The effect of paired associative stimulation on the speed-strength parameters of human voluntary movement

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The successful performance of various coordination complexity sports’ motor actions is largely determined by the functional interaction between neurons of the primary motor cortex and spinal cord, realized through anatomical and physiological connections between these structures. In experimental studies, it was shown that such functional connections can be targetly changed using the method of paired associative stimulation (PAS). The main goal of our research was to determine the effects of the PAS with stimuli combining at the spinal motor neurons on the speed-strength characteristics of human’s voluntary movement. The study involved 10 healthy male subjects engaged in sports games, aged 18 to 22. The PAS session involved 100 pairs of associative stimuli combined at the spinal motor neurons. Corticospinal excitability using the transcranial magnetic stimulation (TMS) method, the spinal motor neurons' excitability through transcutaneous electrical spinal cord stimulation (tSCS), and the speed-force characteristics of the maximum voluntary contraction (MVC) of the shin muscles (plantar flexion) were recorded before and after the PAS. Data analysis showed PAS led to an increase in corticospinal excitability, an increase in the torque achieved during 50, 100, 150 and 200 ms of MVC, an increase in the rate of contraction and relaxation of muscles during MVC. These PAS session effects are probably due to the involvement of a larger number of fast motor units (MU) during MVC and an increase in the efficiency of inhibitory processes in the motor cortex during muscle relaxation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Ivanov

Velikiye Luki State Academy of Physical Education and Sports

Хат алмасуға жауапты Автор.
Email: ivanov@vlgafc.ru
Ресей, Velikiye Luki

V. Shlyakhtov

Velikiye Luki State Academy of Physical Education and Sports

Email: ivanov@vlgafc.ru
Ресей, Velikiye Luki

R. Gorodnichev

Velikiye Luki State Academy of Physical Education and Sports

Email: ivanov@vlgafc.ru
Ресей, Velikiye Luki

Әдебиет тізімі

  1. Nicholls JG, Martin AR, Wallace BG, Fuchs PA (2008) From neuron to brain (4th ed). Sinauer Associates.
  2. Городничев РМ, Шляхтов ВН (2022) Физиология координационных способностей спортсменов. М. Спорт. [Gorodnichev RM, Shlyahtov VN (2022) Physiology of coordination abilities in sport. M. Sport. (In Russ)].
  3. Dixon L, Ibrahim MM, Santora D, Knikou M (2016) Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. J Neurophysiol 116(2): 904–916. https://doi.org/10.1152/jn.00259.2016
  4. Al’joboori Y, Hannah R, Lenham F, Borgas P, Kremers CJ, Bunday KL, Duffell LD (2021) The immediate and short-term effects of transcutaneous spinal cord stimulation and peripheral nerve stimulation on corticospinal excitability. Front Neurosci 15: 749042. https://doi.org/10.3389/fnins.2021.749042
  5. Suzuki M, Saito K, Maeda Y, Cho K, Iso N, Okab T, Suzuki T, Yamamoto J (2023) Effects of Paired Associative Stimulation on Cortical Plasticity in Agonist-Antagonist Muscle Representations. Brain Sci 13(3): 475. https://doi.org/10.3390/brainsci13030475
  6. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(3): 572–584. https://doi.org/10.1093/brain/123.3.572
  7. Roy FD, Bosgra D, Stein RB (2014) Interaction of transcutaneous spinal stimulation and transcranial magnetic stimulation in human leg muscles. Exp Brain Res 232: 1717–1728. https://doi.org/10.1007/s00221-014-3864-6
  8. Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89(5): 2339–2345. https://doi.org/10.1152/jn.00900.2002
  9. Shulga A, Savolainen S, Kirveskari E, Makela JP (2020) Enabling and promoting walking rehabilitation by paired associative stimulation after incomplete paraplegia: a case report. Spinal Cord Ser Cases 6: 72. https://doi.org/10.1038/s41394-020-0320-7
  10. Pulverenti TS, Zaaya M, Grabowski M, Grabowski E, Islam MA, Li J, Knikou M (2021) Neurophysiological changes after paired brain and spinal cord stimulation coupled with locomotor training in human spinal cord injury. Front Neurol 12: 627975. https://doi.org/10.3389/fneur.2021.627975
  11. MacIntosh BR, Gardiner PF, McComas AJ (2006) Skeletal muscle: form and function. Human kinetics.
  12. Гурфинкель ВС (1985) Скелетная мышца: структура и функция. Наука. [Gurfinkel' VS (1985) Skeletal muscle: Structure and function. Nauka. (In Russ)].
  13. Nishida S, Nakamura M, Kiyono R, Sato S, Yasaka K, Yoshida R, Nosaka K (2022) Relationship between Nordic hamstring strength and maximal voluntary eccentric, concentric and isometric knee flexion torque. PLoS One 17(2): e0264465. https://doi.org/10.1371/journal.pone.0264465
  14. Gerasimenko Y, Gorodnichev R, Puhov A, Moshonkina T, Savochin A, Selionov V, Edgerton VR (2015) Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J Neurophysiol 113(3): 834–842. https://doi.org/10.1152/jn.00609.2014
  15. Minassian K, Persy I, Rattay F, Dimitrijevic MR, Hofer C, Kern H (2007) Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 35(3): 327–336. https://doi.org/10.1002/mus.20700
  16. Пухов АМ (2023) Повышение эффективности подготовки стрелков из пистолета посредством электрической стимуляции спинного мозга. Физ воспит спорт тренир 3(45): 116–123. [Puhov AM (2023) Improving the effectiveness of pistol shooter training through electrical stimulation of the spinal cord. Phys educat sports training 3(45): 116–123. (In Russ)].
  17. Tharu NS, Wong AYL & Zheng YP (2024) Transcutaneous Electrical Spinal Cord Stimulation Increased Target-Specific Muscle Strength and Locomotion in Chronic Spinal Cord Injury. Brain Sci 14(7): 640. https://doi.org/10.3390/brainsci14070640
  18. Никитин СС, Куренков АЛ (2003) Магнитная стимуляция в диагностике и лечении болезней нервной системы. М. САШКО. [Nikitin SS, Kurenkov AL (2003) Magnetic stimulation in the diagnosis and treatment of diseases of the nervous system. M. SAShKO. (In Russ)].
  19. Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A, Shibasaki H (1999) Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19(9): 3527–3534. https://doi.org/10.1523/JNEUROSCI.19-09-03527.1999
  20. Buccolieri A, Abbruzzese G, Rothwell JC (2004) Relaxation from a voluntary contraction is preceded by increased excitability of motor cortical inhibitory circuits. J Physiol 558(2): 685–695. https://doi.org/10.1113/jphysiol.2004.064774
  21. Begum T, Mima T, Oga T, Hara H, Satow T, Ikeda A, Shibasaki H (2005) Cortical mechanisms of unilateral voluntary motor inhibition in humans. Neurosci Res 53(4): 428–435. https://doi.org/10.1162/jocn.2009.21248
  22. Motawar B, Hur P, Stinear J, Seo NJ (2012) Contribution of intracortical inhibition in voluntary muscle relaxation. Exp Brain Res 221: 299–308. https://doi.org/10.1007/s00221-012-3173-x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. (a) – average amplitude of responses of TA, GM and Sol muscles during selective TMS, tSCS and PAS (n = 10). (b) – sample of native recordings of evoked responses of the studied muscles during different variants of stimulation (10 stimuli in each variant). TA – tibialis anterior muscle, GM – medial head of gastrocnemius muscle, Sol – soleus muscle. TMS – transcranial magnetic stimulation (test stimulus 110% of threshold); tSCS – transcutaneous electrical stimulation of the spinal cord (test stimulus 130% of threshold); PAS – paired associative stimulation (110% TMS + 130% tSCS). * – significant changes (p < 0.05) relative to the amplitudes of responses to selective TMS and tSCS stimuli.

Жүктеу (206KB)
3. Fig. 2. Effect of a single PAS session on the amplitude of TA, GM and Sol MEPs during TMS of the motor cortex (stimulus amplitude = 110% of the motor threshold). TA – tibialis anterior muscle, GM – medial gastrocnemius muscle, Sol – soleus muscle. * – significant changes (n = 10, p < 0.05) relative to the values ​​before stimulation.

Жүктеу (79KB)
4. Fig. 3. Time to reach MVC, 50% of MVC, semi-relaxation and relaxation with 50% of MVC under the influence of the PAS session. * – significant changes (n = 10, p < 0.05) relative to the indicators before the stimulation effect.

Жүктеу (124KB)
5. Fig. 4. The curve of increase in 50% maximal voluntary force (50% MVC) during plantar flexion of the foot under the influence of a single session of PAS (n = 10).

Жүктеу (104KB)

© Russian Academy of Sciences, 2025