The Structure-property Relationships of Clinically Approved Protease Inhibitors


Cite item

Full Text

Abstract

Background:Proteases play important roles in the regulation of many physiological processes, and protease inhibitors have become one of the important drug classes. Especially because the development of protease inhibitors often starts from a substrate- based peptidomimetic strategy, many of the initial lead compounds suffer from pharmacokinetic liabilities.

Objective:To reduce drug attrition rates, drug metabolism and pharmacokinetics studies are fully integrated into modern drug discovery research, and the structure-property relationship illustrates how the modification of the chemical structure influences the pharmacokinetic and toxicological properties of drug compounds. Understanding the structure- property relationships of clinically approved protease inhibitor drugs and their analogues could provide useful information on the lead-to-candidate optimization strategies.

Methods:About 70 inhibitors against human or pathogenic viral proteases have been approved until the end of 2021. In this review, 17 inhibitors are chosen for the structure- property relationship analysis because detailed pharmacological and/or physicochemical data have been disclosed in the medicinal chemistry literature for these inhibitors and their close analogues.

Results:The compiled data are analyzed primarily focusing on the pharmacokinetic or toxicological deficiencies found in lead compounds and the structural modification strategies used to generate candidate compounds.

Conclusion:The structure-property relationships hereby summarized how the overall druglike properties could be successfully improved by modifying the structure of protease inhibitors. These specific examples are expected to serve as useful references and guidance for developing new protease inhibitor drugs in the future.

About the authors

Kihang Choi

Department of Chemistry, Korea University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249. doi: 10.1111/j.1476-5381.2010.01127.x PMID: 21091654
  2. Veale, C.G.L. Into the fray! A beginner’s guide to medicinal chemistry. ChemMedChem, 2021, 16(8), 1199-1225. doi: 10.1002/cmdc.202000929 PMID: 33591595
  3. Kenakin, T. Predicting therapeutic value in the lead optimization phase of drug discovery. Nat. Rev. Drug Discov., 2003, 2(6), 429-438. doi: 10.1038/nrd1110 PMID: 12776218
  4. Jorgensen, W.L. Efficient drug lead discovery and optimization. Acc. Chem. Res., 2009, 42(6), 724-733. doi: 10.1021/ar800236t PMID: 19317443
  5. Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890. doi: 10.1038/nrd2445 PMID: 17971784
  6. Leeson, P.D.; Bento, A.P.; Gaulton, A.; Hersey, A.; Manners, E.J.; Radoux, C.J.; Leach, A.R. Target-based evaluation of "drug-like" properties and ligand efficiencies. J. Med. Chem., 2021, 64(11), 7210-7230. doi: 10.1021/acs.jmedchem.1c00416 PMID: 33983732
  7. Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214. doi: 10.1038/nrd3078 PMID: 20168317
  8. Pammolli, F.; Magazzini, L.; Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov., 2011, 10(6), 428-438. doi: 10.1038/nrd3405 PMID: 21629293
  9. Chen, M.; Borlak, J.; Tong, W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology, 2013, 58(1), 388-396. doi: 10.1002/hep.26208 PMID: 23258593
  10. Gayvert, K.M.; Madhukar, N.S.; Elemento, O. A data-driven approach to predicting successes and failures of clinical trials. Cell Chem. Biol., 2016, 23(10), 1294-1301. doi: 10.1016/j.chembiol.2016.07.023 PMID: 27642066
  11. Thompson, T.N. Optimization of metabolic stability as a goal of modern drug design. Med. Res. Rev., 2001, 21(5), 412-449. doi: 10.1002/med.1017 PMID: 11579441
  12. Summerfield, S.; Jeffrey, P. Discovery DMPK: Changing paradigms in the eighties, nineties and noughties. Expert Opin. Drug Discov., 2009, 4(3), 207-218. doi: 10.1517/17460440902729405 PMID: 23489121
  13. Ballard, P.; Brassil, P.; Bui, K.H.; Dolgos, H.; Petersson, C.; Tunek, A.; Webborn, P.J.H. The right compound in the right assay at the right time: An integrated discovery DMPK strategy. Drug Metab. Rev., 2012, 44(3), 224-252. doi: 10.3109/03602532.2012.691099 PMID: 22697420
  14. Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov., 2012, 7(10), 863-875. doi: 10.1517/17460441.2012.714363 PMID: 22992175
  15. Miller, R.R.; Madeira, M.; Wood, H.B.; Geissler, W.M.; Raab, C.E.; Martin, I.J. Integrating the impact of lipophilicity on potency and pharmacokinetic parameters enables the use of diverse chemical space during small molecule drug optimization. J. Med. Chem., 2020, 63(21), 12156-12170. doi: 10.1021/acs.jmedchem.9b01813 PMID: 32633947
  16. Choi, K. The structure–property relationships of clinically approved protein kinase inhibitors. Curr. Med. Chem., 2023, 30(22), 2518-2541. doi: 10.2174/0929867329666220822123552 PMID: 35996243
  17. Choi, K. The structure–property relationships of GPCR-targeted drugs approved between 2011 and 2021. Curr. Med. Chem., 2023, 30(31) doi: 10.2174/1573399819666221102113217 PMID: 36330638
  18. Ayala-Aguilera, C.C.; Valero, T.; Lorente-Macías, Á.; Baillache, D.J.; Croke, S.; Unciti-Broceta, A. small molecule kinase inhibitor drugs (1995–2021): Medical indication, pharmacology, and synthesis. J. Med. Chem., 2022, 65(2), 1047-1131. doi: 10.1021/acs.jmedchem.1c00963 PMID: 34624192
  19. Roskoski, R., Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol. Res., 2022, 175, 106037. doi: 10.1016/j.phrs.2021.106037 PMID: 34921994
  20. Congreve, M.; de Graaf, C.; Swain, N.A.; Tate, C.G. Impact of GPCR structures on drug discovery. Cell, 2020, 181(1), 81-91. doi: 10.1016/j.cell.2020.03.003 PMID: 32243800
  21. Kooistra, A.J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keserű, G.M.; Gloriam, D.E. GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Res., 2021, 49(D1), D335-D343. doi: 10.1093/nar/gkaa1080 PMID: 33270898
  22. Leung, D.; Abbenante, G.; Fairlie, D.P. Protease inhibitors: Current status and future prospects. J. Med. Chem., 2000, 43(3), 305-341. doi: 10.1021/jm990412m PMID: 10669559
  23. Turk, B. Targeting proteases: Successes, failures and future prospects. Nat. Rev. Drug Discov., 2006, 5(9), 785-799. doi: 10.1038/nrd2092 PMID: 16955069
  24. Al-Awadhi, F.H.; Luesch, H. Targeting eukaryotic proteases for natural products-based drug development. Nat. Prod. Rep., 2020, 37(6), 827-860. doi: 10.1039/C9NP00060G PMID: 32519686
  25. Weber, I.T.; Wang, Y.F.; Harrison, R.W. HIV protease: Historical perspective and current research. Viruses, 2021, 13(5), 839. doi: 10.3390/v13050839 PMID: 34066370
  26. Kempf, D.J.; Marsh, K.C.; Denissen, J.F.; McDonald, E.; Vasavanonda, S.; Flentge, C.A.; Green, B.E.; Fino, L.; Park, C.H.; Kong, X.P. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci., 1995, 92(7), 2484-2488. doi: 10.1073/pnas.92.7.2484 PMID: 7708670
  27. Kempf, D.J.; Sham, H.L.; Marsh, K.C.; Flentge, C.A.; Betebenner, D.; Green, B.E.; McDonald, E.; Vasavanonda, S.; Saldivar, A.; Wideburg, N.E.; Kati, W.M.; Ruiz, L.; Zhao, C.; Fino, L.; Patterson, J.; Molla, A.; Plattner, J.J.; Norbeck, D.W. Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem., 1998, 41(4), 602-617. doi: 10.1021/jm970636+ PMID: 9484509
  28. Kempf, D.J.; Marsh, K.C.; Fino, L.C.; Bryant, P.; Craig-Kennard, A.; Sham, H.L.; Zhao, C.; Vasavanonda, S.; Kohlbrenner, W.E.; Wideburg, N.E.; Saldivar, A.; Green, B.E.; Herrin, T.; Norbeck, D.W. Design of orally bioavailable, symmetry-based inhibitors of HIV protease. Bioorg. Med. Chem., 1994, 2(9), 847-858. doi: 10.1016/S0968-0896(00)82036-2 PMID: 7712122
  29. Kempf, D.J.; Marsh, K.C.; Kumar, G.; Rodrigues, A.D.; Denissen, J.F.; McDonald, E.; Kukulka, M.J.; Hsu, A.; Granneman, G.R.; Baroldi, P.A.; Sun, E.; Pizzuti, D.; Plattner, J.J.; Norbeck, D.W.; Leonard, J.M. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob. Agents Chemother., 1997, 41(3), 654-660. doi: 10.1128/AAC.41.3.654 PMID: 9056009
  30. Sevrioukova, I.F.; Poulos, T.L. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc. Natl. Acad. Sci., 2010, 107(43), 18422-18427. doi: 10.1073/pnas.1010693107 PMID: 20937904
  31. Deeks, E.D. Ombitasvir/paritaprevir/ritonavir plus dasabuvir: A review in chronic HCV genotype 1 infection. Drugs, 2015, 75(9), 1027-1038. doi: 10.1007/s40265-015-0412-z PMID: 26059288
  32. Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; Dantonio, A.; Di, L.; Eng, H.; Ferre, R.; Gajiwala, K.S.; Gibson, S.A.; Greasley, S.E.; Hurst, B.L.; Kadar, E.P.; Kalgutkar, A.S.; Lee, J.C.; Lee, J.; Liu, W.; Mason, S.W.; Noell, S.; Novak, J.J.; Obach, R.S.; Ogilvie, K.; Patel, N.C.; Pettersson, M.; Rai, D.K.; Reese, M.R.; Sammons, M.F.; Sathish, J.G.; Singh, R.S.P.; Steppan, C.M.; Stewart, A.E.; Tuttle, J.B.; Updyke, L.; Verhoest, P.R.; Wei, L.; Yang, Q.; Zhu, Y. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science, 2021, 374(6575), 1586-1593. doi: 10.1126/science.abl4784 PMID: 34726479
  33. Lyle, T.A.; Wiscount, C.M.; Guare, J.P.; Thompson, W.J.; Anderson, P.S.; Darke, P.L.; Zugay, J.A.; Emini, E.A.; Schleif, W.A.; Qunitero, J.C. Benzocycloalkyl amines as novel C-termini for HIV protease inhibitors. J. Med. Chem., 1991, 34(3), 1228-1230. doi: 10.1021/jm00107a051 PMID: 2002466
  34. Thompson, W.J.; Fitzgerald, P.M.D.; Holloway, M.K.; Emini, E.A.; Darke, P.L.; McKeever, B.M.; Schleif, W.A.; Quintero, J.C.; Zugay, J.A. Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1′ phenyl design. J. Med. Chem., 1992, 35(10), 1685-1701. doi: 10.1021/jm00088a003 PMID: 1588551
  35. Vacca, J.P.; Dorsey, B.D.; Schleif, W.A.; Levin, R.B.; McDaniel, S.L.; Darke, P.L.; Zugay, J.; Quintero, J.C.; Blahy, O.M.; Roth, E. L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc. Natl. Acad. Sci. USA, 1994, 91(9), 4096-4100. doi: 10.1073/pnas.91.9.4096 PMID: 8171040
  36. Dorsey, B.D.; Levin, R.B.; McDaniel, S.L.; Vacca, J.P.; Guare, J.P.; Darke, P.L.; Zugay, J.A.; Emini, E.A.; Schleif, W.A.; Quintero, J.C. L-735,524: the design of a potent and orally bioavailable HIV protease inhibitor. J. Med. Chem., 1994, 37(21), 3443-3451. doi: 10.1021/jm00047a001 PMID: 7932573
  37. Munshi, S.; Chen, Z.; Li, Y.; Olsen, D.B.; Fraley, M.E.; Hungate, R.W.; Kuo, L.C. Rapid X-ray diffraction analysis of HIV-1 protease–inhibitor complexes: inhibitor exchange in single crystals of the bound enzyme. Acta Crystallogr. D Biol. Crystallogr., 1998, 54(5), 1053-1060. doi: 10.1107/S0907444998003588 PMID: 9757136
  38. Ghosh, A.K.; Kincaid, J.F.; Cho, W.; Walters, D.E.; Krishnan, K.; Hussain, K.A.; Koo, Y.; Cho, H.; Rudall, C.; Holland, L.; Buthod, J. Potent HIV protease inhibitors incorporating high-affinity P2-ligands and (R)-(hydroxyethylamino)sulfonamide isostere. Bioorg. Med. Chem. Lett., 1998, 8(6), 687-690. doi: 10.1016/S0960-894X(98)00098-5 PMID: 9871583
  39. Surleraux, D.L.N.G.; Tahri, A.; Verschueren, W.G.; Pille, G.M.E.; de Kock, H.A.; Jonckers, T.H.M.; Peeters, A.; De Meyer, S.; Azijn, H.; Pauwels, R.; de Bethune, M.P.; King, N.M.; Prabu-Jeyabalan, M.; Schiffer, C.A.; Wigerinck, P.B.T.P. Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. J. Med. Chem., 2005, 48(6), 1813-1822. doi: 10.1021/jm049560p PMID: 15771427
  40. Kim, E.E.; Baker, C.T.; Dwyer, M.D.; Murcko, M.A.; Rao, B.G.; Tung, R.D.; Navia, M.A. Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme. J. Am. Chem. Soc., 1995, 117(3), 1181-1182. doi: 10.1021/ja00108a056
  41. Tie, Y.; Boross, P.I.; Wang, Y.F.; Gaddis, L.; Hussain, A.K.; Leshchenko, S.; Ghosh, A.K.; Louis, J.M.; Harrison, R.W.; Weber, I.T. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J. Mol. Biol., 2004, 338(2), 341-352. doi: 10.1016/j.jmb.2004.02.052 PMID: 15066436
  42. Kawabata, K.; Suzuki, M.; Sugitani, M.; Imaki, K.; Toda, M.; Miyamoto, T. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun., 1991, 177(2), 814-820. doi: 10.1016/0006-291X(91)91862-7 PMID: 2049103
  43. Imaki, K.; Okada, T.; Nakayama, Y.; Nagao, Y.; Kobayashi, K.; Sakai, Y.; Mohri, T.; Amino, T.; Nakai, H.; Kawamura, M. Non-peptidic inhibitors of human neutrophil elastase: The design and synthesis of sulfonanilide-containing inhibitors. Bioorg. Med. Chem., 1996, 4(12), 2115-2134. doi: 10.1016/S0968-0896(96)00216-7 PMID: 9022976
  44. Gallwitz, B. Clinical use of DPP-4 inhibitors. Front. Endocrinol., 2019, 10, 389. doi: 10.3389/fendo.2019.00389 PMID: 31275246
  45. Xu, J.; Ok, H.O.; Gonzalez, E.J.; Colwell, L.F., Jr; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K.A.; Marsilio, F.; Patel, R.A.; Wu, J.K.; Thornberry, N.A.; Weber, A.E.; Parmee, E.R. Discovery of potent and selective β-homophenylalanine based dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(18), 4759-4762. doi: 10.1016/j.bmcl.2004.06.099 PMID: 15324903
  46. Brockunier, L.L.; He, J.; Colwell, L.F., Jr; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K.A.; Marsilio, F.; Patel, R.A.; Teffera, Y.; Wu, J.K.; Thornberry, N.A.; Weber, A.E.; Parmee, E.R. Substituted piperazines as novel dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(18), 4763-4766. doi: 10.1016/j.bmcl.2004.06.065 PMID: 15324904
  47. Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.J.; Fisher, M.H.; He, H.; Hickey, G.J.; Kowalchick, J.E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M.E.; Patel, R.A.; Petrov, A.; Scapin, G.; Patel, S.B.; Roy, R.S.; Wu, J.K.; Wyvratt, M.J.; Zhang, B.B.; Zhu, L.; Thornberry, N.A.; Weber, A.E. (2R)-4-oxo-4-3-(trifluoromethyl)-5,6-dihydro1,2,4triazolo4,3-apyrazin-7(8H)-yl-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2005, 48(1), 141-151. doi: 10.1021/jm0493156 PMID: 15634008
  48. Eckhardt, M.; Langkopf, E.; Mark, M.; Tadayyon, M.; Thomas, L.; Nar, H.; Pfrengle, W.; Guth, B.; Lotz, R.; Sieger, P.; Fuchs, H.; Himmelsbach, F. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2007, 50(26), 6450-6453. doi: 10.1021/jm701280z PMID: 18052023
  49. Thomas, L.; Eckhardt, M.; Langkopf, E.; Tadayyon, M.; Himmelsbach, F.; Mark, M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J. Pharmacol. Exp. Ther., 2008, 325(1), 175-182. doi: 10.1124/jpet.107.135723 PMID: 18223196
  50. Kato, N.; Oka, M.; Murase, T.; Yoshida, M.; Sakairi, M.; Yakufu, M.; Yamashita, S.; Yasuda, Y.; Yoshikawa, A.; Hayashi, Y.; Shirai, M.; Mizuno, Y.; Takeuchi, M.; Makino, M.; Takeda, M.; Kakigami, T. Synthesis and pharmacological characterization of potent, selective, and orally bioavailable isoindoline class dipeptidyl peptidase IV inhibitors. Org. Med. Chem. Lett., 2011, 1(1), 7. doi: 10.1186/2191-2858-1-7 PMID: 22373386
  51. Kato, N.; Oka, M.; Murase, T.; Yoshida, M.; Sakairi, M.; Yamashita, S.; Yasuda, Y.; Yoshikawa, A.; Hayashi, Y.; Makino, M.; Takeda, M.; Mirensha, Y.; Kakigami, T. Discovery and pharmacological characterization of N-2-({2-(2S)-2-cyanopyrrolidin-1-yl-2-oxoethyl}amino)-2-methylpropyl-2-methylpyrazolo1,5-apyrimidine-6-carboxamide hydrochloride (anagliptin hydrochloride salt) as a potent and selective DPP-IV inhibitor. Bioorg. Med. Chem. Lett., 2011, 19(23), 7221-7227. doi: 10.1016/j.bmc.2011.09.043 PMID: 22019046
  52. Furuta, S.; Smart, C.; Hackett, A.; Benning, R.; Warrington, S. Pharmacokinetics and metabolism of 14C anagliptin, a novel dipeptidyl peptidase-4 inhibitor, in humans. Xenobiotica, 2013, 43(5), 432-442. doi: 10.3109/00498254.2012.731618 PMID: 23075005
  53. Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun., 2013, 434(2), 191-196. doi: 10.1016/j.bbrc.2013.03.010 PMID: 23501107
  54. Metzler, W.J.; Yanchunas, J.; Weigelt, C.; Kish, K.; Klei, H.E.; Xie, D.; Zhang, Y.; Corbett, M.; Tamura, J.K.; He, B.; Hamann, L.G.; Kirby, M.S.; Marcinkeviciene, J. Involvement of DPP-IV catalytic residues in enzyme-saxagliptin complex formation. Protein Sci., 2008, 17(2), 240-250. doi: 10.1110/ps.073253208 PMID: 18227430
  55. Watanabe, Y.S.; Yasuda, Y.; Kojima, Y.; Okada, S.; Motoyama, T.; Takahashi, R.; Oka, M. Anagliptin, a potent dipeptidyl peptidase IV inhibitor: its single-crystal structure and enzyme interactions. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 981-988. doi: 10.3109/14756366.2014.1002402 PMID: 26147347
  56. Kong, F.; Pang, X.; Zhao, J.; Deng, P.; Zheng, M.; Zhong, D.; Chen, X. Hydrolytic metabolism of cyanopyrrolidine DPP-4 inhibitors mediated by dipeptidyl peptidases. Drug Metab. Dispos., 2019, 47(3), 238-248. doi: 10.1124/dmd.118.084640 PMID: 30530814
  57. Feng, J.; Zhang, Z.; Wallace, M.B.; Stafford, J.A.; Kaldor, S.W.; Kassel, D.B.; Navre, M.; Shi, L.; Skene, R.J.; Asakawa, T.; Takeuchi, K.; Xu, R.; Webb, D.R.; Gwaltney, S.L., II Discovery of alogliptin: A potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J. Med. Chem., 2007, 50(10), 2297-2300. doi: 10.1021/jm070104l PMID: 17441705
  58. Zhang, Z.; Wallace, M.B.; Feng, J.; Stafford, J.A.; Skene, R.J.; Shi, L.; Lee, B.; Aertgeerts, K.; Jennings, A.; Xu, R.; Kassel, D.B.; Kaldor, S.W.; Navre, M.; Webb, D.R.; Gwaltney, S.L., II Design and synthesis of pyrimidinone and pyrimidinedione inhibitors of dipeptidyl peptidase IV. J. Med. Chem., 2011, 54(2), 510-524. doi: 10.1021/jm101016w PMID: 21186796
  59. Covington, P.; Christopher, R.; Davenport, M.; Fleck, P.; Mekki, Q.; Wann, E.; Karim, A. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: A randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin. Ther., 2008, 30(3), 499-512. doi: 10.1016/j.clinthera.2008.03.004 PMID: 18405788
  60. Inagaki, N.; Onouchi, H.; Sano, H.; Funao, N.; Kuroda, S.; Kaku, K. SYR-472, a novel once-weekly dipeptidyl peptidase-4 (DPP-4) inhibitor, in type 2 diabetes mellitus: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol., 2014, 2(2), 125-132. doi: 10.1016/S2213-8587(13)70149-9 PMID: 24622716
  61. Grimshaw, C.E.; Jennings, A.; Kamran, R.; Ueno, H.; Nishigaki, N.; Kosaka, T.; Tani, A.; Sano, H.; Kinugawa, Y.; Koumura, E.; Shi, L.; Takeuchi, K. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism. PLoS One, 2016, 11(6), e0157509. doi: 10.1371/journal.pone.0157509 PMID: 27328054
  62. Inagaki, N.; Onouchi, H.; Maezawa, H.; Kuroda, S.; Kaku, K. Once-weekly trelagliptin versus daily alogliptin in Japanese patients with type 2 diabetes: A randomised, double-blind, phase 3, non-inferiority study. Lancet Diabetes Endocrinol., 2015, 3(3), 191-197. doi: 10.1016/S2213-8587(14)70251-7 PMID: 25609193
  63. Inagaki, N.; Sano, H.; Seki, Y.; Kuroda, S.; Kaku, K. Efficacy and safety of once-weekly oral trelagliptin switched from once-daily dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes mellitus: An open-label, phase 3 exploratory study. J. Diabetes Investig., 2018, 9(2), 354-359. doi: 10.1111/jdi.12730 PMID: 28836351
  64. McKeage, K.; Plosker, G.L. Argatroban. Drugs, 2001, 61(4), 515-522. doi: 10.2165/00003495-200161040-00005 PMID: 11324681
  65. Hauel, N.H.; Nar, H.; Priepke, H.; Ries, U.; Stassen, J.M.; Wienen, W. Structure-based design of novel potent nonpeptide thrombin inhibitors. J. Med. Chem., 2002, 45(9), 1757-1766. doi: 10.1021/jm0109513 PMID: 11960487
  66. Ansell, J. Factor Xa or thrombin: Is factor Xa a better target? J. Thromb. Haemost., 2007, 5(S1), 60-64. doi: 10.1111/j.1538-7836.2007.02473.x PMID: 17635710
  67. Pinto, D.J.P.; Smallheer, J.M.; Cheney, D.L.; Knabb, R.M.; Wexler, R.R. Factor Xa inhibitors: Next-generation antithrombotic agents. J. Med. Chem., 2010, 53(17), 6243-6274. doi: 10.1021/jm100146h PMID: 20503967
  68. Patel, N.R.; Patel, D.V.; Murumkar, P.R.; Yadav, M.R. Contemporary developments in the discovery of selective factor Xa inhibitors: A review. Eur. J. Med. Chem., 2016, 121, 671-698. doi: 10.1016/j.ejmech.2016.05.039 PMID: 27322757
  69. Perzborn, E.; Roehrig, S.; Straub, A.; Kubitza, D.; Misselwitz, F. The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. Nat. Rev. Drug Discov., 2011, 10(1), 61-75. doi: 10.1038/nrd3185 PMID: 21164526
  70. Roehrig, S.; Straub, A.; Pohlmann, J.; Lampe, T.; Pernerstorfer, J.; Schlemmer, K.H.; Reinemer, P.; Perzborn, E. Discovery of the novel antithrombotic agent 5-Chloro- N -((5 S )-2-oxo-3- 4-(3-oxomorpholin-4-yl)phenyl-1,3-oxazolidin-5-ylmethyl)thiophene- 2-carboxamide (BAY 59-7939): An oral, direct factor Xa inhibitor. J. Med. Chem., 2005, 48(19), 5900-5908. doi: 10.1021/jm050101d PMID: 16161994
  71. Weinz, C.; Buetehorn, U.; Daehler, H.P.; Kohlsdorfer, C.; Pleiss, U.; Sandmann, S.; Schlemmer, K.H.; Schwarz, T.; Steinke, W. Pharmacokinetics of BAY 59-7939 – an oral, direct factor Xa inhibitor – in rats and dogs. Xenobiotica, 2005, 35(9), 891-910. doi: 10.1080/00498250500250493 PMID: 16308283
  72. Zhang, Q.; Xu, Z.; Zhu, W. The underestimated halogen bonds forming with protein side chains in drug discovery and design. J. Chem. Inf. Model., 2017, 57(1), 22-26. doi: 10.1021/acs.jcim.6b00628 PMID: 27990818
  73. Costa, P.J.; Nunes, R.; Vila-Viçosa, D. Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert Opin. Drug Discov., 2019, 14(8), 805-820. doi: 10.1080/17460441.2019.1619692 PMID: 31131651
  74. Pinto, D.J.P.; Orwat, M.J.; Quan, M.L.; Han, Q.; Galemmo, R.A., Jr; Amparo, E.; Wells, B.; Ellis, C.; He, M.Y.; Alexander, R.S.; Rossi, K.A.; Smallwood, A.; Wong, P.C.; Luettgen, J.M.; Rendina, A.R.; Knabb, R.M.; Mersinger, L.; Kettner, C.; Bai, S.; He, K.; Wexler, R.R.; Lam, P.Y.S. 1-3-Aminobenzisoxazol-5′-yl-3-trifluoromethyl-6-2′-(3-(R)-hydroxy-N-pyrrolidinyl)methyl-1,1′-biphen-4-yl-1,4,5,6-tetrahydropyrazolo-3,4-c-pyridin-7-one (BMS-740808) a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. Bioorg. Med. Chem. Lett., 2006, 16(15), 4141-4147. doi: 10.1016/j.bmcl.2006.02.069 PMID: 16730984
  75. Pinto, D.J.P.; Galemmo, R.A., Jr; Quan, M.L.; Orwat, M.J.; Clark, C.; Li, R.; Wells, B.; Woerner, F.; Alexander, R.S.; Rossi, K.A.; Smallwood, A.; Wong, P.C.; Luettgen, J.M.; Rendina, A.R.; Knabb, R.M.; He, K.; Wexler, R.R.; Lam, P.Y.S. Discovery of potent, efficacious, and orally bioavailable inhibitors of blood coagulation factor Xa with neutral P1 moieties. Bioorg. Med. Chem. Lett., 2006, 16(21), 5584-5589. doi: 10.1016/j.bmcl.2006.08.027 PMID: 16963264
  76. Pinto, D.J.P.; Orwat, M.J.; Koch, S.; Rossi, K.A.; Alexander, R.S.; Smallwood, A.; Wong, P.C.; Rendina, A.R.; Luettgen, J.M.; Knabb, R.M.; He, K.; Xin, B.; Wexler, R.R.; Lam, P.Y.S. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo3,4-cpyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J. Med. Chem., 2007, 50(22), 5339-5356. doi: 10.1021/jm070245n PMID: 17914785
  77. Straub, A.; Roehrig, S.; Hillisch, A. Oral, direct thrombin and factor Xa inhibitors: The replacement for warfarin, leeches, and pig intestines? Angew. Chem. Int. Ed., 2011, 50(20), 4574-4590. doi: 10.1002/anie.201004575 PMID: 21538731
  78. Xie, Z.; Tian, Y.; Lv, X.; Xiao, X.; Zhan, M.; Cheng, K.; Li, S.; Liao, C. The selectivity and bioavailability improvement of novel oral anticoagulants: An overview. Eur. J. Med. Chem., 2018, 146, 299-317. doi: 10.1016/j.ejmech.2018.01.067 PMID: 29407959
  79. Zhu, B.Y.; Jia, Z.J.; Zhang, P.; Su, T.; Huang, W.; Goldman, E.; Tumas, D.; Kadambi, V.; Eddy, P.; Sinha, U.; Scarborough, R.M.; Song, Y. Inhibitory effect of carboxylic acid group on hERG binding. Bioorg. Med. Chem. Lett., 2006, 16(21), 5507-5512. doi: 10.1016/j.bmcl.2006.08.039 PMID: 16931010
  80. Zhang, P.; Huang, W.; Wang, L.; Bao, L.; Jia, Z.J.; Bauer, S.M.; Goldman, E.A.; Probst, G.D.; Song, Y.; Su, T.; Fan, J.; Wu, Y.; Li, W.; Woolfrey, J.; Sinha, U.; Wong, P.W.; Edwards, S.T.; Arfsten, A.E.; Clizbe, L.A.; Kanter, J.; Pandey, A.; Park, G.; Hutchaleelaha, A.; Lambing, J.L.; Hollenbach, S.J.; Scarborough, R.M.; Zhu, B.Y. Discovery of betrixaban (PRT054021), N-(5-chloropyridin-2-yl)-2-(4-(N,N-dimethylcarbamimidoyl)benzamido)-5-methoxybenzamide, a highly potent, selective, and orally efficacious factor Xa inhibitor. Bioorg. Med. Chem. Lett., 2009, 19(8), 2179-2185. doi: 10.1016/j.bmcl.2009.02.111 PMID: 19297154
  81. Zhang, P.; Bao, L.; Fan, J.; Jia, Z.J.; Sinha, U.; Wong, P.W.; Park, G.; Hutchaleelaha, A.; Scarborough, R.M.; Zhu, B.Y. Anthranilamide-based N,N-dialkylbenzamidines as potent and orally bioavailable factor Xa inhibitors: P4 SAR. Bioorg. Med. Chem. Lett., 2009, 19(8), 2186-2189. doi: 10.1016/j.bmcl.2009.02.114 PMID: 19297158
  82. Adler, M.; Kochanny, M.J.; Ye, B.; Rumennik, G.; Light, D.R.; Biancalana, S.; Whitlow, M. Crystal structures of two potent nonamidine inhibitors bound to factor Xa. Biochemistry, 2002, 41(52), 15514-15523. doi: 10.1021/bi0264061 PMID: 12501180
  83. Ye, B.; Arnaiz, D.O.; Chou, Y.L.; Griedel, B.D.; Karanjawala, R.; Lee, W.; Morrissey, M.M.; Sacchi, K.L.; Sakata, S.T.; Shaw, K.J.; Wu, S.C.; Zhao, Z.; Adler, M.; Cheeseman, S.; Dole, W.P.; Ewing, J.; Fitch, R.; Lentz, D.; Liang, A.; Light, D.; Morser, J.; Post, J.; Rumennik, G.; Subramanyam, B.; Sullivan, M.E.; Vergona, R.; Walters, J.; Wang, Y.X.; White, K.A.; Whitlow, M.; Kochanny, M.J. Thiophene-anthranilamides as highly potent and orally available factor Xa inhibitors. J. Med. Chem., 2007, 50(13), 2967-2980. doi: 10.1021/jm070125f PMID: 17536795
  84. Zhang, J.; Krishnan, R.; Arnold, C.; Mattsson, E.; Kilpatrick, J.; Bantia, S.; Dehghani, A.; Boudreaux, B.; Gupta, S.; Kotian, P.L.; Chand, P.; Babu, Y.S. Discovery of highly potent small molecule kallikrein inhibitors. Med. Chem., 2006, 2(6), 545-553. doi: 10.2174/1573406410602060545 PMID: 17105435
  85. Riedl, M.A.; Aygören-Pürsün, E.; Baker, J.; Farkas, H.; Anderson, J.; Bernstein, J.A.; Bouillet, L.; Busse, P.; Manning, M.; Magerl, M.; Gompels, M.; Huissoon, A.P.; Longhurst, H.; Lumry, W.; Ritchie, B.; Shapiro, R.; Soteres, D.; Banerji, A.; Cancian, M.; Johnston, D.T.; Craig, T.J.; Launay, D.; Li, H.H.; Liebhaber, M.; Nickel, T.; Offenberger, J.; Rae, W.; Schrijvers, R.; Triggiani, M.; Wedner, H.J.; Dobo, S.; Cornpropst, M.; Clemons, D.; Fang, L.; Collis, P.; Sheridan, W.P.; Maurer, M. Evaluation of avoralstat, an oral kallikrein inhibitor, in a phase 3 hereditary angioedema prophylaxis trial: The OPuS-2 study. Allergy, 2018, 73(9), 1871-1880. doi: 10.1111/all.13466 PMID: 29688579
  86. Kotian, P.L.; Wu, M.; Vadlakonda, S.; Chintareddy, V.; Lu, P.; Juarez, L.; Kellogg-Yelder, D.; Chen, X.; Muppa, S.; Chambers-Wilson, R.; Davis Parker, C.; Williams, J.; Polach, K.J.; Zhang, W.; Raman, K.; Babu, Y.S. Berotralstat (BCX7353): Structure-guided design of a potent, selective, and oral plasma kallikrein inhibitor to prevent attacks of hereditary angioedema (HAE). J. Med. Chem., 2021, 64(17), 12453-12468. doi: 10.1021/acs.jmedchem.1c00511 PMID: 34436898
  87. Lindenbach, B.D.; Rice, C.M. Unravelling hepatitis C virus replication from genome to function. Nature, 2005, 436(7053), 933-938. doi: 10.1038/nature04077 PMID: 16107832
  88. Manns, M.P.; Maasoumy, B. Breakthroughs in hepatitis C research: from discovery to cure. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(8), 533-550. doi: 10.1038/s41575-022-00608-8 PMID: 35595834
  89. Bogen, S.L.; Arasappan, A.; Bennett, F.; Chen, K.; Jao, E.; Liu, Y.T.; Lovey, R.G.; Venkatraman, S.; Pan, W.; Parekh, T.; Pike, R.E.; Ruan, S.; Liu, R.; Baroudy, B.; Agrawal, S.; Chase, R.; Ingravallo, P.; Pichardo, J.; Prongay, A.; Brisson, J.M.; Hsieh, T.Y.; Cheng, K.C.; Kemp, S.J.; Levy, O.E.; Lim-Wilby, M.; Tamura, S.Y.; Saksena, A.K.; Girijavallabhan, V.; Njoroge, F.G. Discovery of SCH446211 (SCH6): a new ketoamide inhibitor of the HCV NS3 serine protease and HCV subgenomic RNA replication. J. Med. Chem., 2006, 49(9), 2750-2757. doi: 10.1021/jm060077j PMID: 16640336
  90. Morrison, J.F.; Walsh, C.T. The behavior and significance of slow-binding enzyme inhibitors. In: Advances in Enzymology and Related Areas of Molecular Biology; Meister, A., Ed.; John Wiley & Sons, Ltd, 1988; pp. 201-301. doi: 10.1002/9780470123072.ch5
  91. Venkatraman, S.; Bogen, S.L.; Arasappan, A.; Bennett, F.; Chen, K.; Jao, E.; Liu, Y.T.; Lovey, R.; Hendrata, S.; Huang, Y.; Pan, W.; Parekh, T.; Pinto, P.; Popov, V.; Pike, R.; Ruan, S.; Santhanam, B.; Vibulbhan, B.; Wu, W.; Yang, W.; Kong, J.; Liang, X.; Wong, J.; Liu, R.; Butkiewicz, N.; Chase, R.; Hart, A.; Agrawal, S.; Ingravallo, P.; Pichardo, J.; Kong, R.; Baroudy, B.; Malcolm, B.; Guo, Z.; Prongay, A.; Madison, V.; Broske, L.; Cui, X.; Cheng, K.C.; Hsieh, Y.; Brisson, J.M.; Prelusky, D.; Korfmacher, W.; White, R.; Bogdanowich-Knipp, S.; Pavlovsky, A.; Bradley, P.; Saksena, A.K.; Ganguly, A.; Piwinski, J.; Girijavallabhan, V.; Njoroge, F.G. Discovery of (1R,5S)-N-3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl- 3-2(S)-(1,1-dimethylethyl)aminocarbonylamino-3,3-dimethyl-1-oxobutyl- 6,6-dimethyl-3-azabicyclo3.1.0hexan-2(S)-carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection. J. Med. Chem., 2006, 49(20), 6074-6086. doi: 10.1021/jm060325b PMID: 17004721
  92. Prongay, A.J.; Guo, Z.; Yao, N.; Pichardo, J.; Fischmann, T.; Strickland, C.; Myers, J., Jr; Weber, P.C.; Beyer, B.M.; Ingram, R.; Hong, Z.; Prosise, W.W.; Ramanathan, L.; Taremi, S.S.; Yarosh-Tomaine, T.; Zhang, R.; Senior, M.; Yang, R.S.; Malcolm, B.; Arasappan, A.; Bennett, F.; Bogen, S.L.; Chen, K.; Jao, E.; Liu, Y.T.; Lovey, R.G.; Saksena, A.K.; Venkatraman, S.; Girijavallabhan, V.; Njoroge, F.G.; Madison, V. Discovery of the HCV NS3/4A protease inhibitor (1 R, 5 S)-N -3-Amino-1-(cyclobutylmethyl)-2,3-dioxopropyl-3- 2( S )-(1,1-dimethylethyl)aminocarbonylamino-3,3-dimethyl-1-oxobutyl- 6,6-dimethyl-3-azabicyclo3.1.0hexan-2( S )-carboxamide (Sch 503034) II. Key steps in structure-based optimization. J. Med. Chem., 2007, 50(10), 2310-2318. doi: 10.1021/jm060173k PMID: 17444623
  93. Bäck, M.; Johansson, P.O.; Wångsell, F.; Thorstensson, F.; Kvarnström, I.; Ayesa, S.; Wähling, H.; Pelcman, M.; Jansson, K.; Lindström, S.; Wallberg, H.; Classon, B.; Rydergård, C.; Vrang, L.; Hamelink, E.; Hallberg, A.; Rosenquist, Å.; Samuelsson, B. Novel potent macrocyclic inhibitors of the hepatitis C virus NS3 protease: Use of cyclopentane and cyclopentene P2-motifs. Bioorg. Med. Chem., 2007, 15(22), 7184-7202. doi: 10.1016/j.bmc.2007.07.027 PMID: 17845856
  94. Raboisson, P.; de Kock, H.; Rosenquist, Å.; Nilsson, M.; Salvador-Oden, L.; Lin, T.I.; Roue, N.; Ivanov, V.; Wähling, H.; Wickström, K.; Hamelink, E.; Edlund, M.; Vrang, L.; Vendeville, S.; Van de Vreken, W.; McGowan, D.; Tahri, A.; Hu, L.; Boutton, C.; Lenz, O.; Delouvroy, F.; Pille, G.; Surleraux, D.; Wigerinck, P.; Samuelsson, B.; Simmen, K. Structure–activity relationship study on a novel series of cyclopentane-containing macrocyclic inhibitors of the hepatitis C virus NS3/4A protease leading to the discovery of TMC435350. Bioorg. Med. Chem. Lett., 2008, 18(17), 4853-4858. doi: 10.1016/j.bmcl.2008.07.088 PMID: 18678486
  95. Rosenquist, Å.; Samuelsson, B.; Johansson, P.O.; Cummings, M.D.; Lenz, O.; Raboisson, P.; Simmen, K.; Vendeville, S.; de Kock, H.; Nilsson, M.; Horvath, A.; Kalmeijer, R.; de la Rosa, G.; Beumont-Mauviel, M. Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor. J. Med. Chem., 2014, 57(5), 1673-1693. doi: 10.1021/jm401507s PMID: 24446688
  96. Llinàs-Brunet, M.; Bailey, M.D.; Bolger, G.; Brochu, C.; Faucher, A.M.; Ferland, J.M.; Garneau, M.; Ghiro, E.; Gorys, V.; Grand-Maître, C.; Halmos, T.; Lapeyre-Paquette, N.; Liard, F.; Poirier, M.; Rhéaume, M.; Tsantrizos, Y.S.; Lamarre, D. Structure-activity study on a novel series of macrocyclic inhibitors of the hepatitis C virus NS3 protease leading to the discovery of BILN 2061. J. Med. Chem., 2004, 47(7), 1605-1608. doi: 10.1021/jm0342414 PMID: 15027850
  97. Hinrichsen, H.; Benhamou, Y.; Wedemeyer, H.; Reiser, M.; Sentjens, R.E.; Calleja, J.L.; Forns, X.; Erhardt, A.; Crönlein, J.; Chaves, R.L.; Yong, C.L.; Nehmiz, G.; Steinmann, G.G. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology, 2004, 127(5), 1347-1355. doi: 10.1053/j.gastro.2004.08.002 PMID: 15521004
  98. Stoltz, J.H.; Stern, J.O.; Huang, Q.; Seidler, R.W.; Pack, F.D.; Knight, B.L. A twenty-eight-day mechanistic time course study in the rhesus monkey with hepatitis C virus protease inhibitor BILN 2061. Toxicol. Pathol., 2011, 39(3), 496-501. doi: 10.1177/0192623311398276 PMID: 21441227
  99. Cummings, M.D.; Lindberg, J.; Lin, T.I.; de Kock, H.; Lenz, O.; Lilja, E.; Felländer, S.; Baraznenok, V.; Nyström, S.; Nilsson, M.; Vrang, L.; Edlund, M.; Rosenquist, Å.; Samuelsson, B.; Raboisson, P.; Simmen, K. Induced-fit binding of the macrocyclic noncovalent inhibitor TMC435 to its HCV NS3/NS4A protease target. Angew. Chem. Int. Ed., 2010, 49(9), 1652-1655. doi: 10.1002/anie.200906696 PMID: 20166108
  100. McPhee, F.; Sheaffer, A.K.; Friborg, J.; Hernandez, D.; Falk, P.; Zhai, G.; Levine, S.; Chaniewski, S.; Yu, F.; Barry, D.; Chen, C.; Lee, M.S.; Mosure, K.; Sun, L.Q.; Sinz, M.; Meanwell, N.A.; Colonno, R.J.; Knipe, J.; Scola, P. Preclinical profile and characterization of the hepatitis C virus NS3 protease inhibitor asunaprevir (BMS-650032). Antimicrob. Agents Chemother., 2012, 56(10), 5387-5396. doi: 10.1128/AAC.01186-12 PMID: 22869577
  101. Scola, P.M.; Sun, L.Q.; Wang, A.X.; Chen, J.; Sin, N.; Venables, B.L.; Sit, S.Y.; Chen, Y.; Cocuzza, A.; Bilder, D.M.; D’Andrea, S.V.; Zheng, B.; Hewawasam, P.; Tu, Y.; Friborg, J.; Falk, P.; Hernandez, D.; Levine, S.; Chen, C.; Yu, F.; Sheaffer, A.K.; Zhai, G.; Barry, D.; Knipe, J.O.; Han, Y.H.; Schartman, R.; Donoso, M.; Mosure, K.; Sinz, M.W.; Zvyaga, T.; Good, A.C.; Rajamani, R.; Kish, K.; Tredup, J.; Klei, H.E.; Gao, Q.; Mueller, L.; Colonno, R.J.; Grasela, D.M.; Adams, S.P.; Loy, J.; Levesque, P.C.; Sun, H.; Shi, H.; Sun, L.; Warner, W.; Li, D.; Zhu, J.; Meanwell, N.A.; McPhee, F. The discovery of asunaprevir (BMS-650032), an orally efficacious NS3 protease inhibitor for the treatment of hepatitis C virus infection. J. Med. Chem., 2014, 57(5), 1730-1752. doi: 10.1021/jm500297k PMID: 24564672
  102. Scola, P.M.; Wang, A.X.; Good, A.C.; Sun, L.Q.; Combrink, K.D.; Campbell, J.A.; Chen, J.; Tu, Y.; Sin, N.; Venables, B.L.; Sit, S.Y.; Chen, Y.; Cocuzza, A.; Bilder, D.M.; D’Andrea, S.; Zheng, B.; Hewawasam, P.; Ding, M.; Thuring, J.; Li, J.; Hernandez, D.; Yu, F.; Falk, P.; Zhai, G.; Sheaffer, A.K.; Chen, C.; Lee, M.S.; Barry, D.; Knipe, J.O.; Li, W.; Han, Y.H.; Jenkins, S.; Gesenberg, C.; Gao, Q.; Sinz, M.W.; Santone, K.S.; Zvyaga, T.; Rajamani, R.; Klei, H.E.; Colonno, R.J.; Grasela, D.M.; Hughes, E.; Chien, C.; Adams, S.; Levesque, P.C.; Li, D.; Zhu, J.; Meanwell, N.A.; McPhee, F. Discovery and early clinical evaluation of BMS-605339, a potent and orally efficacious tripeptidic acylsulfonamide NS3 protease inhibitor for the treatment of hepatitis C virus infection. J. Med. Chem., 2014, 57(5), 1708-1729. doi: 10.1021/jm401840s PMID: 24555570
  103. Soumana, D.I.; Ali, A.; Schiffer, C.A. Structural analysis of asunaprevir resistance in HCV NS3/4A protease. ACS Chem. Biol., 2014, 9(11), 2485-2490. doi: 10.1021/cb5006118 PMID: 25243902
  104. Gower, E.; Estes, C.; Blach, S.; Razavi-Shearer, K.; Razavi, H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J. Hepatol., 2014, 61(1)(Suppl.), S45-S57. doi: 10.1016/j.jhep.2014.07.027 PMID: 25086286
  105. Messina, J.P.; Humphreys, I.; Flaxman, A.; Brown, A.; Cooke, G.S.; Pybus, O.G.; Barnes, E. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology, 2015, 61(1), 77-87. doi: 10.1002/hep.27259 PMID: 25069599
  106. Soumana, D.I.; Kurt Yilmaz, N.; Ali, A.; Prachanronarong, K.L.; Schiffer, C.A. molecular and dynamic mechanism underlying drug resistance in genotype 3 hepatitis C NS3/4A protease. J. Am. Chem. Soc., 2016, 138(36), 11850-11859. doi: 10.1021/jacs.6b06454 PMID: 27512818
  107. Mishra, P.; Chen, M. Direct-acting antivirals for chronic hepatitis C: Can drug properties signal potential for liver injury? Gastroenterology, 2017, 152(6), 1270-1274. doi: 10.1053/j.gastro.2017.03.012 PMID: 28327365
  108. Harper, S.; McCauley, J.A.; Rudd, M.T.; Ferrara, M.; DiFilippo, M.; Crescenzi, B.; Koch, U.; Petrocchi, A.; Holloway, M.K.; Butcher, J.W.; Romano, J.J.; Bush, K.J.; Gilbert, K.F.; McIntyre, C.J.; Nguyen, K.T.; Nizi, E.; Carroll, S.S.; Ludmerer, S.W.; Burlein, C.; DiMuzio, J.M.; Graham, D.J.; McHale, C.M.; Stahlhut, M.W.; Olsen, D.B.; Monteagudo, E.; Cianetti, S.; Giuliano, C.; Pucci, V.; Trainor, N.; Fandozzi, C.M.; Rowley, M.; Coleman, P.J.; Vacca, J.P.; Summa, V.; Liverton, N.J. Discovery of MK-5172, a macrocyclic hepatitis C virus NS3/4a protease inhibitor. ACS Med. Chem. Lett., 2012, 3(4), 332-336. doi: 10.1021/ml300017p PMID: 24900473
  109. Taylor, J.G.; Zipfel, S.; Ramey, K.; Vivian, R.; Schrier, A.; Karki, K.K.; Katana, A.; Kato, D.; Kobayashi, T.; Martinez, R.; Sangi, M.; Siegel, D.; Tran, C.V.; Yang, Z.Y.; Zablocki, J.; Yang, C.Y.; Wang, Y.; Wang, K.; Chan, K.; Barauskas, O.; Cheng, G.; Jin, D.; Schultz, B.E.; Appleby, T.; Villaseñor, A.G.; Link, J.O. Discovery of the pan-genotypic hepatitis C virus NS3/4A protease inhibitor voxilaprevir (GS-9857): A component of Vosevi®. Bioorg. Med. Chem. Lett., 2019, 29(16), 2428-2436. doi: 10.1016/j.bmcl.2019.03.037 PMID: 31133531
  110. Taylor, J.G. Discovery of voxilaprevir (GS-9857): The pan-genotypic hepatitis C virus NS3/4A protease inhibitor utilized as a component of Vosevi®. In: In HCV: The Journey from Discovery to a Cure; Sofia, M. Springer International Publishing, 2019; pp. 441-457. doi: 10.1007/7355_2018_61
  111. Romano, K.P.; Ali, A.; Aydin, C.; Soumana, D.; Özen, A.; Deveau, L.M.; Silver, C.; Cao, H.; Newton, A.; Petropoulos, C.J.; Huang, W.; Schiffer, C.A. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog., 2012, 8(7), e1002832. doi: 10.1371/journal.ppat.1002832 PMID: 22910833
  112. Tujios, S.; Fontana, R.J. Mechanisms of drug-induced liver injury: from bedside to bench. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(4), 202-211. doi: 10.1038/nrgastro.2011.22 PMID: 21386809
  113. Norman, B.H. Drug induced liver injury (DILI). Mechanisms and medicinal chemistry avoidance/mitigation strategies. J. Med. Chem., 2020, 63(20), 11397-11419. doi: 10.1021/acs.jmedchem.0c00524 PMID: 32511920
  114. Kumari, S.; Carmona, A.V.; Tiwari, A.K.; Trippier, P.C. Amide bond bioisosteres: Strategies, synthesis, and successes. J. Med. Chem., 2020, 63(21), 12290-12358. doi: 10.1021/acs.jmedchem.0c00530 PMID: 32686940
  115. Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274. doi: 10.1021/jm501100b PMID: 25255204
  116. Delost, M.D.; Smith, D.T.; Anderson, B.J.; Njardarson, J.T. From oxiranes to oligomers: Architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles. J. Med. Chem., 2018, 61(24), 10996-11020. doi: 10.1021/acs.jmedchem.8b00876 PMID: 30024747
  117. St Jean, D.J., Jr; Fotsch, C. Mitigating heterocycle metabolism in drug discovery. J. Med. Chem., 2012, 55(13), 6002-6020. doi: 10.1021/jm300343m PMID: 22533875
  118. Pennington, L.D.; Moustakas, D.T. The necessary nitrogen atom: A versatile high-impact design element for multiparameter optimization. J. Med. Chem., 2017, 60(9), 3552-3579. doi: 10.1021/acs.jmedchem.6b01807 PMID: 28177632
  119. Peterlin Masic, L. Arginine mimetic structures in biologically active antagonists and inhibitors. Curr. Med. Chem., 2006, 13(30), 3627-3648. doi: 10.2174/092986706779026101 PMID: 17168727
  120. Meanwell, N.A. The influence of bioisosteres in drug design: Tactical applications to address developability problems.Tactics in Contemporary Drug Design; Meanwell, N.A., Ed.; Springer, 2015, pp. 283-381. doi: 10.1007/978-3-642-55041-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers