; Xu, J.; Chen, Y.; Pan, Q.; Liu, X.; Zychlinski, D.; Lu, H.; Tortorella, M.D.; Schambach, A.; Wang, Y.; Pei, D.; Esteban, M.A. Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum. Mol. Genet., 2011, 20(16), 3176-3187. doi: 10.1093/hmg/ddr223 PMID: 21593220
  182. Lee, E.X.; Lam, D.H.; Wu, C.; Yang, J.; Tham, C.K.; Ng, W.H.; Wang, S. Glioma gene therapy using induced pluripotent stem cell derived neural stem cells. Mol. Pharm., 2011, 8(5), 1515-1524. doi: 10.1021/mp200127u PMID: 21755959
  183. Neri, M.; Ricca, A.; di Girolamo, I.; Alcala’-Franco, B.; Cavazzin, C.; Orlacchio, A.; Martino, S.; Naldini, L.; Gritti, A. Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy. Stem Cells, 2011, 29(10), 1559-1571. doi: 10.1002/stem.701 PMID: 21809420
  184. Liu, H.; Liu, S.; Li, Y.; Wang, X.; Xue, W.; Ge, G.; Luo, X. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One, 2012, 7(4), e34608. doi: 10.1371/journal.pone.0034608 PMID: 22511954
  185. Takayama, K.; Inamura, M.; Kawabata, K.; Katayama, K.; Higuchi, M.; Tashiro, K.; Nonaka, A.; Sakurai, F.; Hayakawa, T.; Kusuda Furue, M.; Mizuguchi, H. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol. Ther., 2012, 20(1), 127-137. doi: 10.1038/mt.2011.234 PMID: 22068426
  186. Hoke, N.N.; Salloum, F.N.; Kass, D.A.; Das, A.; Kukreja, R.C. Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells, 2012, 30(2), 326-335. doi: 10.1002/stem.789 PMID: 22102597
  187. Fei, S.; Qi, X.; Kedong, S.; Guangchun, J.; Jian, L.; Wei, Q. The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J. Cancer Res. Clin. Oncol., 2012, 138(2), 347-357. doi: 10.1007/s00432-011-1104-z PMID: 22139383
  188. Meng, X.; Neises, A.; Su, R.J.; Payne, K.J.; Ritter, L.; Gridley, D.S.; Wang, J.; Sheng, M.; William Lau, K-H.; Baylink, D.J.; Zhang, X.B. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol. Ther., 2012, 20(2), 408-416. doi: 10.1038/mt.2011.258 PMID: 22108860
  189. Lee, J.M.; Im, G.I. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials, 2012, 33(7), 2016-2024. doi: 10.1016/j.biomaterials.2011.11.050 PMID: 22189147
  190. Cho, J.W.; Lee, C.Y.; Ko, Y. Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J. Gastroenterol. Hepatol., 2012, 27(8), 1362-1370. doi: 10.1111/j.1440-1746.2012.07137.x PMID: 22432472
  191. Biffi, A.; Montini, E.; Lorioli, L.; Cesani, M.; Fumagalli, F.; Plati, T.; Baldoli, C.; Martino, S.; Calabria, A.; Canale, S.; Benedicenti, F.; Vallanti, G.; Biasco, L.; Leo, S.; Kabbara, N.; Zanetti, G.; Rizzo, W.B.; Mehta, N.A.L.; Cicalese, M.P.; Casiraghi, M.; Boelens, J.J.; Del Carro, U.; Dow, D.J.; Schmidt, M.; Assanelli, A.; Neduva, V.; Di Serio, C.; Stupka, E.; Gardner, J.; Von Kalle, C.; Bordignon, C.; Ciceri, F.; Rovelli, A.; Roncarolo, M.G.; Aiuti, A.; Sessa, M.; Naldini, L. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science, 2013, 341(6148), 1233158.
  192. Filareto, A.; Parker, S.; Darabi, R.; Borges, L.; Iacovino, M.; Schaaf, T.; Mayerhofer, T.; Chamberlain, J.S.; Ervasti, J.M.; McIvor, R.S.; Kyba, M.; Perlingeiro, R.C.R. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat. Commun., 2013, 4(1), 1549. doi: 10.1038/ncomms2550 PMID: 23462992
  193. Okita, K.; Yamakawa, T.; Matsumura, Y.; Sato, Y.; Amano, N.; Watanabe, A.; Goshima, N.; Yamanaka, S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 2013, 31(3), 458-466. doi: 10.1002/stem.1293 PMID: 23193063
  194. Eggenschwiler, R.; Loya, K.; Wu, G.; Sharma, A.D.; Sgodda, M.; Zychlinski, D.; Herr, C.; Steinemann, D.; Teckman, J.; Bals, R.; Ott, M.; Schambach, A.; Schöler, H.R.; Cantz, T. Sustained knockdown of a disease-causing gene in patient-specific induced pluripotent stem cells using lentiviral vector-based gene therapy. Stem Cells Transl. Med., 2013, 2(9), 641-654. doi: 10.5966/sctm.2013-0017 PMID: 23926210
  195. Lee, H.K.; Finniss, S.; Cazacu, S.; Bucris, E.; Ziv-Av, A.; Xiang, C.; Bobbitt, K.; Rempel, S.A.; Hasselbach, L.; Mikkelsen, T.; Slavin, S.; Brodie, C. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget, 2013, 4(2), 346-361. doi: 10.18632/oncotarget.868 PMID: 23548312
  196. McGinley, L.M.; McMahon, J.; Stocca, A.; Duffy, A.; Flynn, A.; O’Toole, D.; O’Brien, T. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum. Gene Ther., 2013, 24(10), 840-851. doi: 10.1089/hum.2011.009 PMID: 23987185
  197. Ye, L.; Muench, M.O.; Fusaki, N.; Beyer, A.I.; Wang, J.; Qi, Z.; Yu, J.; Kan, Y.W. Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Transl. Med., 2013, 2(8), 558-566. doi: 10.5966/sctm.2013-0006 PMID: 23847002
  198. Sebastiano, V.; Zhen, H.H.; Haddad, B.; Bashkirova, E.; Melo, S.P.; Wang, P.; Leung, T.L.; Siprashvili, Z.; Tichy, A.; Li, J.; Ameen, M.; Hawkins, J.; Lee, S.; Li, L.; Schwertschkow, A.; Bauer, G.; Lisowski, L.; Kay, M.A.; Kim, S.K.; Lane, A.T.; Wernig, M.; Oro, A.E. Human COL7A1 -corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci. Transl. Med., 2014, 6(264), 264ra163. doi: 10.1126/scitranslmed.3009540 PMID: 25429056
  199. Seo, K.W.; Sohn, S.Y.; Bhang, D.H.; Nam, M.J.; Lee, H.W.; Youn, H.Y. Therapeutic effects of hepatocyte growth factor-overexpressing human umbilical cord blood- derived mesenchymal stem cells on liver fibrosis in rats. Cell Biol. Int., 2014, 38(1), 106-116. doi: 10.1002/cbin.10186 PMID: 24115681
  200. Frisch, J.; Venkatesan, J.K.; Rey-Rico, A.; Schmitt, G.; Madry, H.; Cucchiarini, M. Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-β via recombinant adeno-associated viral vectors. Hum. Gene Ther., 2014, 25(12), 1050-1060. doi: 10.1089/hum.2014.091 PMID: 25333854
  201. Liao, Y.H.; Chang, Y.H.; Sung, L.Y.; Li, K.C.; Yeh, C.L.; Yen, T.C.; Hwang, S.M.; Lin, K.J.; Hu, Y.C. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials, 2014, 35(18), 4901-4910. doi: 10.1016/j.biomaterials.2014.02.055 PMID: 24674465
  202. Umegaki-Arao, N.; Pasmooij, A.M.G.; Itoh, M.; Cerise, J.E.; Guo, Z.; Levy, B.; Gostyñski, A.; Rothman, L.R.; Jonkman, M.F.; Christiano, A.M. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci. Transl. Med., 2014, 6, 264ra164-264ra164. doi: 10.1126/scitranslmed.3009342
  203. Frisch, J.; Venkatesan, J.K.; Rey-Rico, A.; Schmitt, G.; Madry, H.; Cucchiarini, M. Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther., 2014, 5(4), 103. doi: 10.1186/scrt491 PMID: 25163769
  204. Sahara, M.; Hansson, E.M.; Wernet, O.; Lui, K.O.; Später, D.; Chien, K.R. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Res., 2014, 24(7), 820-841. doi: 10.1038/cr.2014.59 PMID: 24810299
  205. Castiello, M.C.; Scaramuzza, S.; Pala, F.; Ferrua, F.; Uva, P.; Brigida, I.; Sereni, L.; van der Burg, M.; Ottaviano, G.; Albert, M.H.; Grazia Roncarolo, M.; Naldini, L.; Aiuti, A.; Villa, A.; Bosticardo, M. B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome. J. Allergy Clin. Immunol., 2015, 136(3), 692-702.e2. doi: 10.1016/j.jaci.2015.01.035 PMID: 25792466
  206. Zhuang, W.; Ge, X.; Yang, S.; Huang, M.; Zhuang, W.; Chen, P.; Zhang, X.; Fu, J.; Qu, J.; Li, B. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells, 2015, 33(6), 1985-1997. doi: 10.1002/stem.1989 PMID: 25753650
  207. Negre, O.; Bartholomae, C.; Beuzard, Y.; Cavazzana, M.; Christiansen, L.; Courne, C.; Deichmann, A.; Denaro, M.; Dreuzy, E.; Finer, M.; Fronza, R.; Gillet-Legrand, B.; Joubert, C.; Kutner, R.; Leboulch, P.; Maouche, L.; Paulard, A.; Pierciey, F.; Rothe, M.; Ryu, B.; Schmidt, M.; Kalle, C.; Payen, E.; Veres, G. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr. Gene Ther., 2014, 15(1), 64-81. doi: 10.2174/1566523214666141127095336 PMID: 25429463
  208. Liu, H.; Zhang, C.; Zhu, S.; Lu, P.; Zhu, T.; Gong, X.; Zhang, Z.; Hu, J.; Yin, Z.; Heng, B.C.; Chen, X.; Wei Ouyang, H. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem Cells, 2015, 33(2), 443-455. doi: 10.1002/stem.1866 PMID: 25332192
  209. Talluri, T.R.; Kumar, D.; Glage, S.; Garrels, W.; Ivics, Z.; Debowski, K.; Behr, R.; Niemann, H.; Kues, W.A. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell. Reprogram., 2015, 17(2), 131-140. doi: 10.1089/cell.2014.0080 PMID: 25826726
  210. Xue, X.; Liu, Y.; Zhang, J.; Liu, T.; Yang, Z.; Wang, H. Bcl-xL genetic modification enhanced the therapeutic efficacy of mesenchymal stem cell transplantation in the treatment of heart infarction. Stem Cells Int., 2015, 2015, 1-14. doi: 10.1155/2015/176409 PMID: 26074971
  211. Rey-Rico, A.; Venkatesan, J.K.; Frisch, J.; Rial-Hermida, I.; Schmitt, G.; Concheiro, A.; Madry, H.; Alvarez-Lorenzo, C.; Cucchiarini, M. PEO–PPO–PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater., 2015, 27, 42-52. doi: 10.1016/j.actbio.2015.08.046 PMID: 26320543
  212. Yin, T.; He, S.; Su, C.; Chen, X.; Zhang, D.; Wan, Y.; Ye, T.; Shen, G.; Wang, Y.; Shi, H.; Yang, L.; Wei, Y. Genetically modified human placenta-derived mesenchymal stem cells with FGF-2 and PDGF-BB enhance neovascularization in a model of hindlimb ischemia. Mol. Med. Rep., 2015, 12(4), 5093-5099. doi: 10.3892/mmr.2015.4089 PMID: 26239842
  213. Rezvani, M.; Español-Suñer, R.; Malato, Y.; Dumont, L.; Grimm, A.A.; Kienle, E.; Bindman, J.G.; Wiedtke, E.; Hsu, B.Y.; Naqvi, S.J.; Schwabe, R.F.; Corvera, C.U.; Grimm, D.; Willenbring, H. In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell, 2016, 18(6), 809-816. doi: 10.1016/j.stem.2016.05.005 PMID: 27257763
  214. Pollock, K.; Dahlenburg, H.; Nelson, H.; Fink, K.D.; Cary, W.; Hendrix, K.; Annett, G.; Torrest, A.; Deng, P.; Gutierrez, J.; Nacey, C.; Pepper, K.; Kalomoiris, S.; Anderson, J.D.; McGee, J.; Gruenloh, W.; Fury, B.; Bauer, G.; Duffy, A.; Tempkin, T.; Wheelock, V.; Nolta, J.A. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol. Ther., 2016, 24(5), 965-977. doi: 10.1038/mt.2016.12 PMID: 26765769
  215. Tao, K.; Frisch, J.; Rey-Rico, A.; Venkatesan, J.K.; Schmitt, G.; Madry, H.; Lin, J.; Cucchiarini, M. Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther., 2016, 7(1), 20. doi: 10.1186/s13287-016-0280-9 PMID: 26830674
  216. Fang, S.; Xu, C.; Zhang, Y.; Xue, C.; Yang, C.; Bi, H.; Qian, X.; Wu, M.; Ji, K.; Zhao, Y.; Wang, Y.; Liu, H.; Xing, X. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl. Med., 2016, 5(10), 1425-1439. doi: 10.5966/sctm.2015-0367 PMID: 27388239
  217. Jacków, J.; Titeux, M.; Portier, S.; Charbonnier, S.; Ganier, C.; Gaucher, S.; Hovnanian, A. Gene-corrected fibroblast therapy for recessive dystrophic epidermolysis bullosa using a self-inactivating COL7A1 retroviral vector. J. Invest. Dermatol., 2016, 136(7), 1346-1354. doi: 10.1016/j.jid.2016.02.811 PMID: 26994967
  218. Bagno, L.L.; Carvalho, D.; Mesquita, F.; Louzada, R.A.; Andrade, B.; Kasai-Brunswick, T.H.; Lago, V.M.; Suhet, G.; Cipitelli, D.; Werneck-De-Castro, J.P.; Campos-De- Carvalho, A.C. Sustained IGF-1 secretion by adipose-derived stem cells improves infarcted heart function. Cell Transplant., 2016, 25(9), 1609-1622. doi: 10.3727/096368915X690215 PMID: 26624235
  219. Cai, M.; Shen, R.; Song, L.; Lu, M.; Wang, J.; Zhao, S.; Tang, Y.; Meng, X.; Li, Z.; He, Z.X. Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Sci. Rep., 2016, 6(1), 28250. doi: 10.1038/srep28250 PMID: 27321050
  220. Meneghini, V.; Frati, G.; Sala, D.; De Cicco, S.; Luciani, M.; Cavazzin, C.; Paulis, M.; Mentzen, W.; Morena, F.; Giannelli, S.; Sanvito, F.; Villa, A.; Bulfone, A.; Broccoli, V.; Martino, S.; Gritti, A. Generation of human induced pluripotent stem cell-derived bona fide neural stem cells for ex vivo gene therapy of metachromatic leukodystrophy. Stem Cells Transl. Med., 2017, 6(2), 352-368. doi: 10.5966/sctm.2015-0414 PMID: 28191778
  221. Kargozar, S.; Hashemian, S.J.; Soleimani, M.; Milan, P.B.; Askari, M.; Khalaj, V.; Samadikuchaksaraie, A.; Hamzehlou, S.; Katebi, A.R.; Latifi, N.; Mozafari, M.; Baino, F. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Mater. Sci. Eng. C, 2017, 75, 688-698. doi: 10.1016/j.msec.2017.02.097 PMID: 28415516
  222. Tao, S.C.; Yuan, T.; Zhang, Y.L.; Yin, W.J.; Guo, S.C.; Zhang, C.Q. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 2017, 7(1), 180-195. doi: 10.7150/thno.17133 PMID: 28042326
  223. Nakajima, M.; Nito, C.; Sowa, K.; Suda, S.; Nishiyama, Y.; Nakamura-Takahashi, A.; Nitahara-Kasahara, Y.; Imagawa, K.; Hirato, T.; Ueda, M.; Kimura, K.; Okada, T. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol. Ther. Methods Clin. Dev., 2017, 6, 102-111. doi: 10.1016/j.omtm.2017.06.005 PMID: 28725658
  224. Liu, T.; Zhang, Y.; Shen, Z.; Zou, X.; Chen, X.; Chen, L.; Wang, Y. Immunomodulatory effects of OX40Ig gene- modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation. Int. J. Mol. Med., 2017, 39(1), 144-152. doi: 10.3892/ijmm.2016.2808 PMID: 27878248
  225. Cho, H.M.; Kim, P.H.; Chang, H.K.; Shen, Y.; Bonsra, K.; Kang, B.J.; Yum, S.Y.; Kim, J.H.; Lee, S.Y.; Choi, M.; Kim, H.H.; Jang, G.; Cho, J.Y. Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: Potential implications for the treatment of myocardial infarction. Stem Cells Transl. Med., 2017, 6(3), 1040-1051. doi: 10.1002/sctm.16-0114 PMID: 28186692
  226. Wang, H.; Xie, Z.; Hou, T.; Li, Z.; Huang, K.; Gong, J.; Zhou, W.; Tang, K.; Xu, J.; Dong, S. MiR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b. Cell. Physiol. Biochem., 2017, 41(2), 530-542. doi: 10.1159/000457013 PMID: 28214897
  227. Bougioukli, S.; Sugiyama, O.; Pannell, W.; Ortega, B.; Tan, M.H.; Tang, A.H.; Yoho, R.; Oakes, D.A.; Lieberman, J.R. Gene therapy for bone repair using human cells: Superior osteogenic potential of bone morphogenetic protein 2 - transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow. Hum. Gene Ther., 2018, 29(4), 507-519. doi: 10.1089/hum.2017.097 PMID: 29212377
  228. Sharma, A.; Mücke, M.; Seidman, C.E. Human induced pluripotent stem cell production and expansion from blood using a non-integrating viral reprogramming vector. Curr. Protoc. Mol. Biol., 2018, 122(1), e58. doi: 10.1002/cpmb.58 PMID: 29851250
  229. Mirzaei, H.; Salehi, H.; Oskuee, R.K.; Mohammadpour, A.; Mirzaei, H.R.; Sharifi, M.R.; Salarinia, R.; Darani, H.Y.; Mokhtari, M.; Masoudifar, A.; Sahebkar, A.; Salehi, R.; Jaafari, M.R. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett., 2018, 419, 30-39. doi: 10.1016/j.canlet.2018.01.029 PMID: 29331419
  230. Brendel, C.; Rothe, M.; Santilli, G.; Charrier, S.; Stein, S.; Kunkel, H.; Abriss, D.; Müller-Kuller, U.; Gaspar, B.; Modlich, U.; Galy, A.; Schambach, A.; Thrasher, A.J.; Grez, M. Non-clinical efficacy and safety studies on G1XCGD, a lentiviral vector for ex vivo gene therapy of x-linked chronic granulomatous disease. Hum. Gene Ther. Clin. Dev., 2018, 29(2), 69-79. doi: 10.1089/humc.2017.245 PMID: 29664709
  231. Zhang, J.; Liu, X.; Zhang, Y.; Luan, Z.; Yang, Y.; Wang, Z.; Zhang, C. Human Neural Stem Cells with GDNF site-specific integration at AAVS1 by using AAV vectors retained their stemness. Neurochem. Res., 2018, 43(4), 930-937. doi: 10.1007/s11064-018-2498-7 PMID: 29435804
  232. Lu, X.; Chen, X.; Xing, J.; Lian, M.; Huang, D.; Lu, Y.; Feng, G.; Feng, X. miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β- catenin signaling pathway. Stem Cell Res. Ther., 2019, 10(1), 226. doi: 10.1186/s13287-019-1344-4 PMID: 31358066
  233. Löfvall, H.; Rothe, M.; Schambach, A.; Henriksen, K.; Richter, J.; Moscatelli, I. Hematopoietic stem cell-targeted neonatal gene therapy with a clinically applicable lentiviral vector corrects osteopetrosis in oc/oc mice. Hum. Gene Ther., 2019, 30(11), 1395-1404. doi: 10.1089/hum.2019.047 PMID: 31179768
  234. Fang, Q.; Zhai, M.; Wu, S.; Hu, X.; Hua, Z.; Sun, H.; Guo, J.; Zhang, W.; Wang, Z. Adipocyte-derived stem cell-based gene therapy upon adipogenic differentiation on microcarriers attenuates type 1 diabetes in mice. Stem Cell Res. Ther., 2019, 10(1), 36. doi: 10.1186/s13287-019-1135-y PMID: 30670068
  235. Xu, Y.; Huang, Y.; Guo, Y.; Xiong, Y.; Zhu, S.; Xu, L.; Lu, J.; Li, X.; Wan, J.; Lu, Y.; Wang, Z. microRNA-690 regulates induced pluripotent stem cells (iPSCs) differentiation into insulin-producing cells by targeting Sox9. Stem Cell Res. Ther., 2019, 10(1), 59. doi: 10.1186/s13287-019-1154-8 PMID: 30767782
  236. Wang, T.; Zhang, C.; Wu, C.; Liu, J.; Yu, H.; Zhou, X.; Zhang, J.; Wang, X.; He, S.; Xu, X.; Ma, B.; Che, X.; Li, W. miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway. Stem Cell Res. Ther., 2020, 11(1), 62. doi: 10.1186/s13287-020-1579-0 PMID: 32059748
  237. Dhoke, N.R.; Kaushik, K.; Das, A. Cxcr6-based mesenchymal stem cell gene therapy potentiates skin regeneration in murine diabetic wounds. Mol. Ther., 2020, 28(5), 1314-1326. doi: 10.1016/j.ymthe.2020.02.014 PMID: 32112713
  238. Ji, F.; Pan, J.; Shen, Z.; Yang, Z.; Wang, J.; Bai, X.; Tao, J. The Circular RNA circRNA124534 promotes osteogenic differentiation of human dental pulp stem cells through modulation of the mir-496/β-catenin pathway. Front. Cell Dev. Biol., 2020, 8, 230. doi: 10.3389/fcell.2020.00230 PMID: 32318572
  239. Capo, V.; Penna, S.; Merelli, I.; Barcella, M.; Scala, S.; Basso-Ricci, L.; Draghici, E.; Palagano, E.; Zonari, E.; Desantis, G.; Uva, P.; Cusano, R.; Sergi Sergi, L.; Crisafulli, L.; Moshous, D.; Stepensky, P.; Drabko, K.; Kaya, Z.; Unal, E.; Gezdirici, A.; Menna, G.; Serafini, M.; Aiuti, A.; Locatelli, S.L.; Carlo-Stella, C.; Schulz, A.S.; Ficara, F.; Sobacchi, C.; Gentner, B.; Villa, A. Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis. Haematologica, 2020, 106(1), 74-86. doi: 10.3324/haematol.2019.238261 PMID: 31949009
  240. Li, J.; Lin, Q.; Lin, Y.; Lai, R.; Zhang, W. Effects of DLX3 on the osteogenic differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Mol. Med. Rep., 2021, 23(4), 232. doi: 10.3892/mmr.2021.11871 PMID: 33655330
  241. Hotta, A.; Ellis, J. Retroviral vector silencing during iPS cell induction: An epigenetic beacon that signals distinct pluripotent states. J. Cell. Biochem., 2008, 105(4), 940-948. doi: 10.1002/jcb.21912 PMID: 18773452
  242. Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5), 861-872. doi: 10.1016/j.cell.2007.11.019 PMID: 18035408
  243. González, F.; Boué, S.; Belmonte, J.C.I. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat. Rev. Genet., 2011, 12(4), 231-242. doi: 10.1038/nrg2937 PMID: 21339765
  244. Lowry, W.E.; Richter, L.; Yachechko, R.; Pyle, A.D.; Tchieu, J.; Sridharan, R.; Clark, A.T.; Plath, K. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci., 2008, 105(8), 2883-2888. doi: 10.1073/pnas.0711983105 PMID: 18287077
  245. Bao, L.; He, L.; Chen, J.; Wu, Z.; Liao, J.; Rao, L.; Ren, J.; Li, H.; Zhu, H.; Qian, L.; Gu, Y.; Dai, H.; Xu, X.; Zhou, J.; Wang, W.; Cui, C.; Xiao, L. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res., 2011, 21(4), 600-608. doi: 10.1038/cr.2011.6 PMID: 21221129
  246. Cieślar-Pobuda, A.; Knoflach, V.; Ringh, M.V.; Stark, J.; Likus, W.; Siemianowicz, K.; Ghavami, S.; Hudecki, A.; Green, J.L.; Łos, M.J. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(7), 1359-1369. doi: 10.1016/j.bbamcr.2017.04.017 PMID: 28460880
  247. Cooray, S.; Howe, S.J.; Thrasher, A.J. Retrovirus and Lentivirus Vector Design and Methods of Cell Conditioning. In: Methods in Enzymology; Academic Press Inc., 2012; 507, pp. 29-57.
  248. Chou, B.K.; Mali, P.; Huang, X.; Ye, Z.; Dowey, S.N.; Resar, L.M.S.; Zou, C.; Zhang, Y.A.; Tong, J.; Cheng, L. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res., 2011, 21(3), 518-529. doi: 10.1038/cr.2011.12 PMID: 21243013
  249. Hu, K. All roads lead to induced pluripotent stem cells: The technologies of iPSC generation. Stem Cells Dev., 2014, 23(12), 1285-1300. doi: 10.1089/scd.2013.0620 PMID: 24524728
  250. Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318, 1917-1920.
  251. Maherali, N.; Ahfeldt, T.; Rigamonti, A.; Utikal, J.; Cowan, C.; Hochedlinger, K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008, 3(3), 340-345. doi: 10.1016/j.stem.2008.08.003 PMID: 18786420
  252. Liu, Q.; Hill, P.J.; Karamitri, A.; Ryan, K.J.P.; Chen, H.Y.; Lomax, M.A. Construction of a doxycycline inducible adipogenic lentiviral expression system. Plasmid, 2013, 69(1), 96-103. doi: 10.1016/j.plasmid.2012.10.001 PMID: 23099229
  253. Berdien, B.; Mock, U.; Atanackovic, D.; Fehse, B. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther., 2014, 21(6), 539-548. doi: 10.1038/gt.2014.26 PMID: 24670996
  254. Fukuda, T.; Ishizawa, Y.; Donai, K.; Sugano, E.; Tomita, H. The poly-cistronic expression of four transcriptional factors (CRX, RAX, NEURO-D, OTX2) in fibroblasts via retro- or lentivirus causes partial reprogramming into photoreceptor cells. Cell Biol. Int., 2018, 42(5), 608-614. doi: 10.1002/cbin.10942 PMID: 29377330
  255. Heldt, S.; Ressler, K.J. The use of lentiviral vectors combined with Cre/loxP to investigate the function of genes in complex behaviors. Front. Mol. Neurosci., 2009, 2, 22. doi: 10.3389/neuro.02.022.2009 PMID: 20011219
  256. Chang, C.W.; Lai, Y.S.; Pawlik, K.M.; Liu, K.; Sun, C.W.; Li, C.; Schoeb, T.R.; Townes, T.M. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells, 2009, 27(5), 1042-1049. doi: 10.1002/stem.39 PMID: 19415770
  257. Cochrane, R.L.; Clark, S.H.; Harris, A.; Kream, B.E. Rearrangement of a conditional allele regardless of inheritance of a Cre recombinase transgene. Genesis, 2007, 45(1), 17-20. doi: 10.1002/dvg.20259 PMID: 17211878
  258. Michel, G.; Yu, Y.; Chang, T.; Yee, J.K. Site-specific gene insertion mediated by a Cre-loxP-carrying lentiviral vector. Mol. Ther., 2010, 18(10), 1814-1821. doi: 10.1038/mt.2010.150 PMID: 20628360
  259. Malik, N.; Rao, M.S. A review of the methods for human iPSC derivation. Methods Mol. Biol., 2013, 997, 23-33. doi: 10.1007/978-1-62703-348-0_3 PMID: 23546745
  260. Somers, A.; Jean, J.C.; Sommer, C.A.; Omari, A.; Ford, C.C.; Mills, J.A.; Ying, L.; Sommer, A.G.; Jean, J.M.; Smith, B.W.; Lafyatis, R.; Demierre, M.F.; Weiss, D.J.; French, D.L.; Gadue, P.; Murphy, G.J.; Mostoslavsky, G.; Kotton, D.N. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 2010, 28(10), 1728-1740. doi: 10.1002/stem.495 PMID: 20715179
  261. Tipanee, J.; Chai, Y.C.; VandenDriessche, T.; Chuah, M.K. Preclinical and clinical advances in transposon-based gene therapy. Biosci. Rep., 2017, 37(6), BSR20160614. doi: 10.1042/BSR20160614 PMID: 29089466
  262. Hutchins, A.P.; Pei, D. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci. Bull., 2015, 60(20), 1722-1733. doi: 10.1007/s11434-015-0905-x PMID: 26543668
  263. Kapitonov, V.V.; Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol., 2005, 3(6), e181. doi: 10.1371/journal.pbio.0030181 PMID: 15898832
  264. Rebollo, R.; Romanish, M.T.; Mager, D.L. Transposable elements: An abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet., 2012, 46(1), 21-42. doi: 10.1146/annurev-genet-110711-155621 PMID: 22905872
  265. Schlesinger, S.; Goff, S.P. Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol. Cell. Biol., 2015, 35(5), 770-777. doi: 10.1128/MCB.01293-14 PMID: 25547290
  266. Robbez-Masson, L.; Rowe, H.M. Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology, 2015, 12(1), 45. doi: 10.1186/s12977-015-0173-5 PMID: 26021318
  267. Muñoz-López, M.; García-Pérez, J. DNA transposons: Nature and applications in genomics. Curr. Genomics, 2010, 11(2), 115-128. doi: 10.2174/138920210790886871 PMID: 20885819
  268. Aronovich, E.L.; McIvor, R.S.; Hackett, P.B. The Sleeping Beauty transposon system: A non-viral vector for gene therapy. Hum. Mol. Genet., 2011, 20(R1), R14-R20. doi: 10.1093/hmg/ddr140 PMID: 21459777
  269. Grabundzija, I.; Wang, J.; Sebe, A.; Erdei, Z.; Kajdi, R.; Devaraj, A.; Steinemann, D.; Szuhai, K.; Stein, U.; Cantz, T.; Schambach, A.; Baum, C.; Izsvák, Z.; Sarkadi, B.; Ivics, Z. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res., 2013, 41(3), 1829-1847. doi: 10.1093/nar/gks1305 PMID: 23275558
  270. Menon, S.; Shailendra, S.; Renda, A.; Longaker, M.; Quarto, N. An overview of direct somatic reprogramming: The ins and outs of iPSCs. Int. J. Mol. Sci., 2016, 17(1), 141. doi: 10.3390/ijms17010141 PMID: 26805822
  271. Haridhasapavalan, K.K.; Borgohain, M.P.; Dey, C.; Saha, B.; Narayan, G.; Kumar, S.; Thummer, R.P. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene, 2019, 686, 146-159. doi: 10.1016/j.gene.2018.11.069 PMID: 30472380
  272. Lukashev, A.N.; Zamyatnin, A.A., Jr Viral vectors for gene therapy: Current state and clinical perspectives. Biochemistry, 2016, 81(7), 700-708. doi: 10.1134/S0006297916070063 PMID: 27449616
  273. Zhou, W.; Freed, C.R. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 2009, 27(11), 2667-2674. doi: 10.1002/stem.201 PMID: 19697349
  274. Kotterman, M.A.; Chalberg, T.W.; Schaffer, D.V. Viral vectors for gene therapy: Translational and clinical outlook. Annu. Rev. Biomed. Eng., 2015, 17(1), 63-89. doi: 10.1146/annurev-bioeng-071813-104938 PMID: 26643018
  275. Tessadori, F.; Zeng, K.; Manders, E.; Riool, M.; Jackson, D.; van Driel, R. Stable S/MAR-based episomal vectors are regulated at the chromatin level. Chromosome Res., 2010, 18(7), 757-775. doi: 10.1007/s10577-010-9165-4 PMID: 21080054
  276. Slamecka, J.; Salimova, L.; McClellan, S.; van Kelle, M.; Kehl, D.; Laurini, J.; Cinelli, P.; Owen, L.; Hoerstrup, S.P.; Weber, B. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. Cell Cycle, 2016, 15(2), 234-249. doi: 10.1080/15384101.2015.1121332 PMID: 26654216
  277. Humme, S.; Reisbach, G.; Feederle, R.; Delecluse, H.J.; Bousset, K.; Hammerschmidt, W.; Schepers, A. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc. Natl. Acad. Sci., 2003, 100(19), 10989-10994. doi: 10.1073/pnas.1832776100 PMID: 12947043
  278. Okita, K.; Matsumura, Y.; Sato, Y.; Okada, A.; Morizane, A.; Okamoto, S.; Hong, H.; Nakagawa, M.; Tanabe, K.; Tezuka, K.; Shibata, T.; Kunisada, T.; Takahashi, M.; Takahashi, J.; Saji, H.; Yamanaka, S. A more efficient method to generate integration-free human iPS cells. Nat. Methods, 2011, 8(5), 409-412. doi: 10.1038/nmeth.1591 PMID: 21460823
  279. Su, R.J.; Baylink, D.J.; Neises, A.; Kiroyan, J.B.; Meng, X.; Payne, K.J.; Tschudy-Seney, B.; Duan, Y.; Appleby, N.; Kearns-Jonker, M.; Gridley, D.S.; Wang, J.; Lau, K.H.W.; Zhang, X.B. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors. PLoS One, 2013, 8(5), e64496. doi: 10.1371/journal.pone.0064496 PMID: 23704989
  280. Manzini, S.; Vargiolu, A.; Stehle, I.M.; Bacci, M.L.; Cerrito, M.G.; Giovannoni, R.; Zannoni, A.; Bianco, M.R.; Forni, M.; Donini, P.; Papa, M.; Lipps, H.J.; Lavitrano, M. Genetically modified pigs produced with a nonviral episomal vector. Proc. Natl. Acad. Sci., 2006, 103(47), 17672-17677. doi: 10.1073/pnas.0604938103 PMID: 17101993
  281. Hagedorn, C.; Antoniou, M.N.; Lipps, H.J. Genomic cis-acting sequences improve expression and establishment of a nonviral vector. Mol. Ther. Nucleic Acids, 2013, 2(8), e118. doi: 10.1038/mtna.2013.47 PMID: 24002728
  282. Kay, M.A.; He, C.Y.; Chen, Z.Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol., 2010, 28(12), 1287-1289. doi: 10.1038/nbt.1708 PMID: 21102455
  283. Narsinh, K.H.; Jia, F.; Robbins, R.C.; Kay, M.A.; Longaker, M.T.; Wu, J.C. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat. Protoc., 2011, 6(1), 78-88. doi: 10.1038/nprot.2010.173 PMID: 21212777
  284. Kaji, K.; Norrby, K.; Paca, A.; Mileikovsky, M.; Mohseni, P.; Woltjen, K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 2009, 458(7239), 771-775. doi: 10.1038/nature07864 PMID: 19252477
  285. Jia, F.; Wilson, K.D.; Sun, N.; Gupta, D.M.; Huang, M.; Li, Z.; Panetta, N.J.; Chen, Z.Y.; Robbins, R.C.; Kay, M.A.; Longaker, M.T.; Wu, J.C. A nonviral minicircle vector for deriving human iPS cells. Nat. Methods, 2010, 7(3), 197-199. doi: 10.1038/nmeth.1426 PMID: 20139967
  286. Deng, X.Y.; Wang, H.; Wang, T.; Fang, X.T.; Zou, L.L.; Li, Z.Y.; Liu, C.B. Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr. Stem Cell Res. Ther., 2015, 10(2), 153-158. doi: 10.2174/1574888X09666140923101914 PMID: 25248676
  287. Li, X.; Zhang, P.; Wei, C.; Zhang, Y. Generation of pluripotent stem cells via protein transduction. Int. J. Dev. Biol., 2014, 58(1), 21-27. doi: 10.1387/ijdb.140007XL PMID: 24860991
  288. Zahid, M.; Robbins, P.D.; Protein Transduction Domains, P. Protein transduction domains: Applications for molecular medicine. Curr. Gene Ther., 2012, 12(5), 374-380. doi: 10.2174/156652312802762527 PMID: 22920684
  289. Nordin, F.; Ahmad, R.N.R.; Farzaneh, F. Transactivator protein: An alternative for delivery of recombinant proteins for safer reprogramming of induced Pluripotent Stem Cell. Virus Res., 2017, 235, 106-114. doi: 10.1016/j.virusres.2017.04.007 PMID: 28408207
  290. Iida, A.; Hasegawa, M. Cytoplasmic RNA vector derived from nontransmissible sendai virus. Gene Therapy Protocols, 2002, 361-370.
  291. Nagai, Y.; Kato, A. Accessory genes of the paramyxoviridae, a large family of nonsegmented negative-strand RNA viruses, as a focus of active investigation by reverse genetics. Curr. Top. Microbiol. Immunol., 2004, 283, 197-248. doi: 10.1007/978-3-662-06099-5_6 PMID: 15298171
  292. Shioda, T.; Iwasaki, K.; Shibuta, H. Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins. Nucleic Acids Res., 1986, 14(4), 1545-1563. doi: 10.1093/nar/14.4.1545 PMID: 3005975
  293. Takimoto, T.; Taylor, G.L.; Connaris, H.C.; Crennell, S.J.; Portner, A. Role of the hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion. J. Virol., 2002, 76(24), 13028-13033. doi: 10.1128/JVI.76.24.13028-13033.2002 PMID: 12438628
  294. Park, A.; Hong, P.; Won, S.T.; Thibault, P.A.; Vigant, F.; Oguntuyo, K.Y.; Taft, J.D.; Lee, B. Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol. Ther. Methods Clin. Dev., 2016, 3, 16057. doi: 10.1038/mtm.2016.57 PMID: 27606350
  295. Bitzer, M.; Lauer, U.; Baumann, C.; Spiegel, M.; Gregor, M.; Neubert, W.J. Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry. J. Virol., 1997, 71(7), 5481-5486. doi: 10.1128/jvi.71.7.5481-5486.1997 PMID: 9188621
  296. Scheid, A.; Hsu, M.; Choppin, P.W. Role of paramyxovirus glycoproteins in the interactions between viral and cell membranes. Soc. Gen. Physiol. Ser., 1980, 34, 119-130. PMID: 7384831
  297. Ogino, T.; Kobayashi, M.; Iwama, M.; Mizumoto, K. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J. Biol. Chem., 2005, 280(6), 4429-4435. doi: 10.1074/jbc.M411167200 PMID: 15574411
  298. Garcin, D.; Pelet, T.; Calain, P.; Roux, L.; Curran, J.; Kolakofsky, D. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: Generation of a novel copy-back nondefective interfering virus. EMBO J., 1995, 14(24), 6087-6094. doi: 10.1002/j.1460-2075.1995.tb00299.x PMID: 8557028
  299. Hasan, M.K.; Nagai, Y.; Yu, D.; Sakai, Y.; Kato, A.; Shioda, T. Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3′ proximal first locus. J. Gen. Virol., 1997, 78(11), 2813-2820. doi: 10.1099/0022-1317-78-11-2813 PMID: 9367367
  300. Inoue, M.; Tokusumi, Y.; Ban, H.; Kanaya, T.; Tokusumi, T.; Nagai, Y.; Iida, A.; Hasegawa, M. Nontransmissible virus-like particle formation by F-deficient sendai virus is temperature sensitive and reduced by mutations in M and HN proteins. J. Virol., 2003, 77(5), 3238-3246. doi: 10.1128/JVI.77.5.3238-3246.2003 PMID: 12584347
  301. Li, H.O.; Zhu, Y.F.; Asakawa, M.; Kuma, H.; Hirata, T.; Ueda, Y.; Lee, Y.S.; Fukumura, M.; Iida, A.; Kato, A.; Nagai, Y.; Hasegawa, M. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J. Virol., 2000, 74(14), 6564-6569. doi: 10.1128/JVI.74.14.6564-6569.2000 PMID: 10864670
  302. Fujii, Y.; Sakaguchi, T.; Kiyotani, K.; Huang, C.; Fukuhara, N.; Egi, Y.; Yoshida, T. Involvement of the leader sequence in Sendai virus pathogenesis revealed by recovery of a pathogenic field isolate from cDNA. J. Virol., 2002, 76(17), 8540-8547. doi: 10.1128/JVI.76.17.8540-8547.2002 PMID: 12163573
  303. Fusaki, N.; Ban, H.; Nishiyama, A.; Saeki, K.; Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2009, 85(8), 348-362. doi: 10.2183/pjab.85.348 PMID: 19838014
  304. Seki, T.; Yuasa, S.; Fukuda, K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat. Protoc., 2012, 7(4), 718-728. doi: 10.1038/nprot.2012.015 PMID: 22422317
  305. Seki, T.; Yuasa, S.; Oda, M.; Egashira, T.; Yae, K.; Kusumoto, D.; Nakata, H.; Tohyama, S.; Hashimoto, H.; Kodaira, M.; Okada, Y.; Seimiya, H.; Fusaki, N.; Hasegawa, M.; Fukuda, K. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 2010, 7(1), 11-14. doi: 10.1016/j.stem.2010.06.003 PMID: 20621043
  306. Nishishita, N.; Takenaka, C.; Fusaki, N.; Kawamata, S. Generation of human induced pluripotent stem cells from cord blood cells. J. Stem Cells, 2011, 6(3), 101-108. PMID: 23264996
  307. Nakanishi, M.; Otsu, M. Development of Sendai virus vectors and their potential applications in gene therapy and regenerative medicine. Curr. Gene Ther., 2012, 12(5), 410-416. doi: 10.2174/156652312802762518 PMID: 22920683
  308. Nishimura, K.; Sano, M.; Ohtaka, M.; Furuta, B.; Umemura, Y.; Nakajima, Y.; Ikehara, Y.; Kobayashi, T.; Segawa, H.; Takayasu, S.; Sato, H.; Motomura, K.; Uchida, E.; Kanayasu-Toyoda, T.; Asashima, M.; Nakauchi, H.; Yamaguchi, T.; Nakanishi, M. Development of defective and persistent Sendai virus vector: A unique gene delivery/expression system ideal for cell reprogramming. J. Biol. Chem., 2011, 286(6), 4760-4771. doi: 10.1074/jbc.M110.183780 PMID: 21138846
  309. Brouwer, M.; Zhou, H.; Nadif Kasri, N. Choices for induction of pluripotency: Recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev., 2016, 12(1), 54-72. doi: 10.1007/s12015-015-9622-8 PMID: 26424535
  310. Yonemitsu, Y.; Kitson, C.; Ferrari, S.; Farley, R.; Griesenbach, U.; Judd, D.; Steel, R.; Scheid, P.; Zhu, J.; Jeffery, P.K.; Kato, A.; Hasan, M.K.; Nagai, Y.; Masaki, I.; Fukumura, M.; Hasegawa, M.; Geddes, D.M.; Alton, E.W.F.W. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat. Biotechnol., 2000, 18(9), 970-973. doi: 10.1038/79463 PMID: 10973218
  311. Kano, M.; Matano, T.; Nakamura, H.; Takeda, A.; Kato, A.; Ariyoshi, K.; Mori, K.; Sata, T.; Nagai, Y. Elicitation of protective immunity against simian immunodeficiency virus infection by a recombinant Sendai virus expressing the Gag protein. AIDS, 2000, 14(9), 1281-1282. doi: 10.1097/00002030-200006160-00030 PMID: 10894297
  312. Masaki, I.; Yonemitsu, Y.; Yamashita, A.; Sata, S.; Tanii, M.; Komori, K.; Nakagawa, K.; Hou, X.; Nagai, Y.; Hasegawa, M.; Sugimachi, K.; Sueishi, K. Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ. Res., 2002, 90(9), 966-973. doi: 10.1161/01.RES.0000019540.41697.60 PMID: 12016262
  313. Griesenbach, U.; Inoue, M.; Meng, C.; Farley, R.; Chan, M.; Newman, N.K.; Brum, A.; You, J.; Kerton, A.; Shoemark, A.; Boyd, A.C.; Davies, J.C.; Higgins, T.E.; Gill, D.R.; Hyde, S.C.; Innes, J.A.; Porteous, D.J.; Hasegawa, M.; Alton, E.W.F.W. Assessment of F/HN-pseudotyped lentivirus as a clinically relevant vector for lung gene therapy. Am. J. Respir. Crit. Care Med., 2012, 186(9), 846-856. doi: 10.1164/rccm.201206-1056OC PMID: 22955314
  314. Griesenbach, U.; Inoue, M.; Hasegawa, M.; Alton, E.W.F.W. Sendai virus for gene therapy and vaccination. Curr. Opin. Mol. Ther., 2005, 7(4), 346-352. PMID: 16121700
  315. Zangi, L.; Lui, K.O.; von Gise, A.; Ma, Q.; Ebina, W.; Ptaszek, L.M.; Später, D.; Xu, H.; Tabebordbar, M.; Gorbatov, R.; Sena, B.; Nahrendorf, M.; Briscoe, D.M.; Li, R.A.; Wagers, A.J.; Rossi, D.J.; Pu, W.T.; Chien, K.R. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol., 2013, 31(10), 898-907. doi: 10.1038/nbt.2682 PMID: 24013197
  316. Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005, 23(2), 165-175. doi: 10.1016/j.immuni.2005.06.008 PMID: 16111635
  317. Hornung, V.; Ellegast, J.; Kim, S.; Brzózka, K.; Jung, A.; Kato, H.; Poeck, H.; Akira, S.; Conzelmann, K.K.; Schlee, M.; Endres, S.; Hartmann, G. 5′-triphosphate RNA is the ligand for RIG-I. Science, 2006, 314, 994-997.
  318. Grudzien-Nogalska, E.; Kowalska, J.; Su, W.; Kuhn, A.N.; Slepenkov, S.V.; Darzynkiewicz, E.; Sahin, U.; Jemielity, J.; Rhoads, R.E. Synthetic mRNAs with superior translation and stability properties. Methods Mol. Biol., 2013, 969, 55-72. doi: 10.1007/978-1-62703-260-5_4 PMID: 23296927
  319. Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Karikó, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res., 2010, 38(17), 5884-5892. doi: 10.1093/nar/gkq347 PMID: 20457754
  320. Rosa, A.; Brivanlou, A.H. Synthetic mRNAs: Powerful tools for reprogramming and differentiation of human cells. Cell Stem Cell, 2010, 7(5), 549-550. doi: 10.1016/j.stem.2010.10.002 PMID: 21040893
  321. Ramanathan, A.; Robb, G.B.; Chan, S.H. mRNA capping: Biological functions and applications. Nucleic Acids Res., 2016, 44(16), 7511-7526. doi: 10.1093/nar/gkw551 PMID: 27317694
  322. Kuhn, A.N.; Beiβert, T.; Simon, P.; Vallazza, B.; Buck, J.; Davies, B.P.; Tureci, O.; Sahin, U. mRNA as a versatile tool for exogenous protein expression. Curr. Gene Ther., 2012, 12(5), 347-361. doi: 10.2174/156652312802762536 PMID: 22827224
  323. Kogut, I.; McCarthy, S.M.; Pavlova, M.; Astling, D.P.; Chen, X.; Jakimenko, A.; Jones, K.L.; Getahun, A.; Cambier, J.C.; Pasmooij, A.M.G.; Jonkman, M.F.; Roop, D.R.; Bilousova, G. High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat. Commun., 2018, 9(1), 745. doi: 10.1038/s41467-018-03190-3 PMID: 29467427
  324. Pichlmair, A.; Schulz, O.; Tan, C.P.; Näslund, T.I.; Liljeström, P.; Weber, F.; Reis, E RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science, 2006, 314, 997-1001.
  325. Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; Daley, G.Q.; Brack, A.S.; Collins, J.J.; Cowan, C.; Schlaeger, T.M.; Rossi, D.J. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010, 7(5), 618-630. doi: 10.1016/j.stem.2010.08.012 PMID: 20888316
  326. Karikó, K.; Muramatsu, H.; Keller, J.M.; Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther., 2012, 20(5), 948-953. doi: 10.1038/mt.2012.7 PMID: 22334017
  327. Motorin, Y.; Helm, M. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA, 2011, 2(5), 611-631. doi: 10.1002/wrna.79 PMID: 21823225
  328. Mandal, P.K.; Rossi, D.J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc., 2013, 8(3), 568-582. doi: 10.1038/nprot.2013.019 PMID: 23429718
  329. Kormann, M.S.D.; Hasenpusch, G.; Aneja, M.K.; Nica, G.; Flemmer, A.W.; Herber-Jonat, S.; Huppmann, M.; Mays, L.E.; Illenyi, M.; Schams, A.; Griese, M.; Bittmann, I.; Handgretinger, R.; Hartl, D.; Rosenecker, J.; Rudolph, C. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol., 2011, 29(2), 154-157. doi: 10.1038/nbt.1733 PMID: 21217696
  330. Gerardo, H.; Lima, A.; Carvalho, J.; Ramos, J.R.D.; Couceiro, S.; Travasso, R.D.M.; Pires das Neves, R.; Grãos, M. Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci. Rep., 2019, 9(1), 9086. doi: 10.1038/s41598-019-45352-3
  331. Zhao, R.; Li, R.; An, T.; Liu, X. Conditional cell reprogramming in modeling digestive system diseases. Front. Cell Dev. Biol., 2021, 9, 669756. doi: 10.3389/fcell.2021.669756 PMID: 34150763
  332. Wu, X.; Wang, S.; Li, M.; Li, J.; Shen, J.; Zhao, Y.; Pang, J.; Wen, Q.; Chen, M.; Wei, B.; Kaboli, P.J.; Du, F.; Zhao, Q.; Cho, C.H.; Wang, Y.; Xiao, Z.; Wu, X. Conditional reprogramming: Next generation cell culture. Acta Pharm. Sin. B, 2020, 10(8), 1360-1381. doi: 10.1016/j.apsb.2020.01.011 PMID: 32963937
  333. Yoshioka, N.; Gros, E.; Li, H.R.; Kumar, S.; Deacon, D.C.; Maron, C.; Muotri, A.R.; Chi, N.C.; Fu, X.D.; Yu, B.D.; Dowdy, S.F. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell, 2013, 13(2), 246-254. doi: 10.1016/j.stem.2013.06.001 PMID: 23910086
  334. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
  335. Takahashi, K.; Okita, K.; Nakagawa, M.; Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc., 2007, 2(12), 3081-3089. doi: 10.1038/nprot.2007.418 PMID: 18079707
  336. Zhao, T.; Zhang, Z.N.; Rong, Z.; Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature, 2011, 474(7350), 212-215. doi: 10.1038/nature10135 PMID: 21572395
  337. Lister, R.; Pelizzola, M.; Kida, Y.S.; Hawkins, R.D.; Nery, J.R.; Hon, G.; Antosiewicz-Bourget, J.; O’Malley, R.; Castanon, R.; Klugman, S.; Downes, M.; Yu, R.; Stewart, R.; Ren, B.; Thomson, J.A.; Evans, R.M.; Ecker, J.R. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471(7336), 68-73. doi: 10.1038/nature09798 PMID: 21289626
  338. Lee, S.B.; Seo, D.; Choi, D.; Park, K.Y.; Holczbauer, A.; Marquardt, J.U.; Conner, E.A.; Factor, V.M.; Thorgeirsson, S.S. Contribution of hepatic lineage stage-specific donor memory to the differential potential of induced mouse pluripotent stem cells. Stem Cells, 2012, 30(5), 997-1007. doi: 10.1002/stem.1074 PMID: 22378611
  339. Bar-Nur, O.; Russ, H.A.; Efrat, S.; Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 2011, 9(1), 17-23. doi: 10.1016/j.stem.2011.06.007 PMID: 21726830
  340. Xu, H.; Yi, B.A.; Wu, H.; Bock, C.; Gu, H.; Lui, K.O.; Park, J.H.C.; Shao, Y.; Riley, A.K.; Domian, I.J.; Hu, E.; Willette, R.; Lepore, J.; Meissner, A.; Wang, Z.; Chien, K.R. Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res., 2012, 22(1), 142-154. doi: 10.1038/cr.2011.171 PMID: 22064699
  341. Ohi, Y.; Qin, H.; Hong, C.; Blouin, L.; Polo, J.M.; Guo, T.; Qi, Z.; Downey, S.L.; Manos, P.D.; Rossi, D.J.; Yu, J.; Hebrok, M.; Hochedlinger, K.; Costello, J.F.; Song, J.S.; Ramalho-Santos, M. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol., 2011, 13(5), 541-549. doi: 10.1038/ncb2239 PMID: 21499256
  342. Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448(7151), 313-317. doi: 10.1038/nature05934 PMID: 17554338
  343. Lin, T.; Wu, S. Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells Int., 2015, 2015, 1-11. doi: 10.1155/2015/794632 PMID: 25922608
  344. Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205. doi: 10.1016/j.cell.2012.05.012 PMID: 22682243
  345. Kim, Y.; Jeong, J.; Choi, D. Small-molecule-mediated reprogramming: A silver lining for regenerative medicine. Exp. Mol. Med., 2020, 52(2), 213-226. doi: 10.1038/s12276-020-0383-3 PMID: 32080339
  346. Hou, P.; Li, Y.; Zhang, X.; Liu, C.; Guan, J.; Li, H.; Zhao, T.; Ye, J.; Yang, W.; Liu, K.; Ge, J.; Xu, J.; Zhang, Q.; Zhao, Y.; Deng, H. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146), 651-654. doi: 10.1126/science.1239278 PMID: 23868920
  347. Ye, J.; Ge, J.; Zhang, X.; Cheng, L.; Zhang, Z.; He, S.; Wang, Y.; Lin, H.; Yang, W.; Liu, J.; Zhao, Y.; Deng, H. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res., 2016, 26(1), 34-45. doi: 10.1038/cr.2015.142 PMID: 26704449
  348. Cheng, L.; Hu, W.; Qiu, B.; Zhao, J.; Yu, Y.; Guan, W.; Wang, M.; Yang, W.; Pei, G. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res., 2014, 24(6), 665-679. doi: 10.1038/cr.2014.32 PMID: 24638034
  349. Zhang, M.; Lin, Y.H.; Sun, Y.J.; Zhu, S.; Zheng, J.; Liu, K.; Cao, N.; Li, K.; Huang, Y.; Ding, S. Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell, 2016, 18(5), 653-667. doi: 10.1016/j.stem.2016.03.020 PMID: 27133794
  350. Hu, W.; Qiu, B.; Guan, W.; Wang, Q.; Wang, M.; Li, W.; Gao, L.; Shen, L.; Huang, Y.; Xie, G.; Zhao, H.; Jin, Y.; Tang, B.; Yu, Y.; Zhao, J.; Pei, G. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 2015, 17(2), 204-212. doi: 10.1016/j.stem.2015.07.006 PMID: 26253202
  351. Zhang, L.; Yin, J.C.; Yeh, H.; Ma, N.X.; Lee, G.; Chen, X.A.; Wang, Y.; Lin, L.; Chen, L.; Jin, P.; Wu, G.Y.; Chen, G. Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell, 2015, 17(6), 735-747. doi: 10.1016/j.stem.2015.09.012 PMID: 26481520
  352. Fu, Y.; Huang, C.; Xu, X.; Gu, H.; Ye, Y.; Jiang, C.; Qiu, Z.; Xie, X. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res., 2015, 25(9), 1013-1024. doi: 10.1038/cr.2015.99 PMID: 26292833
  353. Cao, N.; Huang, Y.; Zheng, J.; Spencer, C.I.; Zhang, Y.; Fu, J.-D.; Nie, B.; Xie, M.; Zhang, M.; Wang, H. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science, 2016, 352, 1216-1220.
  354. Katsuda, T.; Kawamata, M.; Hagiwara, K.; Takahashi, R.; Yamamoto, Y.; Camargo, F.D.; Ochiya, T. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell, 2017, 20(1), 41-55. doi: 10.1016/j.stem.2016.10.007 PMID: 27840021
  355. Kim, Y.; Kang, K.; Lee, S.B.; Seo, D.; Yoon, S.; Kim, S.J.; Jang, K.; Jung, Y.K.; Lee, K.G.; Factor, V.M.; Jeong, J.; Choi, D. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J. Hepatol., 2019, 70(1), 97-107. doi: 10.1016/j.jhep.2018.09.007 PMID: 30240598
  356. Fu, G.B.; Huang, W.J.; Zeng, M.; Zhou, X.; Wu, H.P.; Liu, C.C.; Wu, H.; Weng, J.; Zhang, H.D.; Cai, Y.C.; Ashton, C.; Ding, M.; Tang, D.; Zhang, B.H.; Gao, Y.; Yu, W.F.; Zhai, B.; He, Z.Y.; Wang, H.Y.; Yan, H.X. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res., 2019, 29(1), 8-22. doi: 10.1038/s41422-018-0103-x PMID: 30361550
  357. Zhang, K.; Zhang, L.; Liu, W.; Ma, X.; Cen, J.; Sun, Z.; Wang, C.; Feng, S.; Zhang, Z.; Yue, L.; Sun, L.; Zhu, Z.; Chen, X.; Feng, A.; Wu, J.; Jiang, Z.; Li, P.; Cheng, X.; Gao, D.; Peng, L.; Hui, L. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell, 2018, 23(6), 806-819.e4. doi: 10.1016/j.stem.2018.10.018 PMID: 30416071
  358. Nie, B.; Nie, T.; Hui, X.; Gu, P.; Mao, L.; Li, K.; Yuan, R.; Zheng, J.; Wang, H.; Li, K.; Tang, S.; Zhang, Y.; Xu, T.; Xu, A.; Wu, D.; Ding, S. Brown adipogenic reprogramming induced by a small molecule. Cell Rep., 2017, 18(3), 624-635. doi: 10.1016/j.celrep.2016.12.062 PMID: 28099842
  359. Liu, J.; Liu, Y.; Wang, H.; Hao, H.; Han, Q.; Shen, J.; Shi, J.; Li, C.; Mu, Y.; Han, W. Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules. Sci. Rep., 2013, 3(1), 1185. doi: 10.1038/srep01185 PMID: 23378917
  360. Mahla, R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol., 2016, 2016, 1-24. doi: 10.1155/2016/6940283 PMID: 27516776
  361. Hanna, J.; Wernig, M.; Markoulaki, S.; Sun, C.W.; Meissner, A.; Cassady, J.P.; Beard, C.; Brambrink, T.; Wu, L.C.; Townes, T.M.; Jaenisch, R. Treatment of sickle cell anemia mouse model with IPS cells generated from autologous skin. Science, 2007, 318, 1920-1923.
  362. Taylor, C.J.; Bolton, E.M.; Bradley, J.A. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1575), 2312-2322. doi: 10.1098/rstb.2011.0030 PMID: 21727137
  363. Scheiner, Z.S.; Talib, S.; Feigal, E.G. The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J. Biol. Chem., 2014, 289(8), 4571-4577. doi: 10.1074/jbc.R113.509588 PMID: 24362036
  364. Hochedlinger, K.; Jaenisch, R. Induced pluripotency and epigenetic reprogramming. Cold Spring Harb. Perspect. Biol., 2015, 7(12), a019448. doi: 10.1101/cshperspect.a019448 PMID: 26626939
  365. Saha, K.; Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 2009, 5(6), 584-595. doi: 10.1016/j.stem.2009.11.009 PMID: 19951687
  366. Simara, P.; Motl, J.A.; Kaufman, D.S. Pluripotent stem cells and gene therapy. Transl. Res., 2013, 161(4), 284-292. doi: 10.1016/j.trsl.2013.01.001 PMID: 23353080
  367. Buta, C.; David, R.; Dressel, R.; Emgård, M.; Fuchs, C.; Gross, U.; Healy, L.; Hescheler, J.; Kolar, R.; Martin, U.; Mikkers, H.; Müller, F.J.; Schneider, R.K.; Seiler, A.E.M.; Spielmann, H.; Weitzer, G. Reconsidering pluripotency tests: Do we still need teratoma assays? Stem Cell Res., 2013, 11(1), 552-562. doi: 10.1016/j.scr.2013.03.001 PMID: 23611953
  368. Hong, S.G.; Winkler, T.; Wu, C.; Guo, V.; Pittaluga, S.; Nicolae, A.; Donahue, R.E.; Metzger, M.E.; Price, S.D.; Uchida, N.; Kuznetsov, S.A.; Kilts, T.; Li, L.; Robey, P.G.; Dunbar, C.E. Path to the clinic: Assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Rep., 2014, 7(4), 1298-1309. doi: 10.1016/j.celrep.2014.04.019 PMID: 24835994
  369. Vazin, T.; Freed, W.J. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restor. Neurol. Neurosci., 2010, 28(4), 589-603. doi: 10.3233/RNN-2010-0543 PMID: 20714081
  370. Barrilleaux, B.; Knoepfler, P.S. Inducing iPSCs to escape the dish. Cell Stem Cell, 2011, 9(2), 103-111. doi: 10.1016/j.stem.2011.07.006 PMID: 21816362
  371. Takahashi, K.; Yamanaka, S. Induced pluripotent stem cells in medicine and biology. Development, 2013, 140(12), 2457-2461. doi: 10.1242/dev.092551 PMID: 23715538
  372. Medvedev, S.P.; Shevchenko, A.I.; Zakian, S.M. Induced pluripotent stem cells: Problems and advantages when applying them in regenerative medicine. Acta Nat., 2010, 2(2), 18-27. doi: 10.32607/20758251-2010-2-2-18-27 PMID: 22649638
  373. Hong, S.G.; Dunbar, C.E.; Winkler, T. Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol. Ther., 2013, 21(2), 272-281. doi: 10.1038/mt.2012.255 PMID: 23207694
  374. Muir, B.; Nunney, L. The expression of tumour suppressors and proto-oncogenes in tissues susceptible to their hereditary cancers. Br. J. Cancer, 2015, 113(2), 345-353. doi: 10.1038/bjc.2015.205 PMID: 26079304
  375. Peterson, S.E.; Loring, J.F. Genomic instability in pluripotent stem cells: Implications for clinical applications. J. Biol. Chem., 2014, 289(8), 4578-4584. doi: 10.1074/jbc.R113.516419 PMID: 24362040
  376. Fu, X.; Xu, Y. Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med., 2012, 4(6), 55. doi: 10.1186/gm354 PMID: 22741526
  377. Harding, J.; Mirochnitchenko, O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J. Biol. Chem., 2014, 289(8), 4585-4593. doi: 10.1074/jbc.R113.463737 PMID: 24362021
  378. Li, M.; Suzuki, K.; Kim, N.Y.; Liu, G.H.; Izpisua, B.J.C. A cut above the rest: Targeted genome editing technologies in human pluripotent stem cells. J. Biol. Chem., 2014, 289(8), 4594-4599. doi: 10.1074/jbc.R113.488247 PMID: 24362028
  379. Siller, R.; Greenhough, S.; Park, I-H.; Sullivan, G.J. Modelling human disease with pluripotent stem cells. Curr. Gene Ther., 2013, 13(2), 99-110. doi: 10.2174/1566523211313020004 PMID: 23444871
  380. Mak, I.W.Y.; Evaniew, N.; Ghert, M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res., 2014, 6(2), 114-118. PMID: 24489990
  381. Ebert, A.D.; Liang, P.; Wu, J.C. Induced pluripotent stem cells as a disease modeling and drug screening platform. J. Cardiovasc. Pharmacol., 2012, 60(4), 408-416. doi: 10.1097/FJC.0b013e318247f642 PMID: 22240913
  382. Park, I.H.; Arora, N.; Huo, H.; Maherali, N.; Ahfeldt, T.; Shimamura, A.; Lensch, M.W.; Cowan, C.; Hochedlinger, K.; Daley, G.Q. Disease-specific induced pluripotent stem cells. Cell, 2008, 134(5), 877-886. doi: 10.1016/j.cell.2008.07.041 PMID: 18691744
  383. Ebert, A.D.; Yu, J.; Rose, F.F., Jr; Mattis, V.B.; Lorson, C.L.; Thomson, J.A.; Svendsen, C.N. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009, 457(7227), 277-280. doi: 10.1038/nature07677 PMID: 19098894
  384. Bellin, M.; Marchetto, M.C.; Gage, F.H.; Mummery, C.L. Induced pluripotent stem cells: The new patient? Nat. Rev. Mol. Cell Biol., 2012, 13(11), 713-726. doi: 10.1038/nrm3448 PMID: 23034453
  385. Merkle, F.T.; Eggan, K. Modeling human disease with pluripotent stem cells: From genome association to function. Cell Stem Cell, 2013, 12(6), 656-668. doi: 10.1016/j.stem.2013.05.016 PMID: 23746975
  386. Martin, U. Pluripotent stem cells for disease modeling and drug screening: new perspectives for treatment of cystic fibrosis? Mol. Cell Pediatr., 2015, 2(1), 15. doi: 10.1186/s40348-015-0023-5 PMID: 26666881
  387. Moretti, A.; Bellin, M.; Welling, A.; Jung, C.B.; Lam, J.T.; Bott-Flügel, L.; Dorn, T.; Goedel, A.; Höhnke, C.; Hofmann, F.; Seyfarth, M.; Sinnecker, D.; Schömig, A.; Laugwitz, K.L. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med., 2010, 363(15), 1397-1409. doi: 10.1056/NEJMoa0908679 PMID: 20660394
  388. Mordwinkin, N.M.; Burridge, P.W.; Wu, J.C. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J. Cardiovasc. Transl. Res., 2013, 6(1), 22-30. doi: 10.1007/s12265-012-9423-2 PMID: 23229562
  389. Engle, S.J.; Vincent, F. Small molecule screening in human induced pluripotent stem cell-derived terminal cell types. J. Biol. Chem., 2014, 289(8), 4562-4570. doi: 10.1074/jbc.R113.529156 PMID: 24362033
  390. Kolaja, K. Stem cells and stem cell-derived tissues and their use in safety assessment. J. Biol. Chem., 2014, 289(8), 4555-4561. doi: 10.1074/jbc.R113.481028 PMID: 24362027
  391. Engle, S.J.; Puppala, D. Integrating human pluripotent stem cells into drug development. Cell Stem Cell, 2013, 12(6), 669-677. doi: 10.1016/j.stem.2013.05.011 PMID: 23746976
  392. Daley, G.Q. The promise and perils of stem cell therapeutics. Cell Stem Cell, 2012, 10(6), 740-749. doi: 10.1016/j.stem.2012.05.010 PMID: 22704514
  393. Singh, V.K.; Kalsan, M.; Kumar, N.; Saini, A.; Chandra, R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front. Cell Dev. Biol., 2015, 3, 2. doi: 10.3389/fcell.2015.00002 PMID: 25699255
  394. Millette, K.; Georgia, S. Gene editing and human pluripotent stem cells: Tools for advancing diabetes disease modeling and beta-cell development. Curr. Diab. Rep., 2017, 17(11), 116. doi: 10.1007/s11892-017-0947-3 PMID: 28980194
  395. Pini, V.; Morgan, J.E.; Muntoni, F.; O’Neill, H.C. Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Curr. Stem Cell Rep., 2017, 3(2), 137-148. doi: 10.1007/s40778-017-0076-6 PMID: 28616376
  396. Li, H.; Chen, G. In vivo reprogramming for CNS repair: Regenerating neurons from endogenous glial cells. Neuron, 2016, 91(4), 728-738. doi: 10.1016/j.neuron.2016.08.004 PMID: 27537482
  397. Cherry, A.B.C.; Daley, G.Q. Reprogramming cellular identity for regenerative medicine. Cell, 2012, 148(6), 1110-1122. doi: 10.1016/j.cell.2012.02.031 PMID: 22424223
  398. Watt, F.M.; Driskell, R.R. The therapeutic potential of stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2010, 365(1537), 155-163. doi: 10.1098/rstb.2009.0149 PMID: 20008393
  399. Wobus, A.M.; Boheler, K.R. Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol. Rev., 2005, 85(2), 635-678. doi: 10.1152/physrev.00054.2003 PMID: 15788707
  400. Klimczak, A.; Kozlowska, U. Mesenchymal stromal cells and tissue-specific progenitor cells: Their role in tissue homeostasis. Stem Cells Int., 2016, 2016, 1-11. doi: 10.1155/2016/4285215 PMID: 26823669
  401. Piccin, D.; Morshead, C.M. Potential and pitfalls of stem cell therapy in old age. Dis. Model. Mech., 2010, 3(7-8), 421-425. doi: 10.1242/dmm.003137 PMID: 20504968
  402. Krampera, M.; Franchini, M.; Pizzolo, G.; Aprili, G. Mesenchymal stem cells: From biology to clinical use. Blood Transfus., 2007, 5(3), 120-129. PMID: 19204764
  403. Via, A.G.; Frizziero, A.; Oliva, F. Biological properties of mesenchymal Stem Cells from different sources. Muscles Ligaments Tendons J., 2012, 2(3), 154-162. PMID: 23738292
  404. Farini, A.; Sitzia, C.; Erratico, S.; Meregalli, M.; Torrente, Y. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int., 2014, 2014, 1-11. doi: 10.1155/2014/306573 PMID: 24876848
  405. Maleki, M.; Ghanbarvand, F.; Behvarz, M.R.; Ejtemaei, M.; Ghadirkhomi, E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int. J. Stem Cells, 2014, 7(2), 118-126. doi: 10.15283/ijsc.2014.7.2.118 PMID: 25473449
  406. Law, S.; Chaudhuri, S. Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. Am. J. Stem Cells, 2013, 2(1), 22-38. PMID: 23671814
  407. Nagamura-Inoue, T.; He, H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J. Stem Cells, 2014, 6(2), 195-202. doi: 10.4252/wjsc.v6.i2.195 PMID: 24772246
  408. Hordyjewska, A.; Popiołek, Ł.; Horecka, A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology, 2015, 67(3), 387-396. doi: 10.1007/s10616-014-9796-y PMID: 25373337
  409. Rosemann, A. Why regenerative stem cell medicine progresses slower than expected. J. Cell. Biochem., 2014, 115(12), 2073-2076. doi: 10.1002/jcb.24894 PMID: 25079695
  410. McKenna, D.; Sheth, J. Umbilical cord blood: Current status & promise for the future. Indian J. Med. Res., 2011, 134(3), 261-269. PMID: 21985808
  411. Ballen, K.K.; Gluckman, E.; Broxmeyer, H.E. Umbilical cord blood transplantation: The first 25 years and beyond. Blood, 2013, 122(4), 491-498. doi: 10.1182/blood-2013-02-453175 PMID: 23673863
  412. Travlos, G.S. Normal structure, function, and histology of the bone marrow. Toxicol. Pathol., 2006, 34(5), 548-565. doi: 10.1080/01926230600939856 PMID: 17067943
  413. Brenner, M.K. Gene-modified cells for stem cell transplantation and cancer therapy. Hum. Gene Ther., 2014, 25(7), 563-569. doi: 10.1089/hum.2014.2527 PMID: 25029600
  414. Chen, F.M.; Liu, X. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci., 2016, 53, 86-168. doi: 10.1016/j.progpolymsci.2015.02.004 PMID: 27022202
  415. Howard, C.A.; Fernandez-Vina, M.A.; Appelbaum, F.R.; Confer, D.L.; Devine, S.M.; Horowitz, M.M.; Mendizabal, A.; Laport, G.G.; Pasquini, M.C.; Spellman, S.R. Recommendations for donor human leukocyte antigen assessment and matching for allogeneic stem cell transplantation: consensus opinion of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN). Biol. Blood Marrow Transplant., 2015, 21(1), 4-7. doi: 10.1016/j.bbmt.2014.09.017 PMID: 25278457
  416. Acevedo-Whitehouse, K.; Duffus, A.L.J. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1534), 3429-3438. doi: 10.1098/rstb.2009.0128 PMID: 19833653
  417. Kasso, M.; Balakrishnan, M. Ex situ conservation of biodiversity with particular emphasis to ethiopia. ISRN Biodiversity, 2013, 2013, 1-11. doi: 10.1155/2013/985037
  418. Khan, S.; Nabi, G.; Ullah, M.W.; Yousaf, M.; Manan, S.; Siddique, R.; Hou, H. Overview on the role of advance genomics in conservation biology of endangered species. Int. J. Genomics, 2016, 2016, 1-8. doi: 10.1155/2016/3460416 PMID: 28025636
  419. Devi, L.; Goel, S. Fertility preservation through gonadal cryopreservation. Reprod. Med. Biol., 2016, 15(4), 235-251. doi: 10.1007/s12522-016-0240-1 PMID: 29259441
  420. Friedrich Ben-Nun, I.; Montague, S.C.; Houck, M.L.; Tran, H.T.; Garitaonandia, I.; Leonardo, T.R.; Wang, Y.C.; Charter, S.J.; Laurent, L.C.; Ryder, O.A.; Loring, J.F. Induced pluripotent stem cells from highly endangered species. Nat. Methods, 2011, 8(10), 829-831. doi: 10.1038/nmeth.1706 PMID: 21892153
  421. Stanton, M.M.; Tzatzalos, E.; Donne, M.; Kolundzic, N.; Helgason, I.; Ilic, D. Prospects for the use of induced pluripotent stem cells in animal conservation and environmental protection. Stem Cells Transl. Med., 2019, 8(1), 7-13. doi: 10.1002/sctm.18-0047 PMID: 30251393
  422. Ogorevc, J.; Orehek, S.; Dovč, P. Cellular reprogramming in farm animals: An overview of iPSC generation in the mammalian farm animal species. J. Anim. Sci. Biotechnol., 2016, 7(1), 10. doi: 10.1186/s40104-016-0070-3 PMID: 26900466
  423. Comizzoli, P.; Wildt, D.E. On the horizon for fertility preservation in domestic and wild carnivores. Reprod. Domest. Anim., 2012, 47(S6), 261-265. doi: 10.1111/rda.12010 PMID: 23279514
  424. Ramaswamy, K.; Yik, W.Y.; Wang, X.M.; Oliphant, E.N.; Lu, W.; Shibata, D.; Ryder, O.A.; Hacia, J.G. Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. BMC Res. Notes, 2015, 8(1), 577. doi: 10.1186/s13104-015-1567-0 PMID: 26475477
  425. Omole, A.E.; Fakoya, A.O.J. Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ, 2018, 6, e4370. doi: 10.7717/peerj.4370 PMID: 29770269
  426. Pothana, L.; Makala, H.; Devi, L.; Varma, V.P.; Goel, S. Germ cell differentiation in cryopreserved, immature, Indian spotted mouse deer (Moschiola indica) testes xenografted onto mice. Theriogenology, 2015, 83(4), 625-633. doi: 10.1016/j.theriogenology.2014.10.028 PMID: 25467768
  427. Sayed, N.; Liu, C.; Wu, J.C. Translation of human-induced pluripotent stem cells. J. Am. Coll. Cardiol., 2016, 67(18), 2161-2176. doi: 10.1016/j.jacc.2016.01.083 PMID: 27151349
  428. Seki, T.; Fukuda, K. Methods of induced pluripotent stem cells for clinical application. World J. Stem Cells, 2015, 7(1), 116-125. doi: 10.4252/wjsc.v7.i1.116 PMID: 25621111
  429. Brigida, A.L.; Siniscalco, D. Induced pluripotent stem cells as a cellular model for studying down syndrome. J. Stem Cells Regen. Med., 2016, 12(2), 54-60. doi: 10.46582/jsrm.1202009 PMID: 28096629
  430. Martin, U. Therapeutic application of pluripotent stem cells: Challenges and risks. Front. Med., 2017, 4, 229. doi: 10.3389/fmed.2017.00229 PMID: 29312943

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024