A Review on Graphene Analytical Sensors for Biomarker-based Detection of Cancer
- Authors: Patil S.1, Patil N.2, Mahajan M.3, Madhavi V.4, Gopinath S.5, Ramanathan S.6, More M.7, Patil K.8
-
Affiliations:
- Department of Zoology,, NMKRV College for Women
- Department of Pharmacology,, Dr. A.P.J. Abdul Kalam University,
- Department of Pharmaceutical Chemistry,, H.R.Patel Institute of Pharmac
- , BVRIT Hyderabad college of Engineering for Women,
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP),
- Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering,, Universiti Teknologi Malaysia,
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research
- Department of Pharmaceutics, Ahinsa Institute of Pharmacy,
- Issue: Vol 31, No 12 (2024)
- Pages: 1464-1484
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644224
- DOI: https://doi.org/10.2174/0929867331666230912101634
- ID: 644224
Cite item
Full Text
Abstract
The engineering of nanoscale materials has broadened the scope of nanotechnology in a restricted functional system. Today, significant priority is given to immediate health diagnosis and monitoring tools for point-of-care testing and patient care. Graphene, as a one-atom carbon compound, has the potential to detect cancer biomarkers and its derivatives. The atom-wide graphene layer specialises in physicochemical characteristics, such as improved electrical and thermal conductivity, optical transparency, and increased chemical and mechanical strength, thus making it the best material for cancer biomarker detection. The outstanding mechanical, electrical, electrochemical, and optical properties of two-dimensional graphene can fulfil the scientific goal of any biosensor development, which is to develop a more compact and portable point-of-care device for quick and early cancer diagnosis. The bio-functionalisation of recognised biomarkers can be improved by oxygenated graphene layers and their composites. The significance of graphene that gleans its missing data for its high expertise to be evaluated, including the variety in surface modification and analytical reports. This review provides critical insights into graphene to inspire research that would address the current and remaining hurdles in cancer diagnosis.
Keywords
About the authors
Sharangouda Patil
Department of Zoology,, NMKRV College for Women
Email: info@benthamscience.net
Narendra Patil
Department of Pharmacology,, Dr. A.P.J. Abdul Kalam University,
Email: info@benthamscience.net
Mahendra Mahajan
Department of Pharmaceutical Chemistry,, H.R.Patel Institute of Pharmac
Email: info@benthamscience.net
Vemula Madhavi
, BVRIT Hyderabad college of Engineering for Women,
Email: info@benthamscience.net
Subash Gopinath
Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP),
Author for correspondence.
Email: info@benthamscience.net
Santheraleka Ramanathan
Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering,, Universiti Teknologi Malaysia,
Email: info@benthamscience.net
Mahesh More
Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research
Email: info@benthamscience.net
Ketan Patil
Department of Pharmaceutics, Ahinsa Institute of Pharmacy,
Email: info@benthamscience.net
References
- Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.M.; Poopalan, P. Nanostructured aluminosilicate from fly ash: Potential approach in waste utilization for industrial and medical applications. J. Clean. Prod., 2020, 253119923 doi: 10.1016/j.jclepro.2019.119923
- Kalaiyarasi, J.; Pandian, K.; Ramanathan, S.; Gopinath, S.C.B. Graphitic carbon nitride/graphene nanoflakes hybrid system for electrochemical sensing of DNA bases in meat samples. Sci. Rep., 2020, 10(1), 12860. doi: 10.1038/s41598-020-69578-8 PMID: 32732935
- Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.M.; Poopalan, P.; Anbu, P.; Lakshmipriya, T.; Kasim, F.H. Aluminosilicate nanocomposite on genosensor: A prospective voltammetry platform for epidermal growth factor receptor mutant analysis in non-small cell lung cancer. Sci. Rep., 2019, 9(1), 17013. doi: 10.1038/s41598-019-53573-9 PMID: 31745155
- Letchumanan, I.; Gopinath, S.C.B.; Md Arshad, M.K.; Anbu, P.; Lakshmipriya, T. Gold nano-urchin integrated label-free amperometric aptasensing human blood clotting factor IX: A prognosticative approach for "Royal disease". Biosens. Bioelectron., 2019, 131, 128-135. doi: 10.1016/j.bios.2019.02.006 PMID: 30826647
- Ramanathan, S.; Gopinath, S.C.B.; Ismail, Z.H.; Md Arshad, M.K.; Poopalan, P. Aptasensing nucleocapsid protein on nanodiamond assembled gold interdigitated electrodes for impedimetric SARS-CoV-2 infectious disease assessment. Biosens. Bioelectron., 2022, 197113735 doi: 10.1016/j.bios.2021.113735 PMID: 34736114
- Ramanathan, S.; Gopinath, S.C.B.; Md Arshad, M.K.; Poopalan, P. Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosens. Bioelectron., 2019, 141111434 doi: 10.1016/j.bios.2019.111434 PMID: 31238281
- Taniselass, S.; Md Arshad, M.K.; Gopinath, S.C.B. Current state of green reduction strategies: Solution-processed reduced graphene oxide for healthcare biodetection. Mater. Sci. Eng. C, 2019, 96, 904-914. doi: 10.1016/j.msec.2018.11.062 PMID: 30606604
- Fathil, M.F.M.; Md Arshad, M.K.; Gopinath, S.C.B.; Hashim, U.; Adzhri, R.; Ayub, R.M.; Ruslinda, A.R.; Nuzaihan M N, M.; Azman, A.H.; Zaki, M.; Tang, T.H. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosens. Bioelectron., 2015, 70, 209-220. doi: 10.1016/j.bios.2015.03.037 PMID: 25841117
- Ramanathan, S.; Gopinath, S.C.B.; Md Arshad, M.K.; Poopalan, P.; Anbu, P.; Lakshmipriya, T. Aluminosilicate nanocomposites from incinerated Chinese holy joss fly ash: A potential nanocarrier for drug cargos. Sci. Rep., 2020, 10(1), 3351. doi: 10.1038/s41598-020-60208-x PMID: 32099019
- Abi, A.; Mohammadpour, Z.; Zuo, X.; Safavi, A. Nucleic acid-based electrochemical nanobiosensors. Biosens. Bioelectron., 2018, 102, 479-489. doi: 10.1016/j.bios.2017.11.019 PMID: 29195218
- Noah, N.M.; Ndangili, P.M. Current trends of nanobiosensors for point-of-care diagnostics. J. Anal. Methods. Chem., 2019, 2019, 2179718. doi: 10.1155/2019/2179718
- Gopinath, S.C.B.; Tang, T.H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron., 2014, 60, 332-342. doi: 10.1016/j.bios.2014.04.014 PMID: 24836016
- Ramanathan, S.; Gopinath, S.C.B.; Hilmi Ismail, Z.; Subramaniam, S. Nanodiamond conjugated SARS-CoV-2 spike protein: Electrochemical impedance immunosensing on a gold microelectrode. Mikrochim. Acta, 2022, 189(6), 226. doi: 10.1007/s00604-022-05320-7 PMID: 35590000
- Foo, M.E.; Gopinath, S.C.B. Feasibility of graphene in biomedical applications. Biomed. Pharmacother., 2017, 94, 354-361. doi: 10.1016/j.biopha.2017.07.122 PMID: 28772213
- Du, W.; Geng, H.; Yang, Y.; Zhang, Y.; Rui, X.; Li, C.C. Pristine graphene for advanced electrochemical energy applications. J. Power. Sources., 2019, 437226899 doi: 10.1016/j.jpowsour.2019.226899
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature., 2005, 438(7065), 197-200. doi: 10.1038/nature04233 PMID: 16281030
- Qi, B.; Ren, K.; Lin, Y.; Zhang, S.; Wei, T.; Fan, Z. Design of layered-stacking graphene assemblies as advanced electrodes for supercapacitors. Particuology, 2022, 60, 1-13. doi: 10.1016/j.partic.2021.03.001
- Castro, E.V.; Novoselov, K.S.; Morozov, S.V.; Peres, N.M.R.; dos Santos, J.M.B.L.; Nilsson, J.; Guinea, F.; Geim, A.K.; Neto, A.H.C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett., 2007, 99(21)216802 doi: 10.1103/PhysRevLett.99.216802 PMID: 18233240
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science., 1979, 2016, 353. PMID: 27471306
- Novodchuk, I.; Bajcsy, M.; Yavuz, M. Graphene-based field effect transistor biosensors for breast cancer detection: A review on biosensing strategies. Carbon., 2021, 172, 431-453. doi: 10.1016/j.carbon.2020.10.048
- Torkaman-Asadi, M.A.; Kouchakzadeh, M.A. Atomistic simulations of mechanical properties and fracture of graphene: A review. Comput. Mater. Sci., 2022, 210111457 doi: 10.1016/j.commatsci.2022.111457
- Rouhi, N.; Akhgari, A.; Orouji, N.; Nezami, A.; Rahimzadegan, M.; Kamali, H. Recent progress in the graphene-based biosensing approaches for the detection of Alzheimers biomarkers. J. Pharm. Biomed. Anal., 2023, 222115084 doi: 10.1016/j.jpba.2022.115084 PMID: 36183576
- Yang, Q.; Lin, H.; Wang, X.; Zhang, L.Y.; Jing, M.; Yuan, W.; Li, C.M. Dynamically self-assembled adenine-mediated synthesis of pristine graphene-supported clean Pd nanoparticles with superior electrocatalytic performance toward formic acid oxidation. J. Colloid Interface. Sci., 2022, 613, 515-523. doi: 10.1016/j.jcis.2022.01.061 PMID: 35063783
- Al Kausor, M.; Chakrabortty, D. Graphene oxide based semiconductor photocatalysts for degradation of organic dye in waste water: A review on fabrication, performance enhancement and challenges. Inorg. Chem. Commun., 2021, 129108630 doi: 10.1016/j.inoche.2021.108630
- Yildiz, G.; Bolton-Warberg, M.; Awaja, F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta. Biomater., 2021, 131, 62-79. doi: 10.1016/j.actbio.2021.06.047 PMID: 34237423
- Joshi, D.J.; Koduru, J.R.; Malek, N.I.; Hussain, C.M.; Kailasa, S.K. Surface modifications and analytical applications of graphene oxide: A review. Trends. Analyt. Chem., 2021, 144116448 doi: 10.1016/j.trac.2021.116448
- Huskić, M.; Bolka, S.; Vesel, A.; Mozetič, M.; Anlovar, A.; Vizintin, A.; agar, E. One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide/epoxy resin nanocomposites. Eur. Polym. J., 2018, 101, 211-217. doi: 10.1016/j.eurpolymj.2018.02.036
- Sieradzka, M.; Ślusarczyk, C.; Biniaś, W.; Fryczkowski, R. The role of the oxidation and reduction parameters on the properties of the reduced graphene oxide. Coatings., 2021, 11(2), 166. doi: 10.3390/coatings11020166
- Torres, F.G.; Troncoso, O.P.; Rodriguez, L.; De-la-Torre, G.E. Sustainable synthesis, reduction and applications of graphene obtained from renewable resources. Sustainable Materials and Technologies, Elsevier, 2021, pp. 29
- Zhang, Y.; Xu, Y.; Liu, R.; Niu, Y. Synthesis of high-quality graphene by electrochemical anodic and cathodic co-exfoliation method. Chem. Eng. J., 2023, 461141985 doi: 10.1016/j.cej.2023.141985
- Kaur, H.; Garg, R.; Singh, S.; Jana, A.; Bathula, C.; Kim, H.S.; Kumbar, S.G.; Mittal, M. Progress and challenges of graphene and its congeners for biomedical applications. J. Mol. Liq., 2022, 368120703 doi: 10.1016/j.molliq.2022.120703
- Bahri, M.; Gebre, S.H.; Elaguech, M.A.; Dajan, F.T.; Sendeku, M.G.; Tlili, C.; Wang, D. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coord. Chem. Rev., 2023, 475214910 doi: 10.1016/j.ccr.2022.214910
- Yuan, Y.; Wang, Y.; Liu, S.; Zhang, X.; Liu, X.; Sun, C.; Yuan, D.; Zhang, Y.; Cao, X. Direct chemical vapor deposition synthesis of graphene super-hydrophobic transparent glass. Vacuum., 2022, 202111136 doi: 10.1016/j.vacuum.2022.111136
- Priyadharshini, K.; Rathinavel, S.; Velumani, E.; Manikandan, A. Green synthesis and application of graphene oxide extracted from Punica granatum. Mater. Today Proc., 2023, 80, 1341-1347. doi: 10.1016/j.matpr.2023.01.085
- Singh, J.; Jindal, N.; Kumar, V.; Singh, K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. Chem. Phys., 2023, 6, 100185.
- Sun, C.; Wen, B.; Bai, B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci. Bull., 2015, 60(21), 1807-1823. doi: 10.1007/s11434-015-0914-9
- Pellenz, L.; da Silva, L.J.S.; Mazur, L.P.; Figueiredo, G.M.; Borba, F.H.; Ulson de Souza, A.A.; Guelli Ulson de Souza, S.M.A.; da Silva, A. Functionalization of graphene with nitrogen-based groups for water purification via adsorption: A review. J. Water. Process. Eng., 2022, 48102873 doi: 10.1016/j.jwpe.2022.102873
- Zhou, Y.; He, J.; Chen, R.; Li, X. Recent advances in biomass-derived graphene and carbon nanotubes. Mater. Today. Sustain., 2022, 18, 100138.
- Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B.; Ramli, M.M. Self-assembled reduced graphene oxide nanoflakes assisted by post-sonication boosted electrical performance in gold interdigitated microelectrodes. J. Colloid Interface Sci., 2020, 577, 345-354. doi: 10.1016/j.jcis.2020.05.070 PMID: 32485416
- Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron., 2019, 130, 276-292. doi: 10.1016/j.bios.2019.01.047 PMID: 30771717
- Kumar, N.A.; Dar, M.A.; Gul, R.; Baek, J.B. Graphene and molybdenum disulfide hybrids: Synthesis and applications. Mater. Today, 2015, 18(5), 286-298. doi: 10.1016/j.mattod.2015.01.016
- Song, K.M.; Jeong, E.; Jeon, W.; Cho, M.; Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescencecolorimetric methods. Anal. Bioanal. Chem., 2012, 402(6), 2153-2161. doi: 10.1007/s00216-011-5662-3 PMID: 22222912
- Pei, H.; Zhu, S.; Yang, M.; Kong, R.; Zheng, Y.; Qu, F. Graphene oxide quantum dots@silver coreshell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron., 2015, 74, 909-914. doi: 10.1016/j.bios.2015.07.056 PMID: 26257182
- Muthuraj, B.; Chowdhury, S.R.; Mukherjee, S.; Patra, C.R.; Iyer, P.K. Aggregation deaggregation influenced selective and sensitive detection of Cu 2+ and ATP by histidine functionalized water-soluble fluorescent perylene diimide under physiological conditions and in living cells. RSC Adv., 2015, 5(36), 28211-28218. doi: 10.1039/C5RA00408J
- Fathil, M.F.M.; Md Arshad, M.K.; Ruslinda, A.R.; Nuzaihan M N, M.; Gopinath, S.C.B.; Adzhri, R.; Hashim, U. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials. Anal. Chim. Acta., 2016, 935, 30-43. doi: 10.1016/j.aca.2016.06.012 PMID: 27543013
- Gopinath, S.C.B.; Perumal, V.; Kumaresan, R.; Lakshmipriya, T.; Rajintraprasad, H.; Rao, B.S.; Arshad, M.K.M.; Chen, Y.; Kotani, N.; Hashim, U. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Mikrochim. Acta., 2016, 183(10), 2697-2703. doi: 10.1007/s00604-016-1911-7
- Serra, R.; Ielapi, N.; Barbetta, A.; Andreucci, M.; de Franciscis, S. Novel biomarkers for cardiovascular risk. Biomarkers. Med., 2018, 12(9), 1015-1024. doi: 10.2217/bmm-2018-0056 PMID: 30126290
- Ismail, N.A.; Zulkifli, N.W.M.; Chowdhury, Z.Z.; Johan, M.R. Functionalization of graphene-based materials: Effective approach for enhancement of tribological performance as lubricant additives. Diam. Relat. Mater., 2021, 115108357 doi: 10.1016/j.diamond.2021.108357
- Arshad, F.; Nabi, F.; Iqbal, S.; Khan, R.H. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids. Surf. B Biointerfaces., 2022, 212112356 doi: 10.1016/j.colsurfb.2022.112356 PMID: 35123193
- Khan, R.; Miyagawa, K.; Bianco, A.; Nishina, Y. Covalent double functionalization of graphene oxide for proton conductive and redox-active functions. Appl. Mater. Today., 2021, 24101120 doi: 10.1016/j.apmt.2021.101120
- Cao, Y.; Wang, P.; Fan, J.; Yu, H. Covalently functionalized graphene by thiourea for enhancing H2-evolution performance of TiO2 photocatalyst. Ceram. Int., 2021, 47(1), 654-661. doi: 10.1016/j.ceramint.2020.08.173
- Xie, Y.; Wang, X.; Hou, L.; Wang, X.; Zhang, Y.; Zhu, C.; Hu, Z.; He, M. Graphene covalently functionalized by cross-linking reaction of bifunctional pillar organic molecule for high capacitance. J. Energy. Storage., 2021, 38102530 doi: 10.1016/j.est.2021.102530
- Zhianmanesh, M.; Gilmour, A.; Bilek, M.M.M.; Akhavan, B. Plasma surface functionalization: A comprehensive review of advances in the quest for bioinstructive materials and interfaces. Appl. Phys. Rev., 2023, 10(2)021301 doi: 10.1063/5.0130829
- Dardouri, M.; Bettencourt, A.; Martin, V.; Carvalho, F.A.; Santos, C.; Monge, N.; Santos, N.C.; Fernandes, M.H.; Gomes, P.S.; Ribeiro, I.A.C. Using plasma-mediated covalent functionalization of rhamnolipids on polydimethylsiloxane towards the antimicrobial improvement of catheter surfaces. Mater. Sci. Eng. C, 2021. PMID: 35525746
- Morales Frias, I.A.; Zine, N.; Sigaud, M.; Lozano-Sánchez, P.; Caffio, M.; Errachid, A. Non-covalent ΠΠ functionalized gii-senser graphene foam for interleukin 10 impedimetric detection. SSRN, 2022, 114954. doi: 10.2139/ssrn.4163527
- Tian, S.; Huang, D.; Xu, Z.; Wu, S.; Luo, T.; Xiong, G. Enhanced thermal transport across the interface between charged graphene and poly(ethylene oxide) by non-covalent functionalization. Int. J. Heat Mass Transf., 2022, 183122188 doi: 10.1016/j.ijheatmasstransfer.2021.122188
- Krishnakumar, S.; Gopidas, K.R. Covalent functionalization of organic nanoparticles using aryl diazonium chemistry and their solvent-dependent self-assembly. Langmuir., 2017, 33(5), 1162-1170. doi: 10.1021/acs.langmuir.6b03269 PMID: 28061527
- Wang, Y.; Wang, F.; Dong, S.; He, H.; Lu, Y.; Shi, J.; Liu, J.; Zhu, H. Ultra-small SiO2 nanoparticles highly dispersed on non-covalent functionalized reduced graphene oxide nanoplatelets for high-performance elastomer applications. Compos. Sci. Technol., 2020, 198108297 doi: 10.1016/j.compscitech.2020.108297
- Sainz-Urruela, C.; Vera-López, S.; Paz San Andrés, M.; Díez-Pascual, A.M. Surface functionalization of graphene oxide with tannic acid: Covalent vs non-covalent approaches. J. Mol. Liq., 2022, 357119104 doi: 10.1016/j.molliq.2022.119104
- Shi, Y.; Zhang, X.; Mei, L.; Han, D.; Hu, K.; Chao, L-Q.; Li, X.; Miao, M. Sensitive acetaminophen electrochemical sensor with amplified signal strategy via non-covalent functionalization of soluble tetrahydroxyphthalocyanine and graphene. Microchem. J., 2021, 160105609 doi: 10.1016/j.microc.2020.105609
- Rashi Exploring the methods of synthesis, functionalization, and characterization of graphene and graphene oxide for supercapacitor applications. Ceram. Int., 2022, 49, 40-47.
- Deepa, C.; Rajeshkumar, L.; Ramesh, M. Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J. Mater. Res. Technol., 2022, 19, 2657-2694. doi: 10.1016/j.jmrt.2022.06.023
- Prattis, I.; Hui, E.; Gubeljak, P.; Kaminski Schierle, G.S.; Lombardo, A.; Occhipinti, L.G. Graphene for biosensing applications in point-of-care testing. Trends Biotechnol., 2021, 39(10), 1065-1077. doi: 10.1016/j.tibtech.2021.01.005 PMID: 33573848
- Jiang, Z.; Feng, B.; Xu, J.; Qing, T.; Zhang, P.; Qing, Z. Graphene biosensors for bacterial and viral pathogens. Biosens. Bioelectron., 2020, 166112471 doi: 10.1016/j.bios.2020.112471 PMID: 32777726
- Báez, D.F.; Brito, T.P.; Espinoza, L.C.; Méndez-Torres, A.M.; Sierpe, R.; Sierra-Rosales, P.; Venegas, C.J.; Yáñez, C.; Bollo, S. Graphene-based sensors for small molecule determination in real samples. Microchem. J., 2021, 167106303 doi: 10.1016/j.microc.2021.106303
- Hasanzadeh, M.; Shadjou, N. What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers? Mater. Sci. Eng. C, 2017, 71, 1313-1326. doi: 10.1016/j.msec.2016.11.068 PMID: 27987686
- Li, B.; Tan, H.; Jenkins, D.; Srinivasa, R.V.; Rosa, B.G.; Güder, F.; Pan, G.; Yeatman, E.; Sharp, D.J. Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor. Carbon., 2020, 168, 144-162. doi: 10.1016/j.carbon.2020.06.048
- Goldoni, R.; Farronato, M.; Connelly, S.T.; Tartaglia, G.M.; Yeo, W.H. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens. Bioelectron., 2021, 171112723 doi: 10.1016/j.bios.2020.112723 PMID: 33096432
- Gao, L.; Lian, C.; Zhou, Y.; Yan, L.; Li, Q.; Zhang, C.; Chen, L.; Chen, K. Graphene oxideDNA based sensors. Biosens. Bioelectron., 2014, 60, 22-29. doi: 10.1016/j.bios.2014.03.039 PMID: 24768760
- Singh, M.; Sharma, D.; Garg, M.; Kumar, A.; Baliyan, A.; Rani, R.; Kumar, V. Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnol. Adv., 2022, 61108052 doi: 10.1016/j.biotechadv.2022.108052 PMID: 36307050
- Ikram, M.; Bari, M.A.; Bilal, M.; Jamal, F.; Nabgan, W.; Haider, J.; Haider, A.; Nazir, G.; Khan, A.D.; Khan, K.; Tareen, A.K.; Khan, Q.; Ali, G.; Imran, M.; Caffrey, E.; Maqbool, M. Innovations in the synthesis of graphene nanostructures for bio and gas sensors. Biomat. Adv., 2023, 145213234 doi: 10.1016/j.bioadv.2022.213234 PMID: 36502548
- Premkumar, T.; Geckeler, K.E. GrapheneDNA hybrid materials: Assembly, applications, and prospects. Prog. Polym. Sci., 2012, 37(4), 515-529. doi: 10.1016/j.progpolymsci.2011.08.003
- Koirala, D.; Shrestha, P.; Emura, T.; Hidaka, K.; Mandal, S.; Endo, M.; Sugiyama, H.; Mao, H. Single-molecule mechanochemical sensing using DNA origami nanostructures. Angew. Chem. Int. Ed., 2014, 53(31), 8137-8141. doi: 10.1002/anie.201404043 PMID: 24931175
- Campos, R.; Machado, G., Jr; Cerqueira, M.F.; Borme, J.; Alpuim, P. Wafer scale fabrication of graphene microelectrode arrays for the detection of DNA hybridization. Microelectron. Eng., 2018, 189, 85-90. doi: 10.1016/j.mee.2017.12.015
- Guan, J.; He, K.; Gunasekaran, S. Selection of ssDNA aptamer using GO-SELEX and development of DNA nanostructure-based electrochemical aptasensor for penicillin. Biosens. Bioelectron.: X, 2022, 12100220 doi: 10.1016/j.biosx.2022.100220
- Kim, H.E.; Schuck, A.; Lee, J.H.; Kim, Y.S. Solution-gated graphene field effect transistor for TP53 DNA sensor with coplanar electrode array. Sens. Actuators B Chem., 2019, 291, 96-101. doi: 10.1016/j.snb.2019.03.080
- Green, N.S.; Norton, M.L. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review. Anal. Chim. Acta, 2015, 853, 127-142. doi: 10.1016/j.aca.2014.10.023 PMID: 25467454
- Piccinini, E.; Bliem, C.; Reiner-Rozman, C.; Battaglini, F.; Azzaroni, O.; Knoll, W. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosens. Bioelectron., 2017, 92, 661-667. doi: 10.1016/j.bios.2016.10.035 PMID: 27836616
- Wang, Q.; Wang, M.; Lei, C.; Yan, L.; Wu, X.; Li, L. Functionalizing graphene with clay nanosheets as a protein carrier. Colloid Interface Sci. Commun., 2022, 48100618 doi: 10.1016/j.colcom.2022.100618
- Kim, D.J.; Sohn, I.Y.; Jung, J.H.; Yoon, O.J.; Lee, N.E.; Park, J.S. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron., 2013, 41, 621-626. doi: 10.1016/j.bios.2012.09.040 PMID: 23107386
- Chaudhary, K.; Kumar, K.; Venkatesu, P.; Masram, D.T. Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Adv. Colloid Interface Sci., 2021, 289102367 doi: 10.1016/j.cis.2021.102367 PMID: 33545443
- Viswanathan, S.; Narayanan, T.N.; Aran, K.; Fink, K.D.; Paredes, J.; Ajayan, P.M.; Filipek, S.; Miszta, P.; Tekin, H.C.; Inci, F.; Demirci, U.; Li, P.; Bolotin, K.I.; Liepmann, D.; Renugopalakrishanan, V. Grapheneprotein field effect biosensors: Glucose sensing. Mater. Today, 2015, 18(9), 513-522. doi: 10.1016/j.mattod.2015.04.003
- Yang, Y.X.; Wang, P.; Zhu, B.T. Binding affinity prediction for antibodyprotein antigen complexes: A machine learning analysis based on interface and surface areas. J. Mol. Graph. Model., 2023, 118108364 doi: 10.1016/j.jmgm.2022.108364 PMID: 36356467
- Rafiq, S.; Dao, T.; Liu, C.; Scheinberg, D.A.; Brentjens, R.J.; Engineered, T. Engineered T cell receptor-mimic antibody, (TCRm) Chimeric Antigen Receptor (CAR) T cells against the intracellular protein wilms tumor-1 (WT1) for treatment of hematologic and solid cancers. Blood., 2014, 124(21), 2155-2155. doi: 10.1182/blood.V124.21.2155.2155
- Fu, Y.; Liu, K.; Zhao, L.; Jiang, X.; Wang, T. Circular RNA ubiquitin-associated protein 2 silencing suppresses bladder cancer progression by downregulating DNA topoisomerase 2-alpha through sponging miR-496. Eur. Urol. Open. Sci., 2023, 50, 31-42. doi: 10.1016/j.euros.2023.01.008 PMID: 37101770
- Safarzadeh, M.; Pan, G. Detection of a double-stranded MGMT gene using electrochemically reduced graphene oxide (ErGO) electrodes decorated with AuNPs and peptide nucleic acids (PNA). Biosensors, 2022, 12(2), 98. doi: 10.3390/bios12020098 PMID: 35200358
- Shahrokhian, S.; Salimian, R. Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing. Sens. Actuators B Chem., 2018, 266, 160-169. doi: 10.1016/j.snb.2018.03.120
- Wang, C.; Zhang, Y.; Tang, W.; Wang, C.; Han, Y.; Qiang, L.; Gao, J.; Liu, H.; Han, L. Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal. Chim. Acta, 2021, 1178338791 doi: 10.1016/j.aca.2021.338791 PMID: 34482866
- Deepa; Nohwal, B.; Pundir, C.S. An electrochemical CD59 targeted noninvasive immunosensor based on graphene oxide nanoparticles embodied pencil graphite for detection of lung cancer. Microchem. J., 2020, 156104957 doi: 10.1016/j.microc.2020.104957
- Singh, V.K.; Kumar, S.; Pandey, S.K.; Srivastava, S.; Mishra, M.; Gupta, G.; Malhotra, B.D.; Tiwari, R.S.; Srivastava, A. Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosens. Bioelectron., 2018, 105, 173-181. doi: 10.1016/j.bios.2018.01.014 PMID: 29412942
- Zhang, F.; Fan, L.; Liu, Z.; Han, Y.; Guo, Y. A label-free electrochemical aptasensor for the detection of cancer antigen 125 based on nickel hexacyanoferrate nanocubes/polydopamine functionalized graphene. J. Electroanal. Chem., 2022, 918116424 doi: 10.1016/j.jelechem.2022.116424
- Salahandish, R.; Ghaffarinejad, A.; Omidinia, E.; Zargartalebi, H.; Majidzadeh-A, K.; Naghib, S.M.; Sanati-Nezhad, A. Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosens. Bioelectron., 2018, 120, 129-136. doi: 10.1016/j.bios.2018.08.025 PMID: 30172235
- Dong, W.; Ren, Y.; Bai, Z.; Yang, Y.; Wang, Z.; Zhang, C.; Chen, Q. Trimetallic AuPtPd nanocomposites platform on graphene: Applied to electrochemical detection and breast cancer diagnosis. Talanta., 2018, 189, 79-85. doi: 10.1016/j.talanta.2018.06.067 PMID: 30086978
- Aiyer, S.; Prasad, R.; Kumar, M.; Nirvikar, K.; Jain, B.; Kushwaha, O.S. Fluorescent carbon nanodots for targeted in vitro cancer cell imaging. Appl. Mater. Today, 2016, 4, 71-77. doi: 10.1016/j.apmt.2016.07.001
- Torul, H.; Yarali, E.; Eksin, E.; Ganguly, A.; Benson, J.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Paper-based electrochemical biosensors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MoS2 nanosheets decorated with gold nanoparticle electrodes. Biosensors, 2021, 11(7), 236. doi: 10.3390/bios11070236 PMID: 34356708
- Geetha Bai, R.; Muthoosamy, K.; Tuvikene, R.; Nay Ming, H.; Manickam, S. Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials., 2021, 11(5), 1272. doi: 10.3390/nano11051272 PMID: 34066073
- Rajaji, U.; Muthumariyappan, A.; Chen, S.M.; Chen, T.W.; Ramalingam, R.J. A novel electrochemical sensor for the detection of oxidative stress and cancer biomarker (4-nitroquinoline N-oxide) based on iron nitride nanoparticles with multilayer reduced graphene nanosheets modified electrode. Sens. Actuators B Chem., 2019, 291, 120-129. doi: 10.1016/j.snb.2019.04.041
- Pachauri, N.; Dave, K.; Dinda, A.; Solanki, P.R. Cubic CeO 2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(19), 3000-3012. doi: 10.1039/C8TB00653A PMID: 32254335
- Rauf, S.; Mishra, G.K.; Azhar, J.; Mishra, R.K.; Goud, K.Y.; Nawaz, M.A.H.; Marty, J.L.; Hayat, A. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal. Biochem., 2018, 545, 13-19. doi: 10.1016/j.ab.2018.01.007 PMID: 29339058
- Jahromi, A.K.; Shieh, H.; Low, K.; Tasnim, N.; Najjaran, H.; Hoorfar, M. Experimental comparison of direct and indirect aptamer-based biochemical functionalization of electrolyte-gated graphene field-effect transistors for biosensing applications. Anal. Chim. Acta., 2022, 1222340177 doi: 10.1016/j.aca.2022.340177 PMID: 35934424
- Hroncekova, S.; Bertok, T.; Hires, M.; Jane, E.; Lorencova, L.; Vikartovska, A.; Tanvir, A.; Kasak, P.; Tkac, J. Ultrasensitive Ti3C2TX MXene/Chitosan nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples. Processes., 2020, 8(5), 580. doi: 10.3390/pr8050580 PMID: 33304843
- Thriveni, G.; Ghosh, K. Advancement and challenges of biosensing using field effect transistors. Biosensors, 2022, 12(8), 647. doi: 10.3390/bios12080647 PMID: 36005043
- Capaz, R.B. Grand challenges in graphene and graphite research. Frontiers in Carbon, 2022, 11034557 doi: 10.3389/frcrb.2022.1034557
- Alhazmi, H.A.; Ahsan, W.; Mangla, B.; Javed, S.; Hassan, M.Z.; Asmari, M.; Al Bratty, M.; Najmi, A. Graphene-based biosensors for disease theranostics: Development, applications, and recent advancements. Nanotechnol. Rev., 2021, 11(1), 96-116. doi: 10.1515/ntrev-2022-0009
- Zhang, J.; Yu, S.H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today, 2016, 19(7), 382-393. doi: 10.1016/j.mattod.2015.11.008
- Xie, X.P.; Xie, Y.F.; Liu, Y.T.; Wang, H.Q. Adaptively capturing the heterogeneity of expression for cancer biomarker identification. BMC Bioinform., 2018, 19(1), 401. doi: 10.1186/s12859-018-2437-2 PMID: 30390627
- Mohammed, A.; Biegert, G.; Adamec, J.; Helikar, T. CancerDiscover: An integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data. Oncotarget., 2018, 9(2), 2565-2573. doi: 10.18632/oncotarget.23511 PMID: 29416792
- Andre, F.; Mardis, E.; Salm, M.; Soria, J.C.; Siu, L.L.; Swanton, C. Prioritizing targets for precision cancer medicine. Ann. Oncol., 2014, 25(12), 2295-2303. doi: 10.1093/annonc/mdu478 PMID: 25344359
- Umelo, I.A.; Costanza, B.; Castronovo, V. Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer. Metastasis. Rev., 2018, 37(1), 125-145. doi: 10.1007/s10555-017-9710-0 PMID: 29392535
- Bhawal, R.; Oberg, A.L.; Zhang, S.; Kohli, M. Challenges and opportunities in clinical applications of blood-based proteomics in cancer. Cancers., 2020, 12(9), 2428. doi: 10.3390/cancers12092428 PMID: 32867043
- Das, V.; Kalita, J.; Pal, M. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed. Pharmacother., 2017, 87, 8-19. doi: 10.1016/j.biopha.2016.12.064 PMID: 28040600
- Hristova, V.A.; Chan, D.W. Cancer biomarker discovery and translation: Proteomics and beyond. Expert Rev. Proteomics., 2019, 16(2), 93-103. doi: 10.1080/14789450.2019.1559062 PMID: 30556752
- DeSantis, T.Z.; Shah, M.S.; Cope, J.L.; Hollister, E.B. Microbial markers in the diagnosis of colorectal cancer: The promise, reality and challenge. Future. Microbiol., 2017, 12(15), 1341-1344. doi: 10.2217/fmb-2017-0185 PMID: 28972391
- Roberts, A.; Tripathi, P.P.; Gandhi, S. Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-A biomarker of cancer. Biosens. Bioelectron., 2019, 141111398 doi: 10.1016/j.bios.2019.111398 PMID: 31176112
- Akbari jonous, Z.; Shayeh, J.S.; Yazdian, F.; Yadegari, A.; Hashemi, M.; Omidi, M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide-gold nanostructures. Eng. Life Sci., 2019, 19(3), 206-216. doi: 10.1002/elsc.201800093
- Hossain, M.B.; Islam, M.M.; Abdulrazak, L.F.; Rana, M.M.; Akib, T.B.A.; Hassan, M. Graphene-coated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: A numerical design-based analysis. Photonic Sens., 2020, 10(1), 67-79. doi: 10.1007/s13320-019-0556-7
- Yen, Y.K.; Chao, C.H.; Yeh, Y.S.A. Graphene-PEDOT:PSS Modified Paper-based Aptasensor for Electrochemical Impedance Spectroscopy Detection of Tumor Marker; Sensors: Switzerland, 2020, p. 20.
- Pothipor, C.; Bamrungsap, S.; Jakmunee, J.; Ounnunkad, K. A gold nanoparticle-dye/poly(3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloids Surf. B Biointerfaces, 2022, 210112260 doi: 10.1016/j.colsurfb.2021.112260 PMID: 34894598
- Ranjan, P.; Khan, R. Electrochemical immunosensor for early detection of β-amyloid Alzheimers disease biomarker based on aligned carbon nanotubes gold nanocomposites. Biosensors., 2022, 12(11), 1059. doi: 10.3390/bios12111059 PMID: 36421177
- Jafari-Kashi, A.; Rafiee-Pour, H.A.; Shabani-Nooshabadi, M. A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 211 as a biomarker for detection of non-small cell lung cancer. Chemosphere., 2022, 301134636 doi: 10.1016/j.chemosphere.2022.134636 PMID: 35447211
- Khodadoust, A.; Nasirizadeh, N.; Taheri, R.A.; Dehghani, M.; Ghanei, M.; Bagheri, H. A ratiometric electrochemical dna-biosensor for detection of MiR-141. Mikrochim. Acta., 2022, 189, 213.
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Arkan, E. A high-performance electrochemical aptasensor based on graphene-decorated rhodium nanoparticles to detect HER2-ECD oncomarker in liquid biopsy. Sci. Rep., 2022, 12(1), 3299. doi: 10.1038/s41598-022-07230-3 PMID: 35228597
- Li, G.; Chen, W.; Mi, D.; Wang, B.; Li, H.; Wu, G.; Ding, P.; Liang, J.; Zhou, Z. A highly sensitive strategy for glypican-3 detection based on aptamer/gold carbon dots/magnetic graphene oxide nanosheets as fluorescent biosensor. Anal. Bioanal. Chem., 2022, 414(22), 6441-6453. doi: 10.1007/s00216-022-04201-5 PMID: 35788872
- Jalil, O.; Pandey, C.M.; Kumar, D. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry., 2021, 138107733 doi: 10.1016/j.bioelechem.2020.107733 PMID: 33429154
- Ho, J.A.; Chang, H.; Shih, N.; Wu, L.; Chang, Y. Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical. Anal. Chem., 2010, 82, 5944-5950.
- Kalkal, A.; Pradhan, R.; Kadian, S.; Manik, G.; Packirisamy, G. Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer. ACS Appl. Bio Mater., 2020, 3(8), 4922-4932. doi: 10.1021/acsabm.0c00427 PMID: 35021736
- Liu, X.; Yue, T.; Qi, K.; Qiu, Y.; Guo, X. Porous graphene based electrochemical immunosensor using Cu3(BTC)2 metal-organic framework as nonenzymatic label. Talanta., 2020, 217121042 doi: 10.1016/j.talanta.2020.121042 PMID: 32498912
- Jozghorbani, M.; Fathi, M.; Kazemi, S.H.; Alinejadian, N. Determination of carcinoembryonic antigen as a tumor marker using a novel graphene-based label-free electrochemical immunosensor. Anal. Biochem., 2021, 613114017 doi: 10.1016/j.ab.2020.114017 PMID: 33212021
- Kumar, S.; Gupta, N.; Malhotra, B.D. Ultrasensitive biosensing platform based on yttria doped zirconia-reduced graphene oxide nanocomposite for detection of salivary oral cancer biomarker. Bioelectrochemistry., 2021, 140107799 doi: 10.1016/j.bioelechem.2021.107799 PMID: 33774391
Supplementary files
