Beyond the Dusty Fog: Local Eye Drop Therapy and Potentially New Treatment Alternatives in Pseudoexfoliative Glaucoma


Citar

Texto integral

Resumo

Pseudoexfoliative glaucoma (PEG) is a type of secondary open-angle glaucoma characterized by the accumulation of whitish-gray material on the trabecular meshwork and lens, leading to an increase in intraocular pressure (IOP) and optic nerve damage. Local eye drop therapy is one of the first-line treatments for PEG, which include prostaglandin analogues, beta-blockers, and alpha-adrenergic agonists to lower IOP. New treatments beyond conventional techniques, however, are constantly being developed. One potential treatment proposed for PEG is based on magnetic phage display, which involves using magnetic nanoparticles conjugated to specific peptides or proteins selected using phage display techniques to remove aggregates in the anterior chamber of the eye or inflammatory cells and cytokines that contribute to PEG pathogenesis. Other potential treatments include microRNAs (miRNAs) that are involved in the regulation of gene expression at the post-transcription stages. Gene therapies, nanotechnology, immunotherapy and methods based on stem cells can also be potentially used to target and treat specific tissues and cells responsible for regulating IOP. In addition, photobiomodulation therapy (PBMT), a non-invasive procedure that utilizes low-level laser therapy to improve cellular function and promote tissue repair, can prove an interesting alternative in treating PEG. The aim of our mini-review is to provide a brief overview of these innovative methods that appear to offer potentially promising treatment options for PEG.

Sobre autores

Marco Zeppieri

Department of Ophthalmology, University Hospital of Udine,

Autor responsável pela correspondência
Email: info@benthamscience.net

Mutali Musa

Department of Optometry,, University of Benin,

Email: info@benthamscience.net

Bibliografia

  1. Prokosch, V.; Zwingelberg, S.B.; Mercieca, K. Normal tension glaucoma; Klin Monbl Augenheilkd, 2022.
  2. Nenciu, A. Pseudo-exfoliative syndrome-etiology, clinical aspects, diagnosis. Oftalmologia, 2007, 51(4), 34-40. PMID: 18543671
  3. Schweitzer, C. Pseudoexfoliation syndrome and pseudoexfoliation glaucoma. J. Fr. Ophtalmol., 2018, 41(1), 78-90. doi: 10.1016/j.jfo.2017.09.003 PMID: 29329947
  4. Chakraborty, M.; Rao, A. Alternate causes for pathogenesis of exfoliation glaucoma, a multifactorial elastotic disorder: literature review. Curr. Issues Mol. Biol., 2022, 44(3), 1191-1202. doi: 10.3390/cimb44030078 PMID: 35723301
  5. Zeppieri, M.; Gurnani, B. Applanation tonometry; StatPearls: Treasure Island, FL, 2023.
  6. Ringvold, A. Epidemiology of the pseudo-exfoliation syndrome, A review. Acta Ophthalmol. Scand., 1999, 77(4), 371-375. doi: 10.1034/j.1600-0420.1999.770401.x PMID: 10463402
  7. Padhy, B.; Alone, D.P. Is pseudoexfoliation glaucoma a neurodegenerative disorder? J. Biosci., 2021, 46(4), 97. doi: 10.1007/s12038-021-00217-8 PMID: 34785624
  8. Grzybowski, A.; Kanclerz, P.; Ritch, R. The history of exfoliation syndrome. Asia Pac. J. Ophthalmol. (Phila.), 2019, 8(1), 55-61. PMID: 30421589
  9. Sencanic, I.; Gazibara, T.; Jaksic, V.; Grgurevic, A.; Mrakovic, T.; Dotlic, J. Socio-Demographic, lifestyle and eye-related factors associated with quality of life among people with glaucoma in Serbia. Eur. J. Ophthalmol., 2023, 33(2), 965-975. PMID: 36163693
  10. Feroze, K.B.; Zeppieri, M.; Khazaeni, L. Steroid-induced glaucoma; StatPearls: Treasure Island, FL, 2023.
  11. Tanito, M. Reported evidence of vitamin E protection against cataract and glaucoma. Free Radic. Biol. Med., 2021, 177, 100-119. doi: 10.1016/j.freeradbiomed.2021.10.027 PMID: 34695546
  12. Gillies, W.E. Racial incidence of pseudoexfoliation of the lens capsule. Br. J. Ophthalmol., 1972, 56(6), 474-477. doi: 10.1136/bjo.56.6.474 PMID: 5069187
  13. Wang, W.; He, M.; Zhou, M.; Zhang, X. Ocular pseudoexfoliation syndrome and vascular disease: Systematic review and meta-analysis. PLoS One, 2014, 9(3), e92767. doi: 10.1371/journal.pone.0092767 PMID: 24667689
  14. French, D.; Margo, C.; Harman, L. Ocular pseudoexfoliation and cardiovascular disease: national cross-section comparison study. N. Am. J. Med. Sci., 2012, 4(10), 468-473. doi: 10.4103/1947-2714.101987 PMID: 23112968
  15. Špečkauskas, M.; Tamošiūnas, A.; Jašinskas, V. Association of ocular pseudoexfoliation syndrome with ischaemic heart disease, arterial hypertension and diabetes mellitus. Acta Ophthalmol., 2012, 90(6), e470-e475. doi: 10.1111/j.1755-3768.2012.02439.x PMID: 22550962
  16. Melese, E.K.; Shibeshi, M.A.; Sherief, S.T. Prevalence of pseudoexfoliation among adults and its related ophthalmic variables in Southern Ethiopia: cross-sectional study. Clin. Ophthalmol., 2022, 16, 3951-3958. doi: 10.2147/OPTH.S391290 PMID: 36471727
  17. Nobl, M.; Mackert, M. Pseudoexfoliation syndrome and glaucoma. Klin. Monatsbl. Augenheilkd., 2019, 236(9), 1139-1155. PMID: 31412384
  18. Fogagnolo, P.; Figus, M.; Frezzotti, P.; Iester, M.; Oddone, F.; Zeppieri, M.; Ferreras, A.; Brusini, P.; Rossetti, L.; Orzalesi, N. Test-retest variability of intraocular pressure and ocular pulse amplitude for dynamic contour tonometry: multicentre study. Br. J. Ophthalmol., 2010, 94(4), 419-423. doi: 10.1136/bjo.2009.165142 PMID: 19833616
  19. Martinez, A.; Sanchez, M. Ocular haemodynamics in pseudoexfoliative and primary open-angle glaucoma. Eye (Lond.), 2008, 22(4), 515-520. doi: 10.1038/sj.eye.6702676 PMID: 17173007
  20. Michalik, A.Z.; Kaufman, P.L. Medical management of glaucoma in exfoliation syndrome. J. Glaucoma, 2018, 27(1)(Suppl. 1), S87-S90. doi: 10.1097/IJG.0000000000000920 PMID: 29965902
  21. Tarkkanen, A.H.A.; Kivelä, T.T. Mortality in primary open-angle glaucoma and exfoliative glaucoma. Eur. J. Ophthalmol., 2014, 24(5), 718-721. doi: 10.5301/ejo.5000450 PMID: 24557754
  22. Jünemann, A.G.M. Diagnosis and therapy of pseudoexfoliation glaucoma. Ophthalmologe, 2012, 109(10), 962-975. doi: 10.1007/s00347-012-2532-0
  23. Zeppieri, M. Pigment dispersion syndrome: brief overview. J. Clin. Transl. Res., 2022, 8(5), 344-350. PMID: 36518550
  24. Sternfeld, A.; Luski, M.; Sella, R.; Zahavi, A.; Geffen, N.; Pereg, A.; Megiddo, E.; Gaton, D. Diagnosis of pseudoexfoliation syndrome in pseudophakic patients. Ophthalmic Res., 2021, 64(1), 28-33. doi: 10.1159/000508336 PMID: 32353850
  25. Zeppieri, M.; Tripathy, K. Pigment dispersion glaucoma; StatPearls: Treasure Island, FL, 2023.
  26. Tuteja, S.; Chawla, H. Pseudoexfoliation syndrome and glaucoma; StatPearls: Treasure Island, FL, 2023.
  27. Todorović; D.; Šarenac Vulović; T.; Sreć;ković; S.; Jovanović; S.; Petrović; N. The effect of primary argon laser trabeculoplasty on intraocular pressure reduction and quality of life in patients with pseudoexfoliation glaucoma. Acta Clin. Croat., 2021, 60(2), 231-236. doi: 10.20471/acc.2021.60.02.08 PMID: 34744272
  28. Tekin, K.; Inanc, M.; Elgin, U. Monitoring and management of the patient with pseudoexfoliation syndrome: Current perspectives. Clin. Ophthalmol., 2019, 13(1), 453-464. doi: 10.2147/OPTH.S181444 PMID: 30880906
  29. Holló, G.; Katsanos, A.; Konstas, A.G. Management of exfoliative glaucoma: hallenges and solutions. Clin. Ophthalmol., 2015, 9, 907-919. doi: 10.2147/OPTH.S77570 PMID: 26045655
  30. Miglior, S.; Bertuzzi, F. Exfoliative glaucoma. Prog. Brain Res; , 2015, pp. 221-233-241. doi: 10.1016/bs.pbr.2015.06.007 PMID: 26518081
  31. Li, F.; Tang, G.; Zhang, H.; Yan, X.; Ma, L.; Geng, Y. The effects of trabeculectomy on pseudoexfoliation glaucoma and primary open-angle glaucoma. J. Ophthalmol., 2020, 2020(23), 1-7. doi: 10.1155/2020/1723691 PMID: 32280515
  32. Aydin, D.; Kusbeci, T.; Uzunel, U.D.; Orsel, T.; Yuksel, B. Evaluation of retinal nerve fiber layer and ganglion cell complex thickness in unilateral exfoliation syndrome using optical coherence tomography. J. Glaucoma, 2016, 25(6), 523-527. doi: 10.1097/IJG.0000000000000383 PMID: 26900827
  33. Öztürker, Z.K.; Öztürker, C.; Bayraktar, S.; Altan, C.; Yilmaz, O.F. Does the use of preoperative antiglaucoma medications influence trabeculectomy success? J. Ocul. Pharmacol. Ther., 2014, 30(7), 554-558. doi: 10.1089/jop.2014.0008 PMID: 24918962
  34. Gonnermann, J.; Klamann, M.K.J.; Maier, A.K.B.; Torun, N.; Ruokonen, P.C.; Bertelmann, E. Influence of prostaglandin analogue on outcome after combined cataract surgery and trabecular aspiration in pseudoexfoliative glaucoma. Eur. J. Ophthalmol., 2013, 23(6), 814-818. doi: 10.5301/ejo.5000311 PMID: 23661542
  35. Bader, J.; Zeppieri, M.; Havens, S.J. Tonometry; StatPearls: Treasure Island, FL, 2023.
  36. Aydin Kurna, S.; Sonmez, A.D.; Yamic, M.; Altun, A. Long-term results of micropulse laser trabeculoplasty with 577-nm yellow wavelength in patients with uncontrolled primary open-angle glaucoma and pseudoexfoliation glaucoma. Lasers Med. Sci., 2022, 37(6), 2745-2752. doi: 10.1007/s10103-022-03550-y PMID: 35353248
  37. Lee, J.H.; Na, J.H.; Chung, H.J.; Choi, J.Y.; Kim, M.J. Selective laser trabeculoplasty for medically uncontrolled pseudoexfoliation glaucoma in korean patients. Korean J. Ophthalmol., 2021, 35(6), 476-483. doi: 10.3341/kjo.2021.0086 PMID: 34634862
  38. Parmaksiz, S.; Yüksel, N.; Karabas, V.L.; Özkan, B.; Demirci, G. çaglar, Y. A comparison of travoprost, latanoprost, and the fixed combination of dorzolamide and timolol in patients with pseudoexfoliation glaucoma. Eur. J. Ophthalmol., 2006, 16(1), 73-80. doi: 10.1177/112067210601600113
  39. Kurysheva, N.I. Long-term use of latanoprost in the treatment of glaucoma. Vestn. Oftalmol., 2020, 136(2), 125-132. doi: 10.17116/oftalma2020136021125 PMID: 32366080
  40. Tripathy, K.; Geetha, R. Latanoprost; StatPearls: Treasure Island, FL, 2023.
  41. Muñoz-Negrete, F.J.; Arnalich-Montiel, F.; Lara-Medina, F.J.; Rebolleda, G. Latanoprost-induced skin hypopigmentation. J. Glaucoma, 2018, 27(3), e72. doi: 10.1097/IJG.0000000000000878 PMID: 29334483
  42. Desai, M.A.; Lee, R.K. The medical and surgical management of pseudoexfoliation glaucoma. Int. Ophthalmol. Clin., 2008, 48(4), 95-113. doi: 10.1097/IIO.0b013e318187e902 PMID: 18936639
  43. Sah, A.K.; Suresh, P.K. Medical management of glaucoma: ocus on ophthalmologic drug delivery systems of timolol maleate. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 448-459. doi: 10.3109/21691401.2016.1160917 PMID: 27002850
  44. Farzam, K.; Jan, A. Beta blockers; StatPearls: Treasure Island, FL, 2023.
  45. Ko, D.T.; Hebert, P.R.; Coffey, C.S.; Curtis, J.P.; Foody, J.M.; Sedrakyan, A.; Krumholz, H.M. Adverse effects of beta-blocker therapy for patients with heart failure: quantitative overview of randomized trials. Arch. Intern. Med., 2004, 164(13), 1389-1394. doi: 10.1001/archinte.164.13.1389 PMID: 15249347
  46. Oh, D.J.; Chen, J.L.; Vajaranant, T.S.; Dikopf, M.S. Brimonidine tartrate for the treatment of glaucoma. Expert Opin. Pharmacother., 2019, 20(1), 115-122. doi: 10.1080/14656566.2018.1544241 PMID: 30407890
  47. Rahman, M.Q.; Ramaesh, K.; Montgomery, D.M.I. Brimonidine for glaucoma. Expert Opin. Drug Saf., 2010, 9(3), 483-491. doi: 10.1517/14740331003709736 PMID: 20367525
  48. Yasaei, R.; Saadabadi, A. Clonidine; StatPearls: Treasure Island, FL, 2023.
  49. Beckers, H.J.M.; Schouten, J.S.A.G.; Webers, C.A.B.; van der Valk, R.; Hendrikse, F. Side effects of commonly used glaucoma medications: omparison of tolerability, chance of discontinuation, and patient satisfaction. Graefes Arch. Clin. Exp. Ophthalmol., 2008, 246(10), 1485-1490. doi: 10.1007/s00417-008-0875-7 PMID: 18575878
  50. Stoner, A.; Harris, A.; Oddone, F.; Belamkar, A.; Verticchio Vercellin, A.C.; Shin, J.; Januleviciene, I.; Siesky, B. Topical carbonic anhydrase inhibitors and glaucoma in 2021: here do we stand? Br. J. Ophthalmol., 2022, 106(10), 1332-1337. doi: 10.1136/bjophthalmol-2021-319530 PMID: 34433550
  51. Eichhorn, M. Mode of action, clinical profile and relevance of carbonic anhydrase inhibitors in glaucoma therapy. Klin. Monatsbl. Augenheilkd., 2013, 230(2), 146-149. PMID: 23430679
  52. Aslam, S.; Gupta, V. Carbonic anhydrase inhibitors; StatPearls: Treasure Island, FL, 2023.
  53. Li, F.; Huang, W.; Zhang, X. Efficacy and safety of different regimens for primary open-angle glaucoma or ocular hypertension: systematic review and network meta-analysis. Acta Ophthalmol., 2018, 96(3), e277-e284. doi: 10.1111/aos.13568 PMID: 29144028
  54. Tanna, A.P.; Johnson, M. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology, 2018, 125(11), 1741-1756. doi: 10.1016/j.ophtha.2018.04.040 PMID: 30007591
  55. Berrino, E.; Supuran, C.T. Rho-kinase inhibitors in the management of glaucoma. Expert Opin. Pharmacother. Pat., 2019, 29(10), 817-827.
  56. Patel, P.; Patel, B.C. Netarsudil ophthalmic solution; StatPearls: Treasure Island, FL, 2023.
  57. Saha, B.C.; Kumari, R.; Kushumesh, R.; Ambasta, A.; Sinha, B.P. Status of Rho kinase inhibitors in glaucoma therapeutics-an overview. Int. Ophthalmol., 2022, 42(1), 281-294. doi: 10.1007/s10792-021-02002-w PMID: 34453229
  58. Patterson-Orazem, A.C.; Lieberman, R.L. Antibodies used to detect glaucoma-associated myocilin: ore or less than meets the eye? Invest. Ophthalmol. Vis. Sci., 2019, 60(6), 2034-2037. doi: 10.1167/iovs.19-26843 PMID: 31067323
  59. Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage display: oncept, innovations, applications and future. Biotechnol. Adv., 2010, 28(6), 849-858. doi: 10.1016/j.biotechadv.2010.07.004 PMID: 20659548
  60. Ghaffari Sharaf, M.; Waduthanthri, K.D.; Crichton, A.; Damji, K.F.; Unsworth, L.D. Towards preventing exfoliation glaucoma by targeting and removing fibrillar aggregates associated with exfoliation syndrome. J. Nanobiotechnology, 2022, 20(1), 459. doi: 10.1186/s12951-022-01665-6 PMID: 36303134
  61. Nitzan, A.; Corredor-Sanchez, M.; Galron, R.; Nahary, L.; Safrin, M.; Bruzel, M.; Moure, A.; Bonet, R.; Pérez, Y.; Bujons, J.; Vallejo-Yague, E.; Sacks, H.; Burnet, M.; Alfonso, I.; Messeguer, A.; Benhar, I.; Barzilai, A. Solomon, AS Inhibition of sema-3a promotes cell migration, axonal growth, and retinal ganglion cell survival. Transl. Vis. Sci. Technol., 2021, 10(10), 16.
  62. Ledsgaard, L.; Kilstrup, M.; Karatt-Vellatt, A.; McCafferty, J.; Laustsen, A. Basics of antibody phage display technology. Toxins (Basel), 2018, 10(6), 236. doi: 10.3390/toxins10060236 PMID: 29890762
  63. Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ action through miRNA editing. Int. J. Mol. Sci., 2019, 20(24), 6249. doi: 10.3390/ijms20246249
  64. Diener, C.; Keller, A.; Meese, E. Emerging concepts of miRNA therapeutics: rom cells to clinic. Trends Genet., 2022, 38(6), 613-626. doi: 10.1016/j.tig.2022.02.006 PMID: 35303998
  65. Rao, A.; Chakraborty, M.; Roy, A.; Sahay, P.; Pradhan, A.; Raj, N. Differential miRNA expression: ignature for glaucoma in pseudoexfoliation. Clin. Ophthalmol., 2020, 14, 3025-3038. doi: 10.2147/OPTH.S254504 PMID: 33116354
  66. Ran, W.; Zhu, D.; Feng, Q. TGF-β2 stimulates Tenon’s capsule fibroblast proliferation in patients with glaucoma via suppression of miR-29b expression regulated by Nrf2. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4799-4806. PMID: 26191170
  67. Liu, H.; Xiu, Y.; Zhang, Q.; Xu, Y.; Wan, Q.; Tao, L. Silencing microRNA 29b 3p expression protects human trabecular meshwork cells against oxidative injury via upregulation of RNF138 to activate the ERK pathway. Int. J. Mol. Med., 2021, 47(6), 101. doi: 10.3892/ijmm.2021.4934 PMID: 33907817
  68. Luna, C.; Parker, M.; Challa, P.; Gonzalez, P. Long-term decrease of intraocular pressure in rats by viral delivery of miR-146a. Translat. Vis. Sci. Tech., 2021, 10(8), 14.
  69. Prattichizzo, F.; Giuliani, A.; Ceka, A.; Rippo, M.R.; Bonfigli, A.R.; Testa, R.; Procopio, A.D.; Olivieri, F. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin. Epigenetics, 2015, 7(1), 56. doi: 10.1186/s13148-015-0090-4 PMID: 26015812
  70. Jayaram, H.; Cepurna, W.O.; Johnson, E.C.; Morrison, J.C. MicroRNA expression in the glaucomatous retina. Invest. Ophthalmol. Vis. Sci., 2015, 56(13), 7971-7982. doi: 10.1167/iovs.15-18088 PMID: 26720444
  71. Demetriades, A.M. Gene therapy for glaucoma. Curr. Opin. Ophthalmol., 2011, 22(2), 73-77. doi: 10.1097/ICU.0b013e32834371d2 PMID: 21252673
  72. Amador, C.; Shah, R.; Ghiam, S.; Kramerov, A.A.; Ljubimov, A.V. Gene therapy in the anterior eye segment. Curr. Gene Ther., 2022, 22(2), 104-131. doi: 10.2174/1566523221666210423084233 PMID: 33902406
  73. Aboobakar, I.F.; Wiggs, J.L. The genetics of glaucoma: isease associations, personalised risk assessment and therapeutic opportunities-A review. Clin. Exp. Ophthalmol., 2022, 50(2), 143-162. doi: 10.1111/ceo.14035 PMID: 35037362
  74. Ratican, S.E.; Osborne, A.; Martin, K.R. Progress in gene therapy to prevent retinal ganglion cell loss in glaucoma and Leber’s hereditary optic neuropathy. Neur. Plasticity., 2018, 2018, 7108948.
  75. DiCarlo, J.E.; Mahajan, V.B.; Tsang, S.H. Gene therapy and genome surgery in the retina. J. Clin. Invest., 2018, 128(6), 2177-2188. doi: 10.1172/JCI120429
  76. Alqawlaq, S.; Huzil, J.T.; Ivanova, M.V.; Foldvari, M. Challenges in neuroprotective nanomedicine development: rogress towards noninvasive gene therapy of glaucoma. Nanomedicine (Lond.), 2012, 7(7), 1067-1083. doi: 10.2217/nnm.12.69 PMID: 22846092
  77. Wasnik, V.B.; Thool, A.R. Ocular gene therapy: literature review with focus on current clinical trials. Cureus, 2022, 14(9), e29533. doi: 10.7759/cureus.29533 PMID: 36312652
  78. Shirley, J.L.; de Jong, Y.P.; Terhorst, C.; Herzog, R.W. Immune responses to viral gene therapy vectors. Mol. Ther., 2020, 28(3), 709-722. doi: 10.1016/j.ymthe.2020.01.001
  79. Hua, Z.Q.; Liu, H.; Wang, N.; Jin, Z.B. Towards stem cell-based neuronal regeneration for glaucoma. Prog. Brain Res.,; , 2020, pp. 257-99-118. doi: 10.1016/bs.pbr.2020.05.026 PMID: 32988476
  80. Sharma, A.; Jaganathan, B.G. Stem cell therapy for retinal degeneration: he evidence to date. Biologics, 2021, 15, 299-306. PMID: 34349498
  81. Musa, M.; Zeppieri, M.; Enaholo, E.S.; Chukwuyem, E.; Salati, C. An overview of corneal transplantation in the past decade. Clin. Pract., 2023, 13(1), 264-279. doi: 10.3390/clinpract13010024 PMID: 36826166
  82. Coulon, S.J.; Schuman, J.S.; Du, Y.; Bahrani Fard, M.R.; Ethier, C.R.; Stamer, W.D. A novel glaucoma approach: tem cell regeneration of the trabecular meshwork. Prog. Retin. Eye Res., 2022, 90, 101063. doi: 10.1016/j.preteyeres.2022.101063 PMID: 35398015
  83. Musa, M.; Zeppieri, M.; Enaholo, E.S.; Salati, C.; Parodi, P.C. Adipose stem cells in modern-day ophthalmology. Clin. Pract., 2023, 13(1), 230-245. doi: 10.3390/clinpract13010021 PMID: 36826163
  84. Miotti, G.; Parodi, P.C.; Zeppieri, M. Stem cell therapy in ocular pathologies in the past 20 years. World J. Stem Cells, 2021, 13(5), 366-385. doi: 10.4252/wjsc.v13.i5.366 PMID: 34136071
  85. Chakrabarti, A.; Mohan, N.; Nazm, N.; Mehta, R.; Edward, D. Newer advances in medical management of glaucoma. Indian J. Ophthalmol., 2022, 70(6), 1920-1930. doi: 10.4103/ijo.IJO_2239_21 PMID: 35647957
  86. Pearson, C.; Martin, K. Stem cell approaches to glaucoma. Prog. Brain Res; , 2015, pp. 220-241-256. doi: 10.1016/bs.pbr.2015.04.005 PMID: 26497794
  87. Zhang, J.; Wu, S.; Jin, Z.B.; Wang, N. Stem cell-based regeneration and restoration for retinal ganglion cell: ecent advancements and current challenges. Biomolecules, 2021, 11(7), 987. doi: 10.3390/biom11070987
  88. Snider, E.J.; Kubelick, K.P.; Tweed, K.; Kim, R.K.; Li, Y.; Gao, K.; Read, A.T.; Emelianov, S.; Ethier, C.R. Improving stem cell delivery to the trabecular meshwork using magnetic nanoparticles. Sci. Rep., 2018, 8(1), 12251. doi: 10.1038/s41598-018-30834-7
  89. Mallick, S.; Sharma, M.; Kumar, A.; Du, Y. Cell-based therapies for trabecular meshwork regeneration to treat glaucoma. Biomolecules, 2021, 11(9), 1258. doi: 10.3390/biom11091258
  90. Glass, G.E. Photobiomodulation: he clinical applications of low-level light therapy. Aesthet Surj Jl, 2021, 41(6), 723-738.
  91. Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics, 2016, 9(11-12), 1122-1124. doi: 10.1002/jbio.201670113 PMID: 27973730
  92. Ahn, S.H.; Suh, J.S.; Lim, G.H.; Kim, T.J. The potential effects of light irradiance in glaucoma and photobiomodulation therapy. Bioengineering (Basel), 2023, 10(2), 223. doi: 10.3390/bioengineering10020223 PMID: 36829717
  93. Van de Veire, S.; Zeyen, T.; Stalmans, I. Argon versus selective laser trabeculoplasty. Bull. Soc. Belge Ophtalmol., 2006, (299), 5-10. PMID: 16681083
  94. Sandhu, S.; Damji, K.F. Laser management of glaucoma in exfoliation syndrome. J. Glaucoma, 2018, 27(Suppl. 1), S91-S94. doi: 10.1097/IJG.0000000000000909 PMID: 29419644
  95. Katsanos, A.; Konstas, A.G.; Mikropoulos, D.G.; Quaranta, L.; Voudouragkaki, I.C.; Athanasopoulos, G.P.; Asproudis, I.; Teus, M.A. A review of the clinical usefulness of selective laser trabeculoplasty in exfoliative glaucoma. Adv. Ther., 2018, 35(5), 619-630. doi: 10.1007/s12325-018-0695-z PMID: 29644538
  96. Gillies, W.E.; West, R.H.; Cebon, L. Laser trabeculotomy or trabeculoplasty. Early experience with a new non-invasive surgical technique for glaucoma. Aust. N. Z. J. Ophthalmol., 1983, 11(3), 165-168. doi: 10.1111/j.1442-9071.1983.tb01073.x PMID: 6639509
  97. Shaw, E.; Gupta, P. Laser trabeculoplasty; StatPearls: Treasure Island, FL, 2023.
  98. Jang, H.J.; Yu, B.; Hodge, W.; Malvankar-Mehta, M.S. Repeat selective laser trabeculoplasty for glaucoma patients: systematic review and meta-analysis. J. Curr. Glaucoma Pract., 2022, 15(3), 117-124. doi: 10.5005/jp-journals-10078-1302 PMID: 35173393
  99. De Keyser, M.; De Belder, M.; De Belder, S.; De Groot, V. Where does selective laser trabeculoplasty stand now? A review. Eye Vis. (Lond.), 2016, 3(1), 10. doi: 10.1186/s40662-016-0041-y PMID: 27051674
  100. Oydanich, M.; Kass, W.; Khouri, A.S. Laser induced damage to disposable gonioscopy lenses during selective laser trabeculoplasty. J. Glaucoma, 2022, 31(7), e46-e48. doi: 10.1097/IJG.0000000000002038 PMID: 35439774
  101. Sun, C.Q.; Chen, T.A.; Deiner, M.S.; Ou, Y. Clinical outcomes of micropulse laser trabeculoplasty compared to selective laser trabeculoplasty at one year in open-angle glaucoma. Clin. Ophthalmol., 2021, 15, 243-251. doi: 10.2147/OPTH.S285136
  102. Mishra, S. Nanotechnology in medicine. Indian Heart J., 2016, 68(3), 437-439. doi: 10.1016/j.ihj.2016.05.003 PMID: 27316514
  103. Cardigos, J.; Ferreira, Q.; Crisóstomo, S.; Moura-Coelho, N.; Cunha, J.P.; Pinto, L.A.; Ferreira, J.T. Nanotechnology-ocular devices for glaucoma treatment: literature review. Curr. Eye Res., 2019, 44(2), 111-117. doi: 10.1080/02713683.2018.1536218 PMID: 30309248
  104. Occhiutto, M.L.; Maranhão, R.C.; Costa, V.P.; Konstas, A.G. Nanotechnology for medical and surgical glaucoma therapy-a review. Adv. Ther., 2020, 37(1), 155-199. doi: 10.1007/s12325-019-01163-6 PMID: 31823205
  105. Kwon, S.; Kim, S.H.; Khang, D.; Lee, J.Y. Potential therapeutic usage of nanomedicine for glaucoma treatment. Int. J. Nanomed., 2020, 15, 5745-5765. doi: 10.2147/IJN.S254792 PMID: 32821099
  106. Kim, N.J.; Harris, A.; Gerber, A.; Tobe, L.A.; Amireskandari, A.; Huck, A.; Siesky, B. Nanotechnology and glaucoma: review of the potential implications of glaucoma nanomedicine. Br. J. Ophthalmol., 2014, 98(4), 427-431. doi: 10.1136/bjophthalmol-2013-304028 PMID: 24246373
  107. Juliana, F.R.; Kesse, S.; Boakye-Yiadom, K.O.; Veroniaina, H.; Wang, H.; Sun, M. Promising approach in the treatment of glaucoma using nanotechnology and nanomedicine-based systems. Molecules, 2019, 24(20), 3805. doi: 10.3390/molecules24203805
  108. Justiz Vaillant, A.A.; Nessel, T.A.; Zito, P.M. Immunotherapy In; StatPearls: Treasure Island, FL, 2023.
  109. Tonner, H.; Hunn, S.; Auler, N.; Schmelter, C.; Pfeiffer, N.; Grus, F.H. Dynamin-like protein 1 (DNML1) as a molecular target for antibody-based immunotherapy to treat glaucoma. Int. J. Mol. Sci., 2022, 23(21), 13618.
  110. Wierzbowska, J.; Robaszkiewicz, J.; Figurska, M.; Stankiewicz, A. Future possibilities in glaucoma therapy. Med. Sci. Monit., 2010, 16(11), RA252-RA259. PMID: 20980972
  111. Gramlich, O.W.; Ding, Q.J.; Zhu, W.; Cook, A.; Anderson, M.G.; Kuehn, M.H. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol. Commun., 2015, 3(1), 56. doi: 10.1186/s40478-015-0234-y PMID: 26374513
  112. Adamus, G.; Amundson, D.; Vainiene, M.; Ariail, K.; Machnicki, M.; Weinberg, A.; Offner, H. Myelin basic protein specific T-helper cells induce experimental anterior uveitis. J. Neurosci. Res., 1996, 44(6), 513-518. doi: 10.1002/(SICI)1097-4547(19960615)44:63.0.CO;2-E PMID: 8794942
  113. Yu, M.W.; Quail, D.F. Immunotherapy for glioblastoma: urrent progress and challenges. Front. Immunol., 2021, 12, 676301. doi: 10.3389/fimmu.2021.676301 PMID: 34054867
  114. Park, D.Y.; Kim, M.; Cha, S.C. Cytokine and growth factor analysis in exfoliation syndrome and glaucoma. Invest. Ophthalmol. Vis. Sci., 2021, 62(15), 6. doi: 10.1167/iovs.62.15.6 PMID: 34870675
  115. European glaucoma society terminology and guidelines for glaucoma, 5th Edition. Br. J. Ophthalmol., 2021, 105(Suppl 1), 1-169.
  116. Jeng, S.M.; Karger, R.A.; Hodge, D.O.; Burke, J.P.; Johnson, D.H.; Good, M.S. The risk of glaucoma in pseudoexfoliation syndrome. J. Glaucoma, 2007, 16(1), 117-121. doi: 10.1097/01.ijg.0000243470.13343.8b PMID: 17224761
  117. Rao, A.; Padhy, D.; Sahay, P.; Pradhan, A.; Sarangi, S.; Das, G.; Raj, N. Clinical spectrum of pseudoexfoliation syndrome-An electronic records audit. PLoS One, 2017, 12(10), e0185373. doi: 10.1371/journal.pone.0185373 PMID: 29077713
  118. Łukasik, U.; Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Kustra, A.; Milanowski, P.; Żarnowski, T. Clinical features of pseudoexfoliative glaucoma in treated polish patients. Clin. Ophthalmol., 2020, 14, 1373-1381. doi: 10.2147/OPTH.S239371 PMID: 32546945
  119. Schuknecht, A.; Wachtl, J.; Fleischhauer, J.; Kniestedt, C. Intraocular pressure in eyes with intraocular lens dislocation and pseudoexfoliation syndrome. Klin. Monatsbl. Augenheilkd., 2022, 239(4), 424-428. doi: 10.1055/a-1766-7153 PMID: 35472783
  120. Plateroti, P.; Plateroti, A.M.; Abdolrahimzadeh, S.; Scuderi, G. Pseudoexfoliation syndrome and pseudoexfoliation glaucoma: review of the literature with updates on surgical management. J. Ophthalmol., 2015, 2015, 1-9. doi: 10.1155/2015/370371 PMID: 26605078
  121. Li, G.; Nottebaum, A.F.; Brigell, M.; Navarro, I.D.; Ipe, U.; Mishra, S.; Gomez-Caraballo, M.; Schmitt, H.; Soldo, B.; Pakola, S.; Withers, B.; Peters, K.G.; Vestweber, D.; Stamer, W.D. A small molecule inhibitor of VE-PTP activates Tie2 in Schlemm’s canal increasing outflow facility and reducing intraocular pressure. Invest. Ophthalmol. Vis. Sci., 2020, 61(14), 12. doi: 10.1167/iovs.61.14.12
  122. Lewis, R.A.; Levy, B.; Ramirez, N.; Kopczynski, C. C.; Usner, D.W.; Novack, G.D. Fixed-dose combination of AR-13324 and latanoprost: double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br. J. Ophthalmol., 2016, 100(3), 339-344. doi: 10.1136/bjophthalmol-2015-306778 PMID: 26209587
  123. Schlötzer-Schrehardt, U.; Khor, C.C. Pseudoexfoliation syndrome and glaucoma: rom genes to disease mechanisms. Curr. Opin. Ophthalmol., 2021, 32(2), 118-128. doi: 10.1097/ICU.0000000000000736 PMID: 33332884
  124. Zukerman, R.; Harris, A.; Verticchio Vercellin, A.; Siesky, B.; Pasquale, L.R.; Ciulla, T.A. Molecular genetics of glaucoma: ubtype and ethnicity considerations. Genes (Basel), 2020, 12(1), 55. doi: 10.3390/genes12010055 PMID: 33396423
  125. Tomczyk-Socha, M.; Tomczak, W.; Winkler-Lach, W. Turno-Kręcicka, A. Pseudoexfoliation syndrome-clinical characteristics of most common cause of secondary glaucoma. J. Clin. Med., 2023, 12(10), 3580. doi: 10.3390/jcm12103580 PMID: 37240686
  126. Jeong, W.C.; Min, J.Y.; Kang, T.G.; Bae, H. Association between pseudoexfoliation and Alzheimer’s disease-related brain atrophy. PLoS One, 2023, 18(6), e0286727. doi: 10.1371/journal.pone.0286727 PMID: 37289754
  127. Shih, M.C.; Gordis, T.M.; Lambert, P.R.; Nguyen, S.A.; Meyer, T.A. Hearing loss in exfoliation syndrome: ystematic review and meta-analysis. Laryngoscope, 2023, 133(5), 1025-1035. doi: 10.1002/lary.30384 PMID: 36087028
  128. Sener, H.; Polat, O.A.; Gunay Sener, A.B. Optic nerve head vessel density in patients with pseudoexfoliation syndrome/glaucoma: systematic review and meta-analysis. Photodiagn. Photodyn. Ther., 2023, 42, 103514. doi: 10.1016/j.pdpdt.2023.103514 PMID: 36933675
  129. Brusini, P.; Salvetat, M.L.; Parisi, L.; Zeppieri, M.; Tosoni, C. Discrimination between normal and early glaucomatous eyes with scanning laser polarimeter with fixed and variable corneal compensator settings. Eur. J. Ophthalmol., 2005, 15(4), 468-131.
  130. Salvetat, M.L.; Zeppieri, M.; Tosoni, C.; Parisi, L.; Brusini, P. Non-conventional perimetric methods in the detection of early glaucomatous functional damage. Eye (Lond.), 2010, 24(5), 835-842. PMID: 19696803
  131. Musa, M.; Okoye, G.S.; Akpalaba, R.U.E.; Atuanya, G.N. Managing in early COVID-19: he Nigerian optometry experience. Scand J. Optom. Vis. Sci., 2021, 14(2), 1-7. doi: 10.5384/sjovs.v14i2.130

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024